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Abstract

Segmentation in the surveillance domain has to deal with
shadows to avoid distortions when detecting moving ob-
jects. Most segmentation approaches dealing with shadow
detection are typically restricted to penumbra shadows.
Therefore, such techniques cannot cope well with umbra
shadows. Consequently, umbra shadows are usually de-
tected as part of moving objects. In this paper we present
a novel technique based on gradient and colour models for
separating chromatic moving cast shadows from detected
moving objects. Firstly, both a chromatic invariant colour
cone model and an invariant gradient model are built to
perform automatic segmentation while detecting potential
shadows. In a second step, regions corresponding to po-
tential shadows are grouped by considering “a bluish ef-
fect” and an edge partitioning. Lastly, (i) temporal similar-
ities between textures and (ii) spatial similarities between
chrominance angle and brightness distortions are analysed
for all potential shadow regions in order to finally identify
umbra shadows. Unlike other approaches, our method does
not make any a-priori assumptions about camera location,
surface geometries, surface textures, shapes and types of
shadows, objects, and background. Experimental results
show the performance and accuracy of our approach in dif-
ferent shadowed materials and illumination conditions.

1. Introduction

A fundamental problem for all automatic video surveil-
lance systems is to detect objects of interest in a given scene.
A commonly used technique for segmentation of moving
objects is background subtraction [ 2]. This involves detec-
tion of moving regions (i.e., the foreground) in an image by
differencing the current image and a reference background
image in a pixel-by-pixel manner. Usually, the background
image is represented by a statistical background model,
which is initialised over some time period.

An important challenge for foreground segmentation is

the impact of shadows. Shadows can be devided into two
catogories: static shadows and dynamic (or moving) shad-
ows. Static shadows occur due to static background objects
(e.g., trees, buildings, parked cars, etc.) blocking the illu-
mination from a light source. Static shadows can be incor-
porated into the background model, while dynamic shad-
ows have shown to be more problematic. Dynamic shad-
ows are due to moving objects (e.g., people, vehicles, etc.).
The impact of dynamic shadows can be crucial for the fore-
ground segmentation, and cause objects to merge, distort
their size and shape, or occlude other objects. This results
in a reduction of computer vision algorithms’ applicability
for e.g, scene monitoring, object recognition, target tracking
and counting.

Dynamic shadows can take any size and shape, and can
be both umbra (dark shadow) and penumbra (soft shadow)
shadows. Penumbra shadows exhibit low values of intensity
but similar chromaticity values w.r.t. the background, while
umbra shadows can exhibit different chromaticity than the
background, and their intensity values can be similar to
those of any new object appearing in a scene. When the
chromaticity of umbra shadows differs from the chormatic-
ity of the global background illumination, we define this as
chromatic shadow. Consequently, umbra shadows are sig-
nificatly more difficult to detect, and therefore usually de-
tected as part of moving objects.

In this paper we propose an approach for detection and
removal of chromatic moving shadows in surveillance sce-
narios. We present a novel technique based on gradient and
colour models for separating chromatic moving shadows
from detected moving objects. Firstly, both a chromatic in-
variant colour cone model and an invariant gradient model
are built to perform automatic segmentation while detecting
potential shadows. In a second step, regions corresponding
to potential shadows are grouped by considering ~a bluish
effect” and an edge partitioning. Lastly, (i) temporal simi-
larities between textures and (ii) spatial similarities between
chrominance angle and brightness distortions are analysed
for all potential shadow regions in order to finally identify
umbra shadows.



The remainder of the paper is organised as follows. The
state of the art in the field of shadow detection will be dis-
cussed in section 2, along with our contributions. In section
3, the theoretical concept of our approach is outlined. The
algorithm for foreground segmentation, along with the de-
tection and removal of chromatic moving shadows are de-
scribed in section 4. Finally, we present experimental re-
sults in section 5 and concluding remarks in section 6.

2. State of the Art and Our Contributions

Shadow detection is an extensive field of reseach within
computer vision. Even though many algorithms have been
proposed in the literature, the problem of detection and re-
moval of shadows in complex environment is still far from
being completely solved.

