
Aalborg Universitet

Modal and Mixed Specifications: Key Decision Problems and their Complexities

Antonik, Adam; Huth, Michael; Larsen, Kim Guldstrand; Nyman, Ulrik; Waswoski, Andrzej

Published in:
Mathematical Structures in Computer Science

DOI (link to publication from Publisher):
10.1017/S0960129509990260

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Antonik, A., Huth, M., Larsen, K. G., Nyman, U., & Waswoski, A. (2010). Modal and Mixed Specifications: Key
Decision Problems and their Complexities. Mathematical Structures in Computer Science, 20(Special Issue 01),
75-103. https://doi.org/10.1017/S0960129509990260

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2025

https://doi.org/10.1017/S0960129509990260
https://vbn.aau.dk/en/publications/811a48b0-fe91-11de-9a61-000ea68e967b
https://doi.org/10.1017/S0960129509990260

Under consideration for publication in Math. Struct. in Comp. Science

Modal and Mixed Specifications: Key
Decision Problems and their Complexities

Adam Antonik1, Michael Huth2†, Kim G. Larsen3‡, Ulrik Nyman3, Andrzej Wąsowski4‡

1 CNRS, Ecole Normale Supérieure de Cachan, France

2 Department of Computing, Imperial College London, United Kingdom

3 Department of Computer Science, Aalborg University, Denmark

4 IT University of Copenhagen, Denmark

Received 16 October 2009

Modal and mixed transition systems are specification formalisms that allow mixing of
over- and under-approximation. We discuss three fundamental decision problems for
such specifications: whether a set of specifications has a common implementation,
whether a sole specification has an implementation, and whether all implementations of
one specification are implementations of another one. For each of these decision problems
we investigate the worst-case computational complexity for the modal and mixed case.
We show that the first decision problem is EXPTIME-complete for modal as well as for
mixed specifications. We prove that the second decision problem is EXPTIME-complete
for mixed specifications (while it is known to be trivial for modal ones). The third
decision problem is furthermore demonstrated to be EXPTIME-complete for mixed
specifications.

1. Introduction

Labeled transition systems are frequently used to define semantics of modeling languages,
and then to reason about models in these languages. It often happens that a single
transition system cannot serve multiple purposes. For example, an over-approximating
transition system can be used to soundly establish safety properties, but not liveness
properties. Similarly an under-approximating transition system, can be used to prove
liveness, but not safety, properties. A simple remedy for that problem is to use two
transition systems in a verification process that requires capturing both viewpoints: one
describing an over-approximation, and one describing an under-approximation of the
same behavior.

† This research was partially supported by the UK EPSRC projects Efficient Specification Pattern
Library for Model Validation EP/D50595X/1 and Complete and Efficient Checks for Branching-
Time Abstractions EP/E028985/1
‡ Supported by MT-LAB, VKR Centre of Excellence

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 2

14 15 16 17 18

19

202122

� � � �

��

� ♦

�

�

♦

�♦

trnsmt! log! up?

send? ok! fail!

send? trnsmt! nack? trnsmt!
ack?

ack?ok!

nack?fail!
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

Fig. 1. An interface of a simple communication module, originally presented in (Larsen
et al., 2007a)

This solution introduces a lack of precision, caused by decoupling the states of one
abstraction from those of the other, which makes it impossible to verify nested properties
typical for recursive logics. For example one cannot prove that a state in which a certain
liveness property holds, is unreachable. To deal with the problem, model checkers such
as Yasm (Gurfinkel et al., 2006) handle over- and under-approximation in one structure
based on a single transition systems.

This idea can be traced back to the late eighties, when Larsen and Thomsen proposed
modal transition systems (Larsen and Thomsen, 1988), also known as modal specifica-
tions (Larsen, 1989) and mixed specifications (Dams, 1996). Modal specifications combine
over and under- approximation in a single transition system, using two transition rela-
tions, but a single set of states. Inconsistencies may arise in such specifications, if some
behaviour is both required and disallowed. We chose to call the general, possibly inconsis-
tent form of specifications mixed specifications, and the subset that syntactically enforces
consistency modal specifications (in modal specifications the required transition relation
is included in the allowed transition relation). This naming is a convention that we adopt
here for clarity, remarking that this is not always followed in the existing literature.

Mixed specifications have since been applied as suitable abstractions in, among others,
program analysis (Huth et al., 2001; Schmidt, 2001), model checking (Godefroid et al.,
2001; Børjesson et al., 1993; Gurfinkel et al., 2006), verification (Larsen et al., 1995;
Bruns, 1997), solving process algebraic equation systems (Larsen and Xinxin, 1990),
compositional reasoning with interface theories (Larsen et al., 2007a), modeling of vari-
ability in software product lines (Larsen et al., 2007a; Fischbein et al., 2006) and other
model management areas such as model merging (Uchitel and Chechik, 2004; Brunet
et al., 2006).

As an example, let us briefly consider a model originating in interface theories, that
can be used to explain the motivation of our work. Figure 1 shows an interface of a
communication component. This interface models communication components that retry

Modal and Mixed Specifications: Key Decision Problems and their Complexities 3

transmission at least once after a failure, and that optionally can check the link status
upon a failure (to react appropriately). Specifically, the interface specifies five output
actions (ok, fail, trnsmt, linkStatus, log) and five input actions (send, ack, nack, up, down),
all enumerated on the rectangular frame. The interior of the frame contains an automaton
specifying the desired and allowed behavior. Transitions labeled by � are required by the
interface, transitions labeled by ♦ are allowed by the interface. Thus assuming that the
state labelled 14 is the initial state, the component must await a send request, and then it
is obliged to transmit a message, awaiting an acknolwedgement. If the acknowledgement
arrives (state 19), the component successfully closes the communication notifying the
requester ok!, if an error message arrives (state 17) the component needs to retransmit,
or alternatively it may check the status of the underlying link. After the second attempt
to transmit (state 18) the component either disallows failure, or may retry again (the
nack transition).

Such interface models have been described in (Larsen et al., 2007a) and in (Raclet,
2008). Here let us just mention that the underlying semantic model is that of modal spec-
ifications. Thus decision procedures for interfaces often relate to decision procedures for
modal specifications. For example, if a component needs to implement several interfaces,
the question arises whether the interfaces are consistent. A similar question is whether
a certain interface is a proper generalization of another one, i.e. does every component
implementing the former also implement the latter. In the present paper we discuss the
computational complexity of these questions, formulating them for both “mixed” and
“modal” specifications implicitly:

C Is a single specification consistent, i.e. can it be implemented?
CI Is a collection of specifications consistent, i.e. does there exist a common im-

plementation of them?
TR Does one specification thoroughly refine the other, i.e. is every implementation

of the former an implementation of the latter?

Our results are obtained as follows. First, we argue that all three decision problems
are in EXPTIME for modal as well as for mixed specifications. Then we prove three
reductions from which we obtain lower bounds:

1 We show that the EXPTIME-complete problem of acceptance of an input in a linearly
bounded alternating Turing machine reduces to CI for modal specifications. From this
we learn that CI is EXPTIME-hard for modal and so for mixed specifications as well.

2 We show that CI for modal specifications reduces to C for mixed specifications, and
so the EXPTIME-hardness of CI renders EXPTIME-hardness of C for mixed speci-
fications.

3 Finally, we show that C for mixed specifications reduces to TR for mixed specifica-
tions, obtaining thus EXPTIME-hardness of TR for mixed specifications from the
EXPTIME-hardness of C for mixed specifications.

This reduction chain begins with modal specifications but has to resort to mixed, non-
modal specifications for C. Therefore, we are only able to infer that CI is EXPTIME-
complete for modal specifications, being unable to reveal any new lower bounds on TR
for modal specifications.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 4

The paper proceeds as follows. In Section 2 we give the needed background for appre-
ciating the technical development of the paper. In Section 3 we discuss related work. In
Sections 4, 5, and 6 we state the three reductions that render EXPTIME-completeness of
CI (for modal and mixed specifications), of C (for mixed specifications), and of TR (for
mixed specifications). In Section 7 we put these results into context, and we summarize
the paper in Section 8.

2. Background

Let us now formally define the basic models of interest in our study (Larsen, 1989; Dams,
1996; Clarke et al., 1994):

Definition 1. Let Σ be a finite alphabet of actions.

1 A mixed specification M is a triple (S,R�, R�), where S is a finite set of states and
R�, R� ⊆ S × Σ× S are the must- and may- transitions relations (respectively).

2 A modal specification is a mixed specification satisfyingR� ⊆ R�; all its must-transitions
are also may-transitions.

3 A pointed mixed specification (M, s) is a mixed specification M with a designated
initial state s ∈ S.

4 The size |M | of a mixed specification M is defined as |S |+ |R� ∪R� |.

Remark 1. Throughout this paper references to “mixed” specifications also apply to
“modal” ones, as in the last two items of Definition 1 – unless stated otherwise.

Refinement (Larsen, 1989; Dams, 1996; Clarke et al., 1994), called “modal refinement”
in (Larsen et al., 2007b), is a co-inductive relationship between two mixed specifications
that verifies that one such specification is more abstract than the other. This generalizes
the co-inductive notion of bisimulation (Park, 1981) to mixed specifications:

Definition 2. A pointed, mixed specification (N, t0) = ((SN , R�N , R
�
N), t0) refines an-

other pointed, mixed specification (M, s0)=((SM , R�M , R
�
M), s0) over the same alphabet

Σ, written (M, s0)≺(N, t0), iff there is a relation Q ⊆ SM × SN containing (s0, t0) such
that whenever (s, t) ∈ Q then

1 for all (s, a, s′) ∈ R�M there exists some (t, a, t′) ∈ R�N with (s′, t′) ∈ Q
2 for all (t, a, t′) ∈ R�N there exists some (s, a, s′) ∈ R�M with (s′, t′) ∈ Q

Deciding whether one finite-state, pointed, mixed specification refines another one is in
PTIME, and can be implemented by a standard fixpoint algorithm as used for checking
simulation or bisimilarity.

Example 1. Pointed, mixed specification (M, s0) and pointed, modal specification (N, t0)
in Figure 2 have the same set of implementations I(M, s0) = I(N, t0) (defined shortly)
and we have (M, s0)≺(N, t0), given by

Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t3)}

But we do not have (N, t0)≺(M, s0). To see this, assume that there is a relation Q with
(t0, s0) ∈ Q satisfying the properties in Definition 2. Then from (s0, π, s2) ∈ R�M we infer

Modal and Mixed Specifications: Key Decision Problems and their Complexities 5

s0

s1 s2 s3

s4

π
π

π

π
π

M :

t0

t1 t2

t3

π
π

π

N :

Fig. 2. Pointed, mixed ((M, s0)) and pointed, modal ((N, t0)) specifications over
alphabet Σ = {π} with I(M, s0)=I(N, t0) but not (N, t0)≺(M, s0). Throughout figures
showing specifications, solid arrows denote must-transitions, whereas dashed arrows
depict may-transitions.

that there must be some x with (t0, π, x) ∈ R�N and (x, s2) ∈ Q. In particular, x can
only be t1 or t2. If x is t1, then since (s2, π, s4) ∈ R�M and (t1, s2) ∈ Q there has to be
some R�N transition out of t1, which is not the case. If x is t2, then (t2, π, t3) ∈ R�N and
(t2, s2) ∈ Q imply that there is some R�M transition out of s2, which is not the case. In
conclusion, there cannot be such a Q and so (N, t0) 6≺(M, s0).

Labeled transition systems over an alphabet Σ are pairs (S,R) where S is a non-empty
set of states and R ⊆ S × Σ × S is a transition relation. We identify labelled transition
systems (S,R) with modal specifications (S,R,R). The set of implementations I(M, s)
of a pointed, mixed specification (M, s) are all pointed labelled transition systems (T, t)
refining (M, s). Note that I(M, s) may be empty in general, but is guaranteed to be
non-empty if M is a modal specification.

Definition 3. Let (N, t) and (M, s) be pointed, mixed specifications. As in (Larsen
et al., 2007b) we define thorough refinement (M, s)≺th(N, t) to be the predicate I(N, t) ⊆
I(M, s).

Refinement approximates this notion: (M, s)≺(N, t) implies (M, s)≺th(N, t) since re-
finement is transitive. The converse is known to be false (Hüttel, 1988; Xinxin, 1992;
Schmidt and Fecher, 2007) – contrary to what has been claimed in (Huth, 2005b); Fig-
ure 2 provides a counterexample.

We shall now formally define the decision problems informally stated above. Each
decision problem has two instances – one for modal and one for mixed specifications.

— Common implementation (CI): given k > 1 specifications (Mi, si), is the intersection⋂k
i=1 I(Mi, si) non-empty?

— Consistency (C): Is I(M, s) non-empty for a specification (M, s)?
— Thorough refinement (TR): Does a specification (N, t) thoroughly refine a specifica-

tion (M, s), i.e., do we have I(N, t) ⊆ I(M, s)?

As far as these decision problems are concerned, the restriction to finite implementa-
tions, which follows from restricting our definitions to finite specifications, causes no loss
of generality, as already explained in (Antonik et al., 2008b): A mixed specification (M, s)
is consistent in the infinite sense iff its characteristic modal µ-calculus formula Ψ(M,s)

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 6

(Huth, 2005a) is satisfiable. In general a transition system satisfying a modal µ-calculus
formula may be infinite. Due to the small model theorem for µ-calculus (Kozen, 1988),
Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations. Hence reasoning
about consistency does not require reasoning about infinite structures. We can reason in a
similar manner about common implementation and thorough refinement, which justifies
the restriction to finite-state implementations. The restriction to finite-state specifica-
tions is needed in order to do complexity analysis.

Now we establish an EXPTIME upper bound for our key decision problems for modal
and mixed specifications.

Lemma 4. The decision problems CI, C, and TR are in EXPTIME for modal as well
as for mixed specifications, in the sum of their sizes.

Proof sketch. Mixed and modal specifications (M, s) have characteristic formulæ Ψ(M,s)

(Huth, 2005a) in the modal µ-calculus such that pointed labeled transition systems (L, l)
are implementations of (M, s) iff (L, l) satisfies Ψ(M,s). The common implementation and
consistency problem, CI and C, reduce to satisfiability checks of

∧
i Ψ(Mi,si) and Ψ(M,s),

respectively. The thorough refinement problem of whether (M, s)≺th(N, t) reduces to a
validity check of ¬Ψ(N,t) ∨Ψ(M,s).

Validity checking of such vectorized modal µ-calculus formulæ is in EXPTIME. One
way in which this membership in EXPTIME can be seen is by translating the problem
into alternating tree automata. It is well known that a formula Ψ(M,s) can be efficiently
translated (Wilke, 2001) into an alternating tree automata A(M,s) (with parity accep-
tance condition) that accept exactly those pointed labeled transition systems that sat-
isfy Ψ(M,s). Since non-emptiness, intersection, and complementation of languages is in
EXPTIME for alternating tree automata, we get our EXPTIME upper bounds if these
automata have size polynomial in |M |.

Since the size of Ψ(M,s) may be exponential in |M | we require a direct translation from
(M, s) into a version of A(M,s). The formulæ Ψ(M,s) can be written as a system of recursive
equations (Larsen, 1989) Xs = bodys for each state s of M . We can therefore construct
all A(M,s) in a compositional manner: whenever Xs refers in its bodys to some Xt, then
A(M,s) has a transition to the initial state of A(M,t) at that point. This A(M,s) generates
the same language as the one constructed from Ψ(M,s), by appeal to the existence of
memoryless winning strategies in parity games (Zielonka, 1998). The system of equations
is polynomial in |M |, and so the compositional version of A(M,s) is polynomial in the
size of that system of equations.

For full details we refer the reader to (Wilke, 2001) and (Larsen, 1989).

Remark 2. Throughout this paper we work with Karp reductions, i.e. many-one reduc-
tions computable by deterministic Turing machines in polynomial time. This choice is
justified since we reduce problems that are EXPTIME-complete or PSPACE-hard.

3. Related work

In the following we briefly state research directly relevant to this paper.

Modal and Mixed Specifications: Key Decision Problems and their Complexities 7

The workshop paper (Antonik et al., 2008c) contains a sketch of the reduction of
ATMLB, i.e. the acceptance of input for a linearly bounded alternating Turing machine,
to CI for modal specifications. This reduction was discovered, independently, by An-
tonik and Nyman in their PhD dissertation work (Antonik, 2008; Nyman, 2008). This
reduction constitutes an improvement over the reduction to CI for modal specifications
from the PSPACE-complete problem of Generalized Geography, that reduction appeared
in (Antonik et al., 2008b) already.

The conference paper (Antonik et al., 2008b) also contains the reductions of C for mixed
to CI for modal specifications, and of TR for mixed to C for mixed specifications – but
the stronger reduction to alternating Turing machines makes these reductions stronger
by transitivity.

The conference paper (Antonik et al., 2008b) also shows that TR for modal specifica-
tions is PSPACE-hard. This result is completely orthogonal to the techniques and results
reported in this paper.

We refer the interested reader to an invited concurrency column (Antonik et al., 2008a),
that provides more motivation and potential applications of the decision problems studied
in this paper.

The prime numbers construction in the example of Section 4 has been originally pro-
posed by Antonik, and published in (Antonik, 2008). Only after the fact, we have learned
that the same technique has been used by Berwanger and colleagues in two other works,
published around the same time (Berwanger et al., 2008; Berwanger and Doyen, 2008).
In these papers, the technique of multiplication of small prime numbers is used to (i)
show that imperfect information games require exponential strategies and to (ii) reduce
imperfect information parity games to imperfect information safety games.

4. Common Implementation

We would like to develop an intuition as to why the CI problem is hard. Before at-
tempting a formal proof of this fact we demonstrate a set of specifications, whose size
is exponentially smaller than its smallest common implementation. The succinctness of
specifications as a representation in itself does not prove hardness of the problem, but,
we think, it makes it quite evident that the problem is hard.

Example 2. The construction used below originates in (Antonik, 2008). Let I be a finite
set of natural indices and, and for i ∈ I let Mi be modal specifications consisting of:

— states sji , j = 1 . . . i, such that (sji , π, s
j+1
i) ∈ R�, R� for 1 ≤ j ≤ i−1 and (sii, π, s

1
i) ∈

R�.
— an extra deadlock state d, such that (sji , al, d) ∈ R� if l ∈ I − {i}, while (sii, ai, d) ∈

R�, R�.

Figure 3 shows an example of specifications M2, M3 and M5 for I = {2, 3, 5}. Observe
that each Mi is a counter that counts i− 1 transitions labeled by π, allowing the imple-
mentation to stop after i−1 π-steps (or any multiple of that). In any state Mi is allowed
to make an aj transition to a deadlocking state, but only in its topmost state (see figure)
it is allowed and required to be able to make an ai transition to this state.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 8

s1
2

s2
2

πππ

a3

a5

a3

a5

a2a2

s1
3

s2
3

s3
3

ππ

ππ

π

a2

a5

a2

a5

a3a3

a5

a2

s1
5

s2
5

s3
5

s4
5

s5
5

ππ

ππ

ππ

ππ

π

a2

a3

a2

a3

a2

a3

a2

a3

a3

a5a5

a2

Fig. 3. Pointed specifications (M2, s
1
2), (M3, s

1
3) and (M5, s

1
5) whose common

implementation has at least 2 · 3 · 5 = 30 states.