A common direction is to assume that shadows decrease
the luminance of an image, while the chrominance stays rel-
atively unchanged [, 8]. However, this is not the case in
many scenarios, e.g., in ourdoor scenes. Other approaches
applies geometrical information. Onoguchi [15] uses two
cameras to eliminate the shadows of pedestrians based on
object height. However, objects and shadows must be visi-
ble to both cameras. Ivanov et al. [7] use a disparity model,
which is invariant to arbitrarily rapid changes in illumi-
nation, for modeling background. However, to overcome
rapid changes in illumination, at least three cameras are re-
quired. in [17], Salvador et al. use the fact that a shadow
darkens the surfaces, on which it is cast, to identify an ini-
tial set of shadowed pixels. This set is then pruned by using
colour invariance and geometric properties of shadows. It
should be noted that most of the approaches which apply
geometrical information normally requires shadows to be
on a flat plane.

Another popular approach is to exploit colour differences
between shadow and background in different colour spaces.
In [2], Cucchiara et al. use the hypothesis that shadows
reduce surface brightness and saturation while maintaining
hue properties in the HSV colour space. While Schreer et
al. [18] adopt the YUV colour space. In [5, 8], Horprasert
et al. and Kim et al. build a model in the RGB colour space
to express normalised luminance variation and chromatic-
ity distortions. However, these methods requires all illumi-
nation sources to be white, and assumes shadow and non-
shadow have similar chrominance. A number of approaches
use textures to obtain a segmentation without shadows, such
as Heikkila et al. [4] who uses Local Binary Patterns. How-
ever, it fails to detect umbra shadows.

To overcome some of these prior mentioned shortcom-
ings, some authors use colour constancy methods, com-
bine different techniques or use multi-stage approaches.
In addition to scene brightness properties, [19] uses edge
width information to differentiate penumbra regions from
the background. In [3], Finlayson et al. use shadow edges

along with illuminant invariant images to recover full colour
shadow-free images. Nonetheless, a part of the colour in-
formation is lost in removing the effect of the scene illu-
mination at each pixel in the image. Weiss [20] uses the
reflectance edges of the scene to obtain an intrinsic image
without shadows. However, this approach requires signif-
icant changes in the scene, and as a result the reflectance
image also contains the scene illumination. An extension
of Weiss is done by Matsushita et al. [I1], which is also
based on intrinsic images. Nevertheless, this method does
not consider cast shadows of moving objects, only those
cast by static objects such as buildings and trees. Martel
et al. [10] introduce a nonparametric framework based on
the physical properties of light sources and surfaces, and
applies spatial gradient information to reinforce the learn-
ing of model parameters. Finally, [13] applies a multi-stage
approach for ourdoor scenes, which is based on a spatio-
temporal albedo test and dichromatic reflection model. A
comparative and evaluation study of shadow detection tech-
niques can be found in [16].

We also apply a multi-stage approach inspired by [13]
but we use colour, gradient and textural information, to-
gether with known shadow properties. The contribution of
this paper is threefold: (i) We combine an invariant colour
cone model and an invariant gradient model to improve
foreground segmentation and detection of potential shad-
ows. (ii) We extend the shadow detection to cope with chro-
matic moving cast shadows by grouping potential shadow
regions and considering “a bluish effect”, edge partioning,
spatial similarities between textures, and temporal similari-
ties between chrominance angle and brightness distortions.
(iii) Unlike other approaches, our method does not make
any assumptions about camera location, surface geometries,
surface textures, shapes and types of shadows, objects, and
background.

3. Analysis of Shadow Properties

Colour information p at a given pixel a obtained from a
recording camera supposing Lambertian surfaces depends
on four components: the spectral power distribution (SPD)
of the illuminant denoted E()), the surface reflectance
R()), the sensor spectral sensitivity QQ(\) evaluated at each
pixel a and a shading factor o.

po=o / EO)R(N)Qa(\)dA )

The surface reflectance R(A) depends on the material.
Hence, every material have different response to the same
illumination change.