It is not hard to see that if we take a collection of Mi models for i = p1, . . . , pn, ranging
over the first n primes, then any implementation has at least

∏n
i=1 pi >

∏n
i=1 2 = 2n

states. Thus the size of any common implementation of the family of models for the first
n primes is exponential in n. It remains to argue that the total size of the specifications
themselves remains polynomial in n.

By a theorem of Chebyshev (Chebyshev, 1852), there exists a constant θ > 0 such that
the number of primes less than a given k is at least θk/ log k. Since for sufficiently large
k we have that log k < k1/2, we have that the number of primes is greater than θk1/2. In
order to ensure at least n primes in the range [0, x] it suffices to take x larger than (nθ)2.
The total size of Mi specifications corresponding to these numbers is O(n(nθ)2) = O(n3).
Thus the set of specifications has size polynomial in n, while its common implementations
are at least exponential in n. We remark that this construction can be easily adapted to
only use a binary alphabet.

In the remaining part of this section, we present a formal reduction, demonstrating
EXPTIME-hardness of CI. Let us begin with a definition of the decision problem used
in the lower bound proof for common implementation.

An Alternating Turing Machine (Chandra et al., 1981), or an ATM, is a tuple T =
(Q,Γ, δ, q0,mode), where Q is a non-empty finite set of control states, Γ is an alphabet
of tape symbols, null 6∈ Γ is a special symbol denoting empty cell contents,

δ : Q× (Γ ∪ {null})→ P(Q× Γ× {l, r})

is a transition relation, q0 ∈ Q is the initial control state, and mode : Q→ {Univ,Exst} is a
labeling of control states as respectively universal or existential. Universal and existential

Modal and Mixed Specifications: Key Decision Problems and their Complexities 9

e u1 u2(1, 1, r) (1, 1, r)

(1, 1, r)

(0, 0, r)

(0, 1, l)

(0, 0, r)

δ(e, 0) = {(e, 0, r)}
δ(e, 1) = {(e, 1, r), (u1, 1, r)}
δ(u1, 0) = {(u1, 1, l), (u1, 0, r)}
δ(u1, 1) = {(u2, 1, r)}
δ(u2, 0) = δ(u2, 1) = {}

Fig. 4. The transition relation of an ATM as a labelled graph and as a function.

states with no successors are called accepting and rejecting states (respectively). Each
ATM T has an infinite tape of cells with a leftmost cell. Each cell can store one symbol
from Γ. A head points to a single cell at a time, which can then be read or written to.
The head can then move to the left or right: (q′, a′, r) ∈ δ(q, a), e.g., says “if the head
cell (say c) reads a at control state q, then a successor state can be q′, in which case cell
c now contains a′ and the head is moved to the cell on the right of c.” The state of the
tape is an infinite word over Γ ∪ {null}.

We provide a simple example that we use throughout this paper for sake of illustration.

Example 3. Figure 4 presents an example of an ATM T over a binary alphabet Γ =
{0, 1} where arrows q (a,a′,d)−−−−−→ q′ denote (q′, a′, d) ∈ δ(q, a). The initial control state e is
an existential one, and both ui control states are universal.

Definition 5.

1 Configurations of an ATM T are triples 〈q, i, τ〉 where q ∈ Q is the current control
state, the head is on the ith cell from the left, and τ ∈ (Γ∪ null)ω is the current tape
state.

2 For input w ∈ Γ∗, the initial configuration is 〈q0, 1, wnullω〉.
3 The recursive and parallel execution of all applicable† transitions δ from initial config-

uration 〈q0, 1, wnullω〉 yields a computation tree T〈T,w〉. We say that ATM T accepts
input w iff the tree T〈T,w〉 accepts, where the latter is a recursive definition:

— Subtree T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Exst accepts iff there is a successor
〈q′, i′, τ ′〉 of 〈q, i, τ〉 in T〈T,w〉 such that the sub-tree with root 〈q′, i′, τ ′〉 accepts

— Subtree T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Univ accepts iff for all succes-
sors 〈q′, i′, τ ′〉 of 〈q, i, τ〉 in T〈T,w〉 the sub-tree with root 〈q′, i′, τ ′〉 accepts (in
particular, this is the case if there are no such successors)

Example 4. The ATM of Figure 4 accepts the regular language (0 + 1)∗10∗1(0 + 1)∗.
Observe that u2 is the only accepting state. Intuitively the part of T rooted in e accepts
the prefix (0 + 1)∗1 — the semantics of existential states is locally that of states in non-
deterministic Turing machines. The part of T rooted in u1 consumes a series of 0 symbols
until 1 is reached, which leads to acceptance. The suffix of the input word after the last

† Transitions (, , , , l) are not applicable in configurations 〈 , 1, 〉 as the head cannot move over the
left boundary of the tape, where we use as a wildcard.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 10

〈e,
1, 0

10
1n

ull
ω 〉

〈e,
2, 0

10
1n

ull
ω 〉

〈u 1
, 3,

01
01

nu
ll
ω 〉

〈u 1
, 2,

01
11

nu
ll
ω 〉

〈u 2
, 3,

01
11

nu
ll
ω 〉

〈u 1
, 4,

01
01

nu
ll
ω 〉

〈u 2
, 5,

01
01

nu
ll
ω 〉

(0,0,r) (1,1,r)

(0,1,l)

(0,0,r)

(1,1,r)

(1,1,r)

Fig. 5. An accepting computation tree T〈T,0101nullω〉 for the ATM T of Example 4.

1 is ignored. Note that the computation forks in u1 whenever a 0 is seen. However, the
top branch would reach the earlier 1 eventually and accept. Figure 5 shows one possible
accepting tree for this ATM and the word 0101nullω.

An ATM T is linearly bounded iff for all words w ∈ Γ∗ accepted by T , the accepting
part of the computation tree T〈T,w〉 only contains configurations 〈q, i, vnullω〉, where the
length of v ∈ Γ∗ is no greater than the length of w. That is to say, by choosing exactly
one accepting successor for each existential configuration in T〈T,w〉, and by removing all
the remaining successors and configurations unreachable from the root, one can create a
smaller tree that only contains configurations with 〈q, i, vnullω〉 where |v| ≤ |w|. We refer
to such pruned computation trees simply as “computations”.

Our notion of “linear boundedness” follows (Landweber, 1963) and (Laroussinie and
Sproston, 2007) in limiting the tape size to the size of the input. This limitation does not
change the hardness of the acceptance problem (see below). In addition we assume that
linearly bounded ATMs have no infinite computations since any linearly bounded ATM
can be transformed into another linearly bounded ATM, which accepts the same lan-
guage, but also counts the number of computation steps used, rejecting any computation
whose number of steps exceeds the number of possible configurations. This is possible
because ASPACE = EXPTIME (Sipser, 1996, Thm. 10.18).

Fact 1. Consider the formal language

ATMLB = {〈T,w〉 | w ∈ Γ∗ is accepted by linearly bounded ATM T}

The problem of deciding whether for an arbitrary linearly bounded ATM T and an input
w the pair 〈T,w〉 is in ATMLB is EXPTIME-complete (Chandra et al., 1981).

We are now in a position to prove our first EXPTIME-hardness result, for the decision
problem of common implementations of modal specifications.

Theorem 6. Let {(Ml, sl)}l∈{1...k} be a finite family of modal specifications over the
same action alphabet Σ. Deciding whether there exists an implementation (I, i) such
that (Ml, sl)≺(I, i) for all l = 1 . . . k is EXPTIME-hard.

Modal and Mixed Specifications: Key Decision Problems and their Complexities 11

p〈1,0〉 p〈1,1〉
(0, 1, 1,)

(1, 1, 0,)
(0, 1, 0,)

Σ− {(, 1, ,)}
(1, 1, 1,)

Σ− {(, 1, ,)}

Fig. 6. Specification M1 of the first tape cell in our running example, assuming w1 = 0.
In figures we visualize multiple transitions with the same source and target as single
arrows labeled with sets of actions. Several labels placed by the same arrow denote a
union of sets. Wildcards (the ’ ’ symbol) are used to generate sets of actions that match
the pattern in the usual sense.

We prove Theorem 6 by demonstrating a PTIME reduction from ATMLB. Given an
ATM T and an input word w of length n we synthesize a collection of (pointed) modal
specifications

MT
w = {Mi | 1 ≤ i ≤ n} ∪ {Mhead,Mctrl,Mexist} (1)

whose sum of sizes is polynomial in n and in the size of T , such that T accepts w iff there
exists a (pointed) implementation I refining all members of MT

w.
Specifications Mi, Mhead, Mctrl, and Mexist model tape cell i, the current head position,

the finite control of T , and acceptance (respectively). Common implementations of these
specifications model action synchronization to agree on what symbol is being read from
the tape, what is the head position, what is the symbol written to the tape, in what
direction the head moves, what are the transitions taken by the finite control, and whether
a computation is accepting. The achieved effect is that any common implementations of
these specifications correspond to an accepting computation of T on input w. More
precisely, any common implementation will correspond to different unfoldings of the
structure of the finite control into a computation tree based on the content of the tape
cells and the tape head position.

We now describe the specifications in MT
w both formally and through our running

example in Figure 4. All specifications in MT
w have the same alphabet. Actions are of

the form (a1, i, a2, d) and denote that the machine’s head is over the ith cell of the tape,
which contains the a1 symbol, and that it shall be moved one cell in the direction d

after writing a2 in the current cell. In addition, two special actions, ∃ and π, are used to
encode logical constraints like disjunction and conjunction. The alphabet for our running
example is

{π,∃} ∪ ({0, 1} × {1..n} × {0, 1} × {l, r})
We remark, that a stricter and more complex reduction to CI of modal specifications
over a binary alphabet is possible by encoding actions in binary form.

Encoding Tape Cells. For each tape cell i, specification Mi represents the possible
contents of cell i. It has |Γ| states {p〈i,a〉}a∈Γ and initial state p〈i,wi〉, representing the
initial contents of the ith cell. There are no must-transitions:

R� = ∅

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 12

p1 p2 p3 p4
(, 1, , r)

(, 2, , l)

(, 2, , r)

(, 3, , l)

(, 3, , r)

(, 4, , l)
{π,∃} {π,∃} {π,∃} {π,∃}

Fig. 7. Example of the head specification Mhead assuming |w| = 4.

The may-transition relation connects any two states:

for all symbols a1, a2 in Γ we have (p〈i,a1〉, (a1, i, a2,), p〈i,a2〉) ∈ R�

Changes in cells other than i are also consistent with Mi:

for all a ∈ Γ if i 6=j with 1≤j≤ n, then (p〈i,a〉, (, j, ,), p〈i,a〉) ∈ R�

Finally the π and ∃ actions may be used freely as they do not affect the contents of the
cell:

(p〈i,a〉, π, p〈i,a〉) ∈ R� and (p〈i,a〉,∃, p〈i,a〉) ∈ R� for any a∈Γ

There are no more may-transitions in Mi.
Figure 6 presents a specification M1 for the leftmost cell of an ATM over a binary

alphabet.

Encoding The Head. Specification Mhead, which tracks the current head position, has
n states labeled p1 to pn — one for each possible position. Initially, the head occupies
the leftmost cell, so p1 is the initial state of Mhead. There are no must-transitions:

R� = ∅

May-transitions are consistent with any position changes based on the direction encoded
in observed actions. More precisely,

for every position 1≤ i<n we have (pi, (, i, , r), pi+1) ∈ R�

for every position 1<i≤n we have (pi, (, i, , l), pi−1) ∈ R�

The π and ∃ transitions may again be taken freely, but in this case without moving the
machine’s head:

(pi, π, pi) ∈ R� and (pi,∃, pi) ∈ R� for each position 1 ≤ i ≤ n

There are no more may-transitions in Mhead. Note that the head of T is only allowed
to move between the first and nth cell in any computation. Figure 7 shows specification
Mhead for our running example.

Encoding The Finite Control. Specifications Mctrl and Mexist model the finite control
of the ATM T . Specification Mexist is independent of the ATM T . It is defined in Figure 8.
It ensures that a π-transition is taken after every ∃-transition. Specification Mctrl mimics
the finite control of T almost directly. Each control state qs ∈ Q is identified with a
state in Mctrl of the same name. Additional internal states of Mctrl encode existential

Modal and Mixed Specifications: Key Decision Problems and their Complexities 13

x1 x2

x3

∃

π

(
,
,
,

)

Fig. 8. Specification Mexist, which enforces a π-transition after each ∃-transition.

and universal branching:

for each qs a state qs∃ with two ∃-transitions (qs,∃, qs∃) ∈ R� ∩R� is added

Dependent on mode(qs), additional states and transitions are created:

— If mode(qs) = Exst: for each 1≤ i≤n, aold ∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to a new intermediate state uniquely
named 〈qsaoldianewdqt〉, and add a must-transition labeled (aold, i, anew, d) from that
intermediate state to qt. Formally:

(qs∃, π, 〈qsaoldianewdqt〉) ∈ R�

(〈qsaoldianewdqt〉, (aold, i, anew, d), qt) ∈ R�∩R�

Figure 9 shows this encoding for the state e of our running example.

— If mode(qs) = Univ: for each 1≤ i≤n, aold ∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to an intermediate state named 〈qsaoldi〉,
and add a must-transition labeled (aold, i, anew, d) from the intermediate state 〈qsaoldi〉
to qt. Formally:

(qs∃, π, 〈qsaoldi〉) ∈ R�

(〈qsaoldi〉, (aold, i, anew, d), qt) ∈ R�∩R�

The initial state of Mctrl is its state named q0, where q0 is the initial state of T . Fig-
ure 10 demonstrates the encoding of the state u1 of the ATM in Figure 4. The complete
specification Mctrl for our running example is shown in Figure 11.

Notice how the two specifications Mctrl and Mexist cooperate to enforce the nature of
alternation. For example, for an existential state, Mctrl forces every implementation to
have an ∃-transition, which may be followed by a π-transition. Simultaneously Mexist
allows an ∃-transition but subsequently requires a π-transition. Effectively at least one of
the π branches from Mctrl must be implemented (which is an encoding of a disjunction).

This concludes the description of all specifications from set MT
w in (1). All these

specifications are modal by construction. Since the sum of their sizes is bounded by a
polynomial in n and in the size of T , the remainder of the proof for Theorem 6 follows
from the following lemma:

Lemma 7. For each linearly bounded ATM T and an input w, T accepts w iff the set
of modal specifications MT

w has a common implementation.

The proof of this lemma can be found in Appendix A. We mention here some points
of interest. From an accepting computation tree T〈T,w〉 one can construct a specification

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 14

u1
e

e∃

〈e010re〉

〈e020re〉

〈e030re〉

〈e040re〉

〈e111re〉

〈e121re〉

〈e131re〉

〈e141re〉

〈e111ru1〉

〈e121ru1〉

〈e131ru1〉

〈e141ru1〉

∃

π

π

π

π

π

π

π

π

π

π

π

π

(1
,1
,1
,r)

(1
,2
,1
,r)

(1,
3,1
,r)

(1,4,
1,r)

(0,1,0,r)

(0,2,0,r)
(0,3,0,r)
(0,4,0,r)

(1,1,1,r)

(1,2,1,r)

(1,3
,1,r

)

(1
,4
,1
,r
)

Fig. 9. Encoding for the existential state of the running example, assuming |w| = 4.

u1 u1∃

〈u101〉

〈u102〉

〈u103〉

〈u104〉

〈u111〉

〈u112〉

〈u113〉

〈u114〉

u2

∃

π

π

π

π

(0
,1
,0
,r)(0

,1
,1
,l)

(0,
1,0
,r)

(0,1,
1,l)

(0,1,0,r)

(0,1,1,l)

(0,1,0,r)

(0,1,1,l)

π

π

π

π

(1,1,1,r)

(1,2,1,r)

(1,3
,1,r

)

(1
,4
,1
,r
)

Fig. 10. Encoding for the universal state u1 of the running example, assuming |w| = 4.

N by structural induction on T〈T,w〉. This N effectively adds to T〈T,w〉 some new states
and labeled transitions so that the computation encoded in T〈T,w〉 then interlocks with
the action synchronization of specifications in MT

w. Since N is of the form (S,R,R) it
suffices to show that N is a common refinement of all members inMT

w. This is a lengthy
but routine argument.

For the converse, a common implementation of MT
w is cycle-free by our assumption

that T never repeats a configuration. So that pointed common implementation is a DAG

Modal and Mixed Specifications: Key Decision Problems and their Complexities 15

u
1

e
e ∃

〈e
01

0r
e〉

〈e
02

0r
e〉

〈e
03

0r
e〉 〈e
04

0r
e〉

〈e
11

1r
e〉

〈e
12

1r
e〉

〈e
13

1r
e〉

〈e
14

1r
e〉

〈e
11

1r
u

1
〉

〈e
12

1r
u

1
〉

〈e
13

1r
u

1
〉

〈e
14

1r
u

1
〉

∃

π π π π π π π π

π π π π

(1
,1
,1
,r
)

(1
,2
,1
,r
)

(1
,3
,1
,r

)

(1
,4
,1
,r

)

(0
,1
,0
,r

)

(0
,2
,0
,r

)
(0
,3
,0
,r
)

(0
,4
,0
,r
)

(1
,1
,1
,r)

(1
,2
,1
,r

)

(1
,3
,1
,r

)

(1
,4
,1
,r)

u
1
∃

〈u
1
01
〉 〈u

1
02
〉

〈u
1
03
〉

〈u
1
04
〉

〈u
1
11
〉

〈u
1
12
〉

〈u
1
13
〉

〈u
1
14
〉

u
2

∃

π

π π

π

(0
,1
,0
,r
)

(0
,1
,1
,l)

(0
,1
,0
,r

)

(0
,1
,1
,l
)

(0
,1
,0
,r

)

(0
,1
,1
,l
)

(0
,1
,0
,r
)

(0
,1
,1
,l)

π π π π

(1
,1
,1
,r)

(1
,2
,1
,r

)

(1
,3
,1
,r

)

(1
,4
,1
,r)

u
2
∃

〈u
2
01
〉

〈u
2
02
〉

〈u
2
03
〉

〈u
2
04
〉

〈u
2
11
〉

〈u
2
12
〉

〈u
2
13
〉

〈u
2
14
〉

∃

π π π π π π π π

Fig. 11. The entire specification Mctrl for the example of Figure 4 assuming |w| = 4.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 16

s1

c2 s2

c3 s3

ck sk

π

π

π

π π

π
π π π

(M1, s1)

(M2, s2)

(M3, s3)

...
...

...
· · ·

· · ·

(Mk, sk)

Fig. 12. Conjunction of k mixed specifications into one mixed specification

and we use structural induction on that DAG to synthesize an accepting computation
tree of T for input w. This makes use of the fact that the head of T never reaches a cell
that was not initialized by input w.

We can now deduce EXPTIME-completeness for the decision problem CI for modal as
well as for mixed specifications.

Corollary 8. The decision problem CI is EXPTIME-complete for modal as well as for
mixed specifications, in the sum of their sizes.

Proof. Theorem 6 states EXPTIME-hardness of CI for modal specifications. Since
modal are also mixed specifications, this renders EXPTIME-hardness of CI for mixed
specifications, too. From Lemma 4 we know that both instances of CI are in EXPTIME.