3.1. Applying textural information

By applying gradient information we can obtain knowl-
edge about object bounderies, and thereby improve the for-
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Figure 1. A sketch of the four main cases (c1-1 to c4-1) and two
anormlies (c2-1 and c2-2) that can occur when performing fore-
ground segmentation with the influence of shadows, and taking the
temporal textures into account. The ellipses represent detection of
potential chromatic shadows. They are grouped by considering an
intensity reduction, "the bluish effect”, and an edge partition.

ground segmentation. Additionally, the gradient can also
provide textural information of both the background and
foreground image. Although shadows will result in a re-
duction in the intensity of the illumnation, and the texture
of a given object or the background will have lower gradient
magnitude, the structure will still appear the same. Hence,
the gradient orientation will be unchanged. This knowledge
can be applied to identify shadows.

3.2. Applying the bluish effect

In outdoor scenes, the environment is illuminated by two
light sources: a point light source (the sun) and a diffuse
source (the sky) with different SPD E()). Besides a reduc-
tion in the intensity, an outdoor cast shadow will result in
a change of the chorminance. The illumination of the sky
has higher power components in the lower wavelenghts A
(450 - 495 nm) of the visible spectrum, and it is therefore
assumed bluish as argued in [13]. When the direct illumina-
tion of the sun is blocked and a region is only illuminated by
the diffuse ambient light of the sky, materials appears to be
more bluish. This "bluish effect” and the chrominacne dis-
tortion can be exploited for shadow detection and grouping
of potential shadow pixels.

3.3. Shadow scenaria and solutions

When performing fg. segmentation with the influence
of shadows, and taking the temporal textures into account,
four main cases can occur as illustrated in figure 1. The el-
lipses represent detection of potential chromatic shadows.
They are grouped by considering an intensity reduction,
the bluish effect”, and an edge partition. The entire shadow
detection process will be explained in depth in section 4.

Case 1: Textures are present in the background model and
in the current image, and they are similar. By exam-
ining similarities between the textures, and the fact

that there is no foreground object in the current im-
age, potential shadows can be detected and identified
as shadow regions (case 1-1). However, if a foreground
object is present, it can be miss-classified as shadow if
the textures of the background and the foreground ob-
ject are similar (case 1-2).

Case 2: There is no available background model nor tex-
ture in the current image. Since, the change in il-
lumination of all the potential shadow regions has to
be similar, temporal and spatial similarities between
chrominance angle and brightness distortions within
the potential regions are analysed to detect chromatic
shadows (case 2-1). However, a foreground object can
be miss-classified as shadow if the foreground object
has no texture. Furthermore, the chrominance angle
distortion can also be similar among the pixels in the
region of the object (case 2-2).

Case 3: Texture is present in the background model but not
in the current image. By examining similarities be-
tween temporal textures, potential shadow can be cor-
rectly detected as a foreground object if there is back-
ground texture and a new foreground object in the cur-
rent image.

Case 4: Texture is present in the current image but not in
the background model. Then there must be a new
foreground object in the current image. In this case,
the texture in the current image is employed to detect
shadow regions. Hence, there is no need to analyse the
potential region further.

The described characteristics are not sufficient to ad-
dress these anomalies in case 1-2 and case 2-2. There-
fore, we take futher precautions and apply some additional
steps, which will be explained in section 4. Furthermore,
it should be noted that these additional steps also improves
the shadow detection in some of the four main cases.

4. Chromatic Shadow Detection

The approach, depicted in Fig. 2, is a multi-stage ap-
proach. Our approach is mainly divided in two parts: the
first stage obtains the potential chromatic shadow regions
(4.1 to 4.3), and the second stage classifies them into fore-
ground or chromatic shadow (4.4 to 4.8). In particular, the
first step (4.1) obtains the pixels classified as foreground in-
cluding the chromatic shadow regions. The second step, the
shadow reduction step (4.2), reduces the number of these
pixels which cannot be shadow, and the bluish effect step
(4.3) reduces those foreground pixels which cannot be chro-
matic shadow, thereby avoiding false positive and false neg-
ative pixels. In the second part (4.4 to 4.8 steps): the fourth
step (4.4) divide the pixels obtained in the previous steps
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Figure 2. An overview of the chromatic shadow detection approach. Each of the numbers added to the image captions corresponds to the

sub-sections in section 4.

in regions of potential shadows. Chromatic shadow detec-
tion is realised in steps (4.5) and (4.6) based on textures
and chrominance angles. The last two steps (4.7 and 4.8)
removes the edges of the chromatic shadows detected, and
avoids foreground regions detected wrongly as chromatic
shadows, respectively.