5. Consistency for Mixed Specifications

The decision problem C is of course trivial for modal specifications as all such spec-
ifications have implementations by construction. Given a pointed, modal specification
((S,R�, R�), s0), one such implementation is (S,R�, R�, s0). In contrast, let us now show
that consistency of a single mixed specification is EXPTIME-hard in its size. We achieve
this by appealing to Theorem 6, and reducing CI for several modal specifications to the
decision problem C for a single mixed specification.

Theorem 9. Consistency of a mixed specification is EXPTIME-hard in its size.

Proof. By Theorem 6, it suffices to show how k > 1 mixed specifications (Mi, si) can
be conjoined into one mixed specification (M, ck) with |M | being polynomial in

∑
i |Mi |

such that (M, ck) has an implementation iff all (Mi, si) have a common implementation.
Figure 12 illustrates the construction, which originates in (Larsen et al., 2007b), by

showing a conjunction of states s1, s2, s3 up to sk. In order to conjoin two states s1 and
s2, two new π-transitions are added from a fresh state c2 to each of s1 and s2. One of the
π-transitions is a R� \R� π-transition and the other is a R� π-transition. Only two states
can be conjoined directly in this way, but the process can be iterated as many times as

Modal and Mixed Specifications: Key Decision Problems and their Complexities 17

s′ st π
M≺th

N : M ′ :

Fig. 13. Reduction of C for mixed specification (M, s) to TR for mixed specifications
(N, t) and (M ′, s′): mixed specification (M, s) is consistent iff not (N, t)≺th(M ′, s′).

needed, as seen in the figure, by adding a corresponding number of π-transitions to the
newly conjoined systems. Observe that the resulting specification is properly mixed (not
modal) since it contains π-transitions that are in R� \ R�. Its size is linear in

∑
i |Mi |

and quadratic in k, which itself is O(
∑
i |Mi |).

If the specifications that are being conjoined have a common implementation, then the
new specification will also have an implementation which is the same implementation
prefixed with a sequence of k−1 π-transitions. Conversely if the new mixed specification
has an implementation, then this implementation will contain at least a sequence of
k− 1 π-transitions, followed by an implementation that must individually satisfy all the
systems that have been conjoined.

6. Thorough Refinement for Mixed Specifications

We show EXPTIME-hardness of the decision problem TR for mixed specifications, by
appeal to Theorem 9 and by a reduction of consistency checks to thorough refinement
checks.

Theorem 10. Thorough refinement of mixed specifications is EXPTIME-hard in the
size of these specifications.

Proof. By Theorem 9, deciding C for a mixed specification is EXPTIME-hard. There-
fore it suffices to reduce C for mixed specifications to TR for mixed specifications. Let
(M, s) be a pointed, mixed specification over Σ. Consider a pointed, modal specification
(N, t) over Σ ∪ {π} with N = ({t}, {}, {}), which only has a single state and no transi-
tions. From (M, s) construct the mixed specification (M ′, s′) over Σ ∪ {π} by prefixing
s with a new state s′ and a single transition (s′, π, s) ∈ R�M ′\R�M ′ . This construction is
depicted in Figure 13.

We show that (M, s) is consistent iff not (N, t)≺th(M ′, s′). (It is easily seen, but im-
material to this proof, that the converse (M ′, s′)≺th(N, t) always holds.)

1◦ If (M, s) is consistent, then it has an implementation (L, l), from which we get
an implementation (L′, l′) of (M ′, s′) by creating a new state l′ with a transition
(l′, π, l). But then (M ′, s′) has an implementation that is not allowed by (N, t) and
so I(M ′, s′) 6⊆ I(N, t).

2◦ Conversely, if I(M ′, s′) 6⊆ I(N, t) then there exists an implementation (L, l′) of
(M ′, s′), which is not an implementation of (N, t) – and so (L, l′) has a transition
(l′, π, l). Moreover (L, l) refines (M, s) since (L, l′) refines (M ′, s′) and s is the unique
successor of s′ in M ′. Thus (M, s) is consistent.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 18

Remark 3. Observe that argument 1◦ above would also work for refinement instead of
thorough refinement. However we would not be able to get the second implication for
refinement in item 2◦ above – due to the fact that thorough refinement does not generally
imply refinement.

Also note that we have just shown EXPTIME-completeness not only for deciding
whether a mixed specification thoroughly refines another mixed specification, but also
for deciding whether a mixed specification thoroughly refines a modal specification.

7. Discussion

We first summarize the complexity results obtained in this paper.

Corollary 11. The worst-case computational complexities shown in Table 1 are correct.

Corollary 11 leaves one complexity gap in Table 1, that for TR for modal specifications.
We studied this fairly extensively without being able to settle the exact complexity of
this decision problem. Recently we have learned that this problem has been determined
to be EXPTIME-complete as well (Beneš et al., 2009). It would be of interest to see
whether the proof of that result can shed any light on the complexity of the validity
problem for formulae given in the vectorized form of (Larsen, 1989), since the latter is
one way in which one can reexpress TR for modal and mixed specifications alike.

Interestingly, we can reduce thorough refinement to a universal version of generalized
model checking (Bruns and Godefroid, 2000). In loc. cit. Bruns and Godefroid consider
judgments GMC(M, s, ϕ) which are true iff there exists an implementation of (M, s) sat-
isfying ϕ. They remark that this generalizes both model checking (when (M, s) is an
implementation) and satisfiability checking (when (M, s) is such that all labeled transi-
tion systems refine it). This existential judgment has a universal dual (see e.g. (Antonik
and Huth, 2009)), VAL(M, s, ϕ) which is true iff all implementations of (M, s) satisfy ϕ,
thus generalizing model checking and validity checking. The former judgment is useful
for finding counter-examples, the latter one for verification; e.g. both uses can be seen
in the CEGAR technique for program verification of (Godefroid and Huth, 2005). Since
(M, s)≺th(N, t) directly reduces to VAL(N, t,Ψ(M,s)), it would be of interest to under-

Table 1. Tabular summary of the results provided in this paper.

Modal specifications Mixed specifications

Common impl. EXPTIME-complete EXPTIME-complete

Consistency trivial EXPTIME-complete

Thorough ref. EXPTIME EXPTIME-complete

Modal and Mixed Specifications: Key Decision Problems and their Complexities 19

stand the exact complexity of VAL(N, t, ϕ) for modal specifications (N, t) when ϕ ranges
over characteristic formulæ Ψ(M,s) in vectorized form.

8. Conclusion

We have revisited modal and mixed specifications. Such specifications consist of state
spaces with two transition relations that can serve as over-approximations and under-
approximations (respectively) of transition relations in labeled transition systems. We
then discussed three fundamental decision problems for modal and mixed specifications:

— common implementation: do finitely many specifications have a common implemen-
tation?

— consistency: does a specification have an implementation?
— thorough refinement: are all implementations of one specification also implementa-

tions of another?

For these three decision problems we investigated their worst-case computational com-
plexity for both cases of modal and mixed specifications. In the case of mixed specifica-
tions, we showed that all three decision problems are EXPTIME-complete in the sizes of
these systems. In the case of modal specifications, we proved the decision problem of com-
mon implementation to be also EXPTIME-complete in the size of these systems. (The
decision problem of consistency for modal specifications is known to be trivial.) However,
for the decision problem of modal specifications for throrough refinement we could not
give any new results as our reductions for TR work only for mixed specifications.

In securing these results, we have crucially appealed to a new reduction of input ac-
ceptance for linearly bounded alternating Turing machines to the existence of a common
implementation for modal specifications.

Acknowledgments

We thank Nir Piterman for having pointed out to us that the constructions for prime
numbers in (Berwanger et al., 2008; Berwanger and Doyen, 2008) are similar to the
constructions for prime numbers given in Example 2. We also thank Jǐŕı Srba and Jan
Křet́ınský for sharing with us their recent discovery that TR for modal specifications is
EXPTIME-complete.

References

Antonik, A. (2008). Decision problems for partial specifications: empirical and worst-case com-
plexity. PhD thesis, Imperial College, London.

Antonik, A. and Huth, M. (2009). On the complexity of semantic self-minimization. In Proc.
AVOCS 2007, volume 250 of ENTCS, pages 3–19.

Antonik, A., Huth, M., Larsen, K. G., Nyman, U., and Wasowski, A. (2008a). 20 years of modal
and mixed specifications. Bulletin of EATCS, 95. Available at http://processalgebra.
blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 20

Antonik, A., Huth, M., Larsen, K. G., Nyman, U., and Wasowski, A. (2008b). Complexity of
decision problems for mixed and modal specifications. In FoSSaCS’08, volume 4962 of Lecture
Notes in Computer Science. Springer.

Antonik, A., Huth, M., Larsen, K. G., Nyman, U., and Wasowski, A. (2008c). Exptime-complete
decision problems for modal and mixed specifications. In 15th International Workshop on
Expressiveness in Concurrency. ENTCS.

Beneš, N., Křet́ınský, J., Larsen, K. G., and Srba, J. (2009). Checking thorough refinement on
modal transition systems is EXPTIME-complete. In Proceedings of the 6th International Col-
loquium on Theoretical Aspects of Computing, volume 5684 of LNCS, pages 112–126. Springer-
Verlag.

Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T. A., and Raje, S. (2008). Strategy
construction for parity games with imperfect information. In Proceedings of the 19th Inter-
national Conference on Concurrency Theory (CONCUR’08), Toronto, Canada, August 2008,
volume 5201 of LNCS, pages 325–339. Springer.

Berwanger, D. and Doyen, L. (2008). On the power of imperfect information. In Proceedings
of the 28th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’08), Bangalore, India, December 2008. Springer.

Børjesson, A., Larsen, K. G., and Skou, A. (1993). Generality in design and compositional veri-
fication using tav. In FORTE ’92 Proceedings, pages 449–464, Amsterdam, The Netherlands,
The Netherlands. North-Holland Publishing Co.

Brunet, G., Chechik, M., and Uchitel, S. (2006). Properties of behavioural model merging.
In Misra, J., Nipkow, T., and Sekerinski, E., editors, FM, volume 4085 of Lecture Notes in
Computer Science, pages 98–114. Springer.

Bruns, G. (1997). An industrial application of modal process logic. Sci. Comput. Program.,
29(1-2):3–22.

Bruns, G. and Godefroid, P. (2000). Generalized model checking: Reasoning about partial state
spaces. In Palamidessi, C., editor, CONCUR, volume 1877 of Lecture Notes in Computer
Science, pages 168–182. Springer.

Chandra, A. K., Kozen, D., and Stockmeyer, L. J. (1981). Alternation. J. ACM, 28(1):114–133.
Chebyshev, P. (1852). La totalité des nombres premiers inférieurs a une limite donnée. Journal

de Mathematiques Pures et Appliques, (17):341–365.
Clarke, E. M., Grumberg, O., and Long, D. E. (1994). Model checking and abstraction. ACM

Trans. Program. Lang. Syst., 16(5):1512–1542.
Dams, D. (1996). Abstract Interpretation and Partition Refinement for Model Checking. PhD

thesis, Eindhoven University of Technology.
Fischbein, D., Uchitel, S., and Braberman, V. (2006). A foundation for behavioural conformance

in software product line architectures. In ROSATEA ’06 Proceedings, pages 39–48, New York,
NY, USA. ACM Press.

Godefroid, P. and Huth, M. (2005). Model checking vs. generalized model checking: Semantic
minimizations for temporal logics. In LICS, pages 158–167. IEEE Computer.

Godefroid, P., Huth, M., and Jagadeesan, R. (2001). Abstraction-based model checking using
modal transition systems. Lecture Notes in Computer Science, 2154:426+.

Gurfinkel, A., Wei, O., and Chechik, M. (2006). Yasm: A software model-checker for verification
and refutation. In Ball, T. and Jones, R. B., editors, CAV, volume 4144 of Lecture Notes in
Computer Science, pages 170–174. Springer.

Huth, M. (2005a). Labelled transition systems as a Stone space. Logical Methods in Computer
Science, 1(1):1–28.

Modal and Mixed Specifications: Key Decision Problems and their Complexities 21

Huth, M. (2005b). Refinement is complete for implementations. Formal Asp. Comput.,
17(2):113–137.

Huth, M., Jagadeesan, R., and Schmidt, D. (2001). Modal transition systems: A foundation for
three-valued program analysis. Lecture Notes in Computer Science, 2028.

Hüttel, H. (1988). Operational and denotational properties of modal process logic. Master’s
thesis, Computer Science Department. Aalborg University.

Kozen, D. (1988). A finite model theorem for the propositional µ-calculus. Studia Logica,
47(3):233–241.

Landweber, P. S. (1963). Three theorems on phrase structure grammars of type 1. Information
and Control, 6(2):131 – 136.

Laroussinie, F. and Sproston, J. (2007). State explosion in almost-sure probabilistic reachability.
Inf. Process. Lett., 102(6):236–241.

Larsen, K. G. (1989). Modal specifications. In Sifakis, J., editor, Automatic Verification Methods
for Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages 232–246.
Springer.

Larsen, K. G., Nyman, U., and Wasowski, A. (2007a). Modal I/O automata for interface and
product line theories. In Nicola, R. D., editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 64–79. Springer.

Larsen, K. G., Nyman, U., and Wasowski, A. (2007b). On modal refinement and consistency.
In Caires, L. and Vasconcelos, V. T., editors, CONCUR, volume 4703 of Lecture Notes in
Computer Science, pages 105–119. Springer.

Larsen, K. G., Steffen, B., and Weise, C. (1995). A constraint oriented proof methodology
based on modal transition systems. In Tools and Algorithms for Construction and Analysis
of Systems, pages 17–40.

Larsen, K. G. and Thomsen, B. (1988). A modal process logic. In Third Annual IEEE Symposium
on Logic in Computer Science (LICS). IEEE Computer Society.

Larsen, K. G. and Xinxin, L. (1990). Equation solving using modal transition systems. In Fifth
Annual IEEE Symposium on Logics in Computer Science (LICS), 4–7 June 1990, Philadel-
phia, PA, USA, pages 108–117.

Nyman, U. (2008). Modal Transition Systems as the Basis for Interface Theories and Product
Lines. PhD thesis, Department of Computer Science, Aalborg University.

Park, D. (1981). Concurrency and automata on infinite sequences. In Proceedings of the 5th GI-
Conference on Theoretical Computer Science, pages 167–183, London, UK. Springer-Verlag.

Raclet, J.-B. (2008). Residual for component specifications. Electr. Notes Theor. Comput. Sci.,
215:93–110.

Schmidt, D. (2001). From trace sets to modal-transition systems by stepwise abstract interpre-
tation.

Schmidt, H. and Fecher, H. (2007). Comparing disjunctive modal transition systems with a
one-selecting variant. Submitted for publication.

Sipser, M. (1996). Introduction to the Theory of Computation. International Thomson Publish-
ing.

Uchitel, S. and Chechik, M. (2004). Merging partial behavioural models. In Taylor, R. N. and
Dwyer, M. B., editors, SIGSOFT FSE, pages 43–52. ACM.

Wilke, Th. (2001). Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc.
Math. Belg., 8(2).

Xinxin, L. (1992). Specification and Decomposition in Concurrency. PhD thesis, Department of
Mathematics and Comnputer Science, Aalborg University.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 22

Zielonka, W. (1998). Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183.

Modal and Mixed Specifications: Key Decision Problems and their Complexities 23

Appendix A. Proof of Lemma 7

We need to argue that if the linearly bounded ATM T has an accepting computation on
input w, then the set MT

w of constructed modal specifications will have a common im-
plementation; and, conversely, that if this setMT

w of modal specifications has a common
implementation, then this common implementation witnesses an accepting computation
for the linearly bounded ATM T on input w. We will prove each of these directions
separately.

A.1. Acceptance implies existence of common implementation

Let the ATM T accept input w. We mean to show thatMT
w has a common implementa-

tion. Since we have assumed that T does not repeat configurations on any computation
path, we know that there exists a computation tree T〈T,w〉 demonstrating that T accepts
w in an exponentially bounded number of steps.

We shall use T〈T,w〉 to construct a modal specification

N = (Nstates, RN , RN)

over Σ, where Nstates is a set of states, RN is a transition relation and Σ is the alpha-
bet of specifications in MT

w. The argument that N is indeed an implementation of all
specifications in MT

w will follow shortly after the construction.

Since N has identical must- and may transition relations we shall just refer to transitions
for N without mentioning their type. States of N are labeled by configurations of the
computation tree T〈T,w〉. More precisely, we distinguish three kinds of states:

— type 1 states, indexed just with a configuraion of T〈T,w〉, for example state n〈q0,1,w〉
— type 2 states, indexed with a configuration and an extra subscript ∃, as in n〈q,i,τ〉∃
— type 3 states, indexed with a configuration and an extra subscript π, as in n〈q,i,τ〉π

We construct N in a recursive manner starting from the root of the accepting compu-
tation tree. We start by creating the initial state of N labelled n〈q0,1,w〉, where 〈q0, 1, w〉
is the configuration of the root node in T〈T,w〉. We shall be adding new successor states
and transitions in a top-down fashion while progressing. Our recursive procedure accepts
two parameters (〈q, i, τ〉, n〈q,i,τ〉): a node from T〈T,w〉 and a state from Nstates. For any
pair of parameters (〈q, i, τ〉, n〈q,i,τ〉) proceed as follows:

— If mode(q) = Univ create two new states n〈q,i,τ〉∃ and n〈q,i,τ〉π and a ∃-transition
from n〈q,i,τ〉 to n〈q,i,τ〉∃, and a π-transition from n〈q,i,τ〉∃ to n〈q,i,τ〉π. Second, for each
of the successors 〈q′, i′, τ ′〉 of 〈q, i, τ〉 create a new state n〈q′,i′,τ ′〉 and a transition
from n〈q,i,τ〉π to n〈q′,i′,τ ′〉 labelled by (τi, i, τ ′i , d) where d = r if i′ = i + 1 and d = l

otherwise.‡ Then continue recursively for every successor 〈q′, i′, τ ′〉 of 〈q, i, τ〉, and its
corresponding state n〈q′,i′,τ ′〉. See also Figure 14(a).

— If mode(q) = Exst create two new states n〈q,i,τ〉∃ and n〈q,i,τ〉π and an ∃-transition
from n〈q,i,τ〉 to n〈q,i,τ〉∃ and a π-transition from n〈q,i,τ〉∃ to n〈q,i,τ〉π. Second, because

‡ We write τi, meaning the ith symbol of the tape state τ .

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 24

(a) Construction for a universal state q. For l = 1..k we define dl = r if il = i+ 1
and dl = l otherwise.

〈q, i, τ〉

〈q1, i1, τ
1〉 · · · 〈qk, ik, τk〉

 n〈q,i,τ〉

n〈q,i,τ〉∃

n〈q,i,τ〉π

n〈q1,i1,τ1〉 . . . n〈qk,ik,τk〉

∃

π

(τi, i, (τ
1)i, d1) (τi, i, (τ

k)i, dk)

(b) Construction for an existential state q. Here a selected single l ∈ 1..k is the
index of the accepting successor and dl = r if il = i+ 1 and dl = l otherwise.

〈q, i, τ〉

〈q1, i1, τ
1〉 · · · 〈qk, ik, τk〉

 n〈q,i,τ〉

n〈q,i,τ〉∃

n〈q,i,τ〉π

n〈ql,il,τ l〉 . . .