4.1. Moving foreground segmentation

In this stage foreground objects, shadows, and some er-
roneous pixels are segmented. In order to achieve the mov-
ing foreground segmentation an improved hybrid approach
based on [6], which fuses colour and gradient information,
is used. Note that the results from this approach can cope
with several motion segmentation anomalies, among them
it can cope with penumbra shadows because it is based on a
chromatic colour model [5].

We use similar architecture and automatic threshold se-
lection as the hybrid approach in [6]. This architecture pro-
vides the highest detection rate in comparison to other mo-
tion segmentation approaches [6]. However, the colour and
gradient model are changed in order to get more accurate
segmentation and use them for the next stages.

The chromatic cylinder model employed in many mo-
tion segmentation approaches [0, 5, 8] is changed into a new
chromatic cone model. It uses chrominance angle distortion
instead of chromatic distortion. For the same chromatic-
ity line the chromatic distortion used in the above men-
tioned papers depends on the brightness distortion, while
the chrominance angle distortion is invariant to the bright-
ness, as it can be seen in Fig. 3 (the chromatic distortion ¢§
increases propotional to the brightness distortion «, while
the chrominance angle distortion 3 is equal). The invari-
ant chromatic cone model is more robust towards chromatic
shadows because these shadows (umbra shadows) modifies
both the brightness and the chromaticity.

A new invariant gradient model is employed in order to
identify the different textures of the scene. As argued in
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Figure 3. A colour cone model, where pt, represents the expected
RGB colour value for a pixel a, while I, is the current pixel value.
The line Oy, shows the expected chromatic line, and all colours
along this line have the same chrominance but different brightness.
aq and [, give the current brightness and chrominance angle dis-
tortion, respectively.

[10, 14], the gradient model has to be invariant towards
global and local illuminations changes, such as shadows.
The gradient model presented in this paper uses a new
combination of gradient magnitudes and gradient directions
which is invariant to illumination changes.

4.1.1 Invariant colour cone model

The Background Colour Model (BCM) is computed accord-
ing to the chromatic invariant cone representation shown in
Fig. 3. First, the RGB mean p, = (uf, us, pf) and stan-
dard deviation o, = (af, o, Jf) of every image pixel a
during the time period ¢ = [1 : T}] are computed.

Once each RGB component is normalised by their re-
spective standard deviation o, two distortion measures are
established during the training period: the brightness distor-
tion, aq ¢, and the chrominance angle distortion, 3, ¢+. The
brightness distortion can be computed by minimising the
distance between the current pixel value I, ; and the chro-

matic line Ops,,. The angle between O, and 01, is, in fact,



the chrominance angle distortion. Thus, the brightness and
the chrominance angle distortions are given by:

1Rl 18w | 1Pl
wr)? T 0o T (on)?
% a a a (2)
a,t A\ 2 a2 B\ 2
ll(l lu‘a ll(l
() +(55) + (%)
> -\ 2
\/ > <Ig,t—aa,tu;
.\ e=RG,B og
Bat = arcsin 3)

Finally, the Root Mean Square over time of both distortions
for each pixel are computed: &, and j3,, respectively:

T

Ga = RMS (aus—1)= Tilz(%_m? @)
t=0

— Tl

Ba = RMS(Bay) = > (Bar)? ©)

where 1 is subtracted from «,,, so that the brightness
distortion is now distributed around zero: positive values
represent brighter pixels, whereas negative ones represent
darker pixels, w.r.t. the learnt values. These values are
used as normalising factors so that a single threshold can
be set for the whole image. This 4-tuple BCM =<
Wy Oa, Qa, B. > constitutes the pixel-wise colour back-
ground model.