∃

π

(τi, i, (τ
l)i, dl)

Fig. 14. Construction of a common implementation N from fragments of the accepting
computation tree T〈T,w〉.

T〈T,w〉 is accepting, we know that there exists at least one successor configuration
〈q′, i′, τ ′〉 for which the subtree with this configuration as root accepts. Select this
one configuration and create a new state n〈q′,i′,τ ′〉 and a transition from n〈q,i,τ〉π to
n〈q′,i′,τ ′〉 labelled by (τi, i, τ ′i , d) where d = r if i′ = i + 1 and d = l otherwise. Then
continue recursively with 〈q′, i′, τ ′〉 and n〈q′,i′,τ ′〉. See also Figure 14(b).

Observe that the above recursive computation terminates in universal states with no
successors, due to an iteration over an empty set. This is so since T〈T,w〉 is an accepting
computation tree and so we are guaranteed that the existential branch can always con-
tinue, and, because T only allows execution of a bounded number of steps, every branch
of the above recursive procedure will eventually terminate.

We shall now argue that specification (N,n〈q0,1,w〉) refines each of the modal specifi-
cations in MT

w.

1 (Mexist, x1)≺(N,n〈q0,1,w〉): Recall that the specificationMexist has exactly three states
named x1, x2 and x3 (see Figure 8). Consider the following binary relation on states

Modal and Mixed Specifications: Key Decision Problems and their Complexities 25

of Mexist and states of N :

Q1 = {(x1, n〈qs,i,τ〉) | n〈qs,i,τ〉 ∈ Nstates} ∪
{(x2, n〈qs,i,τ〉∃) | n〈qs,i,τ〉∃ ∈ Nstates} ∪

{(x3, n〈qs,i,τ〉π)) | n〈qs,i,τ〉π ∈ Nstates} .

We shall argue that Q1 witnesses a refinement of (Mexist, x1) by
(N,n〈q0,1,w〉). First, observe that the pair of initial states (x1, n〈q0,1,w〉) of Mexist
and N are related in Q1. Second, check that Q1 fulfils the conditions of Definition 2:

(1) We want to show for all pairs (x, n) ∈ Q1 that for all states x′ ofMexist if (x, a, x′) ∈
R�Mexist then there exists a state n′ ∈ Nstates with (n, a, n′) ∈ R�N and (x′, n′) ∈ Q1.
A must-transition occurs in R�Mexist only if x = x2. In this case there is exactly
one must π-transition going to x3. We see from Q1 that x2 is paired only with
states of form n = n〈qs,i,τ〉∃. By construction of N , the latter state always has a
must π-transition to some state n′ = n〈qs,i,τ〉π which gives us that (x′, n′) ∈ Q1

by the construction of Q1.

(2) We want to show for all pairs (x, n) ∈ Q1 that for all states n′ ∈ Nstates if
(n, a, n′) ∈ R�N then there exists a state x′ of Mexist such that (x, a, x′) ∈ R�Mexist
with (x′, n′) ∈ Q1. This argument is split into three sub-cases.

— If n is of type 1, n = n〈qs,i,τ〉, then by Q1’s construction x = x1. By construc-
tion of N any may-transition leaving n will be labelled by ∃ and target a type
2 state n′ = n〈qs,i,τ〉∃. This can be matched by (x1,∃, x2) ∈ R�Mexist and, for
x′ = x2 we get (x′, n′) ∈ Q1 by construction of Q1.

— If n is of type 2, n = n〈qs,i,τ〉∃, then by Q1’s construction x = x2. By construc-
tion of N there is exactly one may π-transition leaving n. It targets a state n′

of type 3, so n′ = n〈qs,i,τ〉π. This can be matched by (x2, π, x3) ∈ R�Mexist , so
take x′ = x3 obtaining (x′, n′) ∈ Q1 by construction of Q1.

— If n is of type 3, n = n〈qs,i,τ〉π, then by Q1’s construction x = x3. By con-
struction of N all possible may-transitions leaving n target type 1 states of the
form n′ = n〈qs,i,τ〉. All these transitions have labels in (, , ,). These can
all be matched by (Mexist, x3), as that specification contains all transitions of
type (, , ,) going from x3 to x1. Since x1 is paired with all states of type
1 in Q1 this again gives us that (x′, n′) ∈ Q1, for x′ = x1.

2 For each tape cell 1 ≤ i ≤ n show that (Mi, p〈i,wi〉)≺(N,n〈q0,1,w〉). For any selection
of i above consider the following relation Qi2 over the states of Mi and the states of
N :

Qi2 = {(p〈i,τi〉, n) | n = n〈qs,j,τ〉 or n = n〈qs,j,τ〉π or n = n〈qs,j,τ〉∃, for 1 ≤ j ≤ n}

First see that the initial states of the two specifications are related in Qi2. This is
clearly the case since the initial state of each Mi is p〈i,wi〉, so by definition of Qi2 it
is related to n〈q0,1,w〉. It remains to be shown that given (p, n) ∈ Qi2 the refinement
conditions are preserved.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 26

(1) This condition is vacuously true since Mi’s have no must transitions.

(2) We want to show for all pairs (p, n) ∈ Qi2 that for all states n′ ∈ Nstates if
(n, a, n′) ∈ R�N then there exists a state p′ of Mi such that (p, a, p′) ∈ R�Mi

with
(p′, n′) ∈ Qi2. With only one exception, whenever N takes a may-transition Mi will
be able to match it. The exception is if the label contains as its old tape symbol,
a symbol different from the one that Mi has in its current state and where i is the
current position of the head in n, so i = j. Since the transitions of N are created
from a legal computation tree for the ATM T we can conclude that N will never
change the content of the tape without writing to it and N will thus never try
to read something from a tape cell that is not in that given tape cell. It will also
always update the new content of the tape cell correctly and we are thus assured
that (p′, n′) ∈ Qi2.

3 Show that (Mhead, p1)≺(N,n〈q0,1,w〉): The relation Q3 witnessing this refinement is
defined as follows:

Q3 = { (pi, n) | n = n〈qs,i,τ〉 or n = n〈qs,i,τ〉π or n = n〈qs,i,τ〉∃ } .

We first have to ensure that the initial states of the two specifications are in Q3. This
is the case since the initial state of N has i = 1, which is Q3-related to p1, the initial
state of Mhead. We need to show, that for any given (p, n) ∈ Q3 the two refinement
conditions of Definition 2 are preserved.

(1) This condition is vacuously satisfied since Mhead has no must transitions.

(2) We need to show that whenever (n, a, n′) ∈ R�N then there exists p′, a state of
Mhead, such that (p, a, p′) ∈ R�Mhead with (p′, n′) ∈ Q3. We just discuss the case
when n is of type 3 here, so n = n〈qs,i,τ〉π. For the remaining two types the
transitions leaving n do not move the head and the preservation of refinement can
be concluded directly.
By construction of N whenever n〈qs,i,τ〉π takes a may-transition then this transi-
tion is labeled (, i, , d) targeting a type 1 state n〈q′,i′,τ ′〉, where i′ = i+1 if d = r

and i′ = i − 1 otherwise. Now by construction of Mhead the state pi can match
such a transition moving to pi′ accordingly. The only case where Mhead would not
be able to match is when N would try to move the head off either end of the
tape, but this will never happen since N is constructed from a legal accepting
computation tree. Thus we conclude that the refinement condition is preserved.

4 In order to show that (Mctrl, q0)≺(N,n〈q0,1,w〉) consider the following binary relation
Q4 on states of Mctrl and N :

Q4 = {(qs, n) | n = n〈qs,i,τ〉} ∪
{(qs∃, n) | n = n〈qs,i,τ〉∃} ∪
{(〈qsτii〉, n〈qs,i,τ〉π) | mode(qs) = Univ} ∪
{(〈qsτiia2dqt〉, n〈qs,i,τ〉π) | mode(qs) = Exst and

(n〈qs,i,τ〉π, (τi, i, a2, d), n〈qt,i′,τ ′〉) ∈ R�N} .

Modal and Mixed Specifications: Key Decision Problems and their Complexities 27

First, observe that the initial states of the two specifications are in Q4, as q0 is the
initial state of Mctrl and n〈q0,1,w〉 is the initial state of N (see the first summand in
the definition of Q4). Second, we need to show that, given a pair (q, n) ∈ Q4, the two
refinement conditions of Definition 2 are preserved.

(1) We need to show that whenever (q, a, q′) ∈ R�Mctrl then there exists a state n′ ∈
Nstates such that (n, a, n′) ∈ R�N with (q′, n′) ∈ Q4. The argument is split in four
cases.

— If q = qs for some qs ∈ Q (a state of the ATM T) then there is exactly one
must ∃-transition leaving it, which targets qs∃. This transition can be matched
by an ∃-transition leaving n〈qs,i,τ〉 and targeting n〈qs,i,τ〉∃. These new target
states remain in relation Q4, as per the above definition.

— If q = qs∃ for some qs ∈ Q (a state of the ATM T) then the condition is
satisfied vacuously. There is simply no must-transition leaving q.

— If q has the form 〈qsτii〉, where qs is a universal state of the ATM T , then n

has the form n〈qs,i,τ〉π. But since n〈qs,i,τ〉π was constructed by our recursive
procedure from a universal configuration of an accepting computation tree we
know that, for all must-transitions leaving 〈qsτii〉 to some state qt, there will
be a matching must-transition in N leaving n〈qs,i,τ〉π and targeting n〈qt,i′,τ ′〉,
which is in relation with qt as per the first summand in the definition of Q4.