4.1.2 Invariant gradient model

The Background Edge Model (BEM) is built as follows:
first the Sobel edge operator is applied to each colour chan-
nel in horizontal and vertical directions. This yields both a
horizontal G, , , = Sy*I7 ; andavertical Gy, , , = Sy*Ig ;
gradient image for each frame during the training period
t =[1:Ty], where ¢ € {R, G, B} denotes the channel.

Next, the gradient of each background pixel is modelled
using the gradient mean pgra = (Uiy.qr Hém.ar How.a)
and piGy.a = (18y.as 1Gy.as 1Gy.o)» and the gradient stan-
dard deviation 0Gy.0 = (08, 41 0&p.a) 08a.q) A 0Gy.a =
(0801 0Gy.a08y.4) computed for each channel for all the
training frames.

Then, the magnitudes of the gradient mean p and stan-
dard deviation o are computed in order to build the BEM.
The orientation of the gradient (u¢ and oy) is also computed

to avoid false edges created by illumination changes.

1w =\ 1) + (0ey.0)% 060 = [ (06.2) + (06,.)°

(6)

G oG
Wy, = arctan | —2% | ; of . = arctan [ —2%
) C ) o.(,
MGm,a Gz,a
)

where ¢ € {R,G, B} denotes the colour channel. Thus,
BEM = < pi¢ 419G 0 Mo.a> 6.0 >

The thresholds employed for the segmentation task are
automatically computed for each model, as shown in [6].

4.1.3 Image segmentation

The colour segmentation is achieved by following the same
rules as [6]. However, edge segmentation is achieved based
on the following premises:

1. Tllumination changes modify the gradient magnitude
but not the gradient orientation.

2. The gradient orientation is not feasible where there are
no edges.

3. An edge can appear in a place where there were no
edges before.

Assuming the first two premises, the gradient orienta-
tions will be compared instead of the gradient magnitudes
for those pixels which have a minimum magnitude, in order
to avoid the false edges due to illumination changes:

Fo= (80 < VEa) NMTa < 11Ga)) A
(Tg,a < |‘/067a,t - /‘Lz,aD (8)

For those pixels satisfying the third premise, their gradient
magnitudes are compared instead of their orientations:

Fo= (= ((76a < Véa) N7 < Haa))) A
(760 <IVéar —HGal) O

where V', , and V(; ,, are the gradient orientation and
magnitude for every pixel in the current image, respectively.
The use of the invariant models provides a high detec-
tion rate in comparison to other motion segmentation ap-
proaches. After the initial detection, moving foreground
objects, chromatic shadows and some isolated pixels are
contained in a binary mask named MI. Furthermore, the
mask obtained using the gradient model is divided into two
masks, which are used for the next steps. The Edneg mask
corresponds to the foreground pixels belonging to the bg.
model. While the Edpos mask corresponds to the fore-
ground pixels belonging to the current image. A third mask
is also created called Edcom, which contains the common
edges detected in the bg. model and in the current image.



4.2. Shadow intensity reduction

In this step the M/ mask from step 1 is reduced in order
to avoid pixels which cannot be shadows. A foreground
pixel cannot be a shadowed pixel if it has a higher intensity
than the background model. Then, a new mask for this step
is created according to the next equation:

M2, = (Lft < MR) A (Igt < MG) A
(12, < u®) (10)

where a corresponds to the pixel location in the M7 mask.

4.3. The bluish effect

The effect of illuminants which are different than white
light provokes chromaticity changes because the changes
in the intensity are different for every channel. In outdoor
sequences the main illuminants are the sky and the sun (any
of them white illuminant). The sky is the only source of
illumination on shadowed regions, and the sky is assumed to
be bluish as argued in [ 13]. Therefore, the intensity changes
in the red and green channels are bigger than in the blue
channel. This knowledge can be used to reduce the shadow
region detected in the previous step (M2):

M2, = (Ifft —pf) > (Ift — Py A
(IS, — u%) > (12, - u?) (11)

where a corresponds to the pixel location in the M2 mask.
Obviously, the bluish effect cannot be applied in indoor se-
quences.