— If q has the form 〈qsτiia2dqt〉, where qs is an existential state of the ATM T ,
then n has the form n〈qs,i,τ〉π. The state 〈qsτiia2dqt〉 has exactly one must-
transition labeled (τi, i, a2, d) and targeting state qt. Since qs is an existential
state, we know that n〈qs,i,τ〉π was constructed from an existential configuration
and consequently there is a single must-transition leaving it. This transition
is labeled (τi, i, a2, d) as per construction of the Q4 relation (see the last sum-
mand). Finally this transition targets n′ = n〈qt,i′,τ ′〉. And thus we again have
that (q′, n′) ∈ Q4.

(2) We want to show that if (n, a, n′) ∈ R�N then there exists a state q′ of Mctrl such
that (q, a, q′) ∈ R�Mctrl with (q′, n′) ∈ Q4. We split the argument into three cases
based on the type of state n.

— If n is of type 1, so n = n〈qs,i,τ〉 then by construction of N there is a may ∃-
transition leaving n targeting n〈qs,i,τ〉∃. This is followed by (qs,∃, qs∃) ∈ R�Mctrl
and again gives us that (q′, n′) ∈ Q4.

— If n is of type 2, n = n〈qs,i,τ〉∃ then by the construction of Q4 (see the second
summand) q is of the form qs∃. By the construction procedure of N there is a
single may π-transition leaving n〈qs,i,τ〉∃ and targeting n′ = n〈qs,i,τ〉π.

– If mode(qs) = Univ, then there is exactly one transition
(qs∃, π, 〈qsτii〉) ∈ R�Mctrl ; its target state is related to n〈qs,i,τ〉π in Q4.

– If mode(qs) = Exst then there can be many may π-transitions leaving qs∃.

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 28

We will choose which one to match with, based on the label of the single
transition leaving n〈qs,i,τ〉π. We are, so to speak, looking one step ahead.
Since n〈qs,i,τ〉π says that the head is in position i over a tape containing τ
we choose to match our transition with the transition of Mctrl targeting the
state whose name matches the prefix “〈qsτii”. Such a state always exists by
construction of Mctrl and it is exactly the state which is related to n〈qs,i,τ〉π
in Q4 (see the last summand).

— For n of type 3, so n = n〈qs,i,τ〉π, we split the argument into two cases based
on the mode of qs in the ATM T .

– First, if mode(qs) = Univ then there are possibly several may-transitions
leaving n〈qs,i,τ〉π. Since N has been created from a legal computation tree,
we know that any may transition leaving n〈qs,i,τ〉π and targeting n′ =
n〈qt,i′,τ ′〉 follows the transition relation δ of T . Moreover, by construction
of Mctrl, its state 〈qsτii〉 will consequently be able to match this transition
arriving in the state qt related to n′ in Q4.

– Second, if mode(qs) = Exst then there is exactly one may transition leaving
n〈qs,i,τ〉π and exactly one may-transition leaving 〈qsτiia2dqt〉. These tran-
sitions have the same label and have respective target states n〈qt,i′,τ ′〉 and
qt, which are related in Q4.

This concludes the argument that each specification in MT
w is refined by N .

A.2. Existence of common implementation implies acceptance

Let MT
w have a common implementation. We need to show that the ATM T accepts

input w. Given a modal specification

Unew = (Ustates, RU , RU)

that is a common implementation of MT
w we will construct a computation tree T〈M,w〉

demonstrating that T accepts w.
Since Unew is a common implementation of MT

w we have 3 + n refinement relations:

Qctrl, Qhead, Qexist, Q1, . . ., Qn

— each demonstrating for one of the corresponding specifications S ∈MT
w that S≺Unew.

The construction of T〈M,w〉 is inductive. Along with the construction, we argue that
the nodes of the tree preserve the following property (IH):

(1) For every configuration 〈q, i, τ〉 of T〈M,w〉 there exists a state ux ∈ Ustates such that
(IH1) (ux, x1) ∈ Qexist and (IH2) (ux, q) ∈ Qctrl and (IH3) (ux, pi) ∈ Qhead, and
finally (IH4) (ux, p〈k,τk〉) ∈ Qk for each k = 1..n. (We follow the conventions of
Section 4 here. So q is a name of T ’s state that also uniquely identifies a state of
Mctrl. Specifically we mean that q represents a label without any special suffixes.
Label pi is referring to a particular state of Mhead, the one representing position i.
Similarly p〈k,τk〉 denotes the state of Mk that represents that the kth symbol of τ is
stored in the kth cell of the tape.)

Modal and Mixed Specifications: Key Decision Problems and their Complexities 29

(2) Moreover, (IH5) if a configuration 〈q′, i′, τ ′〉 is a successor of 〈q, i, τ〉 in T〈M,w〉 then
it also is a successor of 〈q, i, τ〉 in the ATM T , and conversely (IH6) the tree T〈M,w〉
has all the successors of 〈q, i, τ〉 that T has for universal states and at least one of
them for all existential states.

Only after discussing the construction of T〈M,w〉, and after arguing that the above in-
ductive property holds for it, we shall address the problem of whether T〈M,w〉 actually is
an accepting computation tree of T , witnessing acceptance of w.

Root (base case): The root of T〈M,w〉 is selected to be the configuration 〈q0, 1, w〉,
where q0 is the initial control state of T . We need to show that 〈q0, 1, w〉 exhibits property
IH.

Observe that Unew has a distinct initial state u0. Take ux to be this u0. SinceMctrl≺Unew
there is a pair (u0, q0) ∈ Qctrl, fulfilling condition IH1. Since Mhead≺Unew and p1 is the
initial state of Mhead, we know that (u0, p1) ∈ Qhead, fulfilling condition IH3. Since w
is the initial content of the tape, and consequently p〈k,wk〉 is an initial state of Mk, the
refinement Mk≺Unew gives us that (u0, p〈k,wk〉) ∈ Qk, so IH4 holds for 〈q0, 1, w〉. Since
Mexist≺Unew we get that (u0, x1) ∈ Qexist finishing the base case (IH2).

We shall argue that IH5 and IH6 hold for the root node, when we discuss adding
successors below.

Non-root nodes (inductive step): Given a configuration 〈q, i, τ〉 for which properties
IH1-IH4 hold, we will now construct the next level of T〈M,w〉 in such a way that IH5-IH6
hold for 〈q, i, τ〉 and IH1-IH4 hold for all its successors.

Before we split into two cases based on modes of states, we shall describe the part of
the proof which these two have in common. The induction hypothesis allows us to assume
existence of a specific state ux of Ustates and the respective refinement relations. Since
state ux is related to a state without a π or ∃ subscript in Mctrl, that ux must implement
an ∃ transition to a new state, let us call this state ux∃. Because (ux, x1) ∈ Qexist we
know that (ux∃, x2) ∈ Qexist and thus ux∃ must implement a π transition to a new state,
say uxπ. Since all π and ∃ transitions in Mhead and M1 up to Mn are loops we know that
uxπ is related to the same states as ux in these specifications.

For the remainder of the proof, we do a case analysis on the mode of q:

— If mode(q) = Exst then we know that (Mctrl, q) has to implement an ∃-transition
followed by at least one π-transition reaching a state of the form 〈qτiia′dq′〉. Also
because ux∃ is related to q∃, it must be possible to choose uxπ above such that
(uxπ, 〈qτiia′dq′〉) ∈ Qctrl, but then we know that uxπ can take a transition labeled
(τi, i, a′, d) to some state u′x related to q′ in Qctrl.
So if we extend T〈M,w〉 at 〈q, i, τ〉 with a new child 〈q′, i′, τ [τi 7→ a′]〉 then the new
execution step will follow the semantics of the ATM T satisfying conditions IH1–
IH6 — provided that i′ = i+ 1 if d = r, and i′ = i− 1 otherwise.
The argument that IH5-IH6 hold is direct — we have added a successor as required
out of all those available in the semantics of T . The arguments that IH1-IH4 hold are
more involved, but standard — for each of them a unique successor in Mexist, Mctrl,

A. Antonik. M. Huth, K. Larsen, U. Nyman and A. Wąsowski 30

Mhead and Mk’s can be pointed out by following the transition labeled (τi, i, a′, d),
and then shown to witness fullfilment of the condition for u′x by inductive hypothesis
(from refinement of ux).

— If mode(q) = Univ then, since (Unew, ux) is a refinement of (Mctrl, q) and (Mexist, x1),
we get that it is possible to choose uxπ above so that it refines a state of Mctrl which
has a label of the form (Mctrl, 〈qτii〉). The refinement relation with Mhead and Mi

ensures that this state is the only successor of q in Mctrl that can be implemented,
implying that uxπ must implement all the transitions corresponding to the transition
relation δ of T . Thus we can extend T〈M,w〉 with new children 〈q′, i′, τ ′[τi 7→ a′]〉 for
all (q′, i′, τ ′) such that (Mctrl, q′) can be reached from (Mctrl, 〈qτii〉) in one step with
a transition labeled (τ ′, i, a′, d). Also i′ = i+ 1 if d = r, and i′ = i− 1 otherwise.
Again, it is not hard to see that all newly added successors maintain the inductive
hypothesis.

For all of these target states we now have to prove that the induction hypothesis holds.
As all of the target states are reached by a transition in Mctrl we know that there exists a
state uy ∈ Ustates such that (uy, q′) ∈ Qctrl. Because of the label on the transition we also
know that (uy, pl) ∈ Qhead for l = i+1 if d = r, and l = i−1 if d = l. This is also ensured
to be done in such a way that the tape cell specifications M1 to Mn again match the
content of the tape. We also know, because of all the transitions of type (, , ,) going
from x3 to x1 in Mexist, that (uy, x1) ∈ Qexist. This finishes the proof of the inductive
step.

In this way we can recursively construct a pruned computation tree T〈M,w〉. The con-
structed tree is finite, because we have argued that it follows the semantics of the ATM
T , and T repeats no configuration along a single computation path. Moreover T〈M,w〉 is
accepting as it never is stuck in a rejecting (existential) state.