4.4. Potential chromatic shadow regions

It is supposed that shadow regions have the same inten-
sity change for each channel, since the illuminant is simi-
lar for all the shadowed region. However, different surfaces
have different reflectance characteristics. Hence, the change
in intensity depends on the surfaces material for the given
shadow pixels. However, edges can show the changes be-
tween continuous pixels. Therefore, using the foreground
edges detected in the current image, mask Edpos, the po-
tential shadow regions can be separated from the moving
foreground objects.

M3a,t = M2a,t A\ (ﬁEdeSa’t) (12)

A minimum area morphology is applied in order to avoid
smaller regions which do not contain enough information
for the subsequent steps of the shadow analysis.

4.5. Chromatic shadow texture detection

In this step the temporal textures of the regions detected
in the previous mask M3 are analysed, in order to identify

in which case of the theoretical shadow analysis (see sec-
tion 3) each of the regions complies with. A region will be
considered as a shadow if it complies with case 1. Nega-
tive foreground edges (Edneg mask) inside of the region are
compared to the common foreground edges (Edcom mask),
in order to prove if the region is a shadow and avoid the
anomaly case 1-2. Furthermore, it also test if the negative
edges are noise (larger regions have a higher probability to
contain negative edges from noise):

Txb =
> (RyAEdneg) > (RyAEdcom)
a€Ry k < a€Ry,
RyAEdtot T RyAEdtot
[Rsp ot| | Ry ot (13)

Z (Rb/\Edneg)
a€Ry
A (le < I<;S>

where a is the pixel position; R, is the evaluated region and
b is the number of the region; | R;| denotes the number of
pixels of region b; | R, A Edtot| denotes the number of pix-
els representing the edges detected in the background model
and the current image; k,, corresponds to a confidence re-
gion, which is equal to the probability of the region belongs
to a shadow or a foreground object; and k; is used to mea-
sure if the negative edges corresponds to noise. Again larger
regions have a higher probability to contain negative edges
from noise.

4.6. Chromatic shadow angle and brightness detec-
tion

In this step the temporal and spatial similarities of the
chrominance angle and brightness distortion for all pixels
belonging to regions, which have so far not been classified
as shadow, are analysed. A region will be considered as a
shadow if it complies with case 2. The only regions anal-
ysed in this section will be those that does not have textures,
neither in the background model nor in the current image.
If the pixels do not have texture, nor similar chrominance
angle distortion and do not have a significant brightness dis-
tortion, then the region will be classified as shadow.

S (Ry A Edtot)

ABdy = | “%

<k | ANo(RpAa) <ky)
| Ry

A (o—(Rb AB) < kb)
(14)

where o is the standard deviation of & and B which are the
chrominance angle and brightness normalised distortions
calculated for each pixel in the region number b (R}), re-
spectively; k; is a confidence region to avoid noise textures;
k, and kg is a minimum threshold used to determine if the
angle and brightness distortion are similar amoung the pix-
els of the evaluated region.



Figure 4. An original image from the Outdoor_Caml sequence,
and foreground results after shadow removal using the Huerta et
al. approach [6], the zivkovic et al. approach [21] using a shadow
detector [16], and our approach, respectively.

4.7. Chromatic shadow edge removal

Pixels from the potential shadow regions, which were
neglected in section 4.4 because they were part of the Edpos
mask, have to be included again in the regions destected as
shadow.

4.8. Shadow position verification

A moving cast shadow is always caused by a moving
foreground object. Therefore, in this section it is tested if
a detected shadow has an associated fg. object, in order
to avoid the anomaly in case 2-2. Only shadows detected
in the chrominance angle and brightness distortion analysis
(section 4.6) will be tested. During a training period 7%, the
chrominance angles between the detected shadows and the
fg. objects are calculated. After, the most probable chromi-
nance angle obtained in the training period is used to discard
detected shadows, which do not have any foreground object
in the direction of the chrominance angle.

5. Experimental Results and Discussion

The results presented in this section are all selected from
well-known databases. Our approach is tested on sequences
of outdoor and indoor scenarios, and compared to other sta-
tistical approaches when results are available. The chosen
test sequences are relatively long and umbra and penumbra
shadows are cast by multiple foreground objects. The se-
quences analysed are Outdoor_Caml1 (800 frames, 607x387
PX), HigwayllI (2227 frames, 320x240 PX), and HallwayIl
(1800 frames, 320x240 PX).

Figure 4, 5 and 6 show the results when comparing our
approach with other approaches from the state-of-the-art
[6, 8,21, 16, 10]. As it can be seen in these figures our ap-
proach outperforms the other analysed methods. However,
in a few cases the gradient masks cannot be accurately build
due to camouflage and noise problems. Thus, the separation
of a foreground object and a shadow region can fail. Occa-
sionally, when the anomaly in case 2-2 occurs and a part of
the foreground object or the shadow is not segmented due
to segmentation problems, the shadow position can miss-
classify the shadow as a foreground object.

To evaluate our approach in a quantitative way, it is com-
pared with the approaches [9, 10] using the most employed

Uhttp://vision.gel.ulaval.ca/ CastShadows/

Figure 5. An original image from the HighwaylIll sequence, and
foreground results after shadow removal using the Huerta et al.
approach [6], the Kim et al. approach [£], the zivkovic et al. ap-
proach [21] using a shadow detector [16], the Martel et al. ap-
proach [10], and our approach, respectively (read row-wise).

Figure 6. An original image from the Hallwayl sequence, and fore-
ground results after shadow removal using the Huerta et al. ap-
proach [60], the Kim et al. approach [8], the zivkovic et al. ap-
proach [21] using a shadow detector [16], the Martel et al. ap-
proach [10], and our approach, respectively (read row-wise).

| Method | Hallwayl |
SR SD
GMSM 0.605 | 0.870
Physical model | 0.724 | 0.867
Our approach 0.807 | 0.907

Table 1. SR and SD results for our approach and two of the most
successful methods: Gaussian Mixture Shadow Models (GMSM)
[9] and a physical model of light and surfaces [10].

quantitative expressions utilized to evaluate the shadow de-
tection performance: the Shadow Detection Rate (SR) and
the Shadow Discriminate Rate (DR), refer to [16] for the
exact equations. Results show that our method outperforms
both the parametric approach based on Gaussian mixtures
GMSM [9] and the nonparametric physical model [10].
Note that the results for the GMSM [9] and the physical
model [10] on the sequence Hallway have been obtained
directly from [10].

It should be noted that our approach needs a reasonable
resolution to work correctly. Futhermore, shadow regions
need to have a minimum area for analysis or there might



not be enough information for a proper shadow detection.

6. Conclusions

In this paper, we have presented an approach for detec-
tion and removal of chromatic moving shadows in surveil-
lance scenarios. The approach apply a novel technique
based on gradient and colour models for separating chro-
matic moving shadows from detected moving objects. We
extend and improve well-known colour and gradient models
to an invariant colour cone model and an invariant gradient
model, respectively. Furthermore, we combine colour, gra-
dient and textural information, together with known shadow
properties to improve the shadow detection. The resulting
shadow detection can detect and remove chromatic moving
shadows (umbra shadows) and penumbra shadows, while
several other methods are restricted to the latter. Qualita-
tive and quantitative results of tests for both outdoor and
indoor sequences from well-known databases validate the
presented approach. Overall, our approach gives a more
robust and accurate shadow detection and foreground seg-
mentation compared to state-of-the-art methods.

In future work, edge-linking or B-spline techniques can
be used to avoid the partial loss of foreground borders due
to camouflage, and thereby improve the edge model. An-
other interesting aspect is to use the direction of penumbra
to umbra for a cast shadow as discrimination between fore-
grounds and shadows, which does not have texture nor sim-
ilar temporal and spatial chrominance angle and brightness
distortions. Finally, high-level information such as track-
ing information for a detected shadow can be applied to en-
hance the detection process in subsequent frames.
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