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ARQ strategies for MIMO eigenmode transmission
with adaptive modulation and coding

Elisabeth de Carvalho and Petar Popovski
Aalborg University, Niels Jernes Vej 12
9220 Aalborg, Denmark
email: {edc,petarp}@es.aau.dk

Abstract— Packet retransmission strategies are presented for
MIMO eigenmode transmission where adaptive modulation and
coding (AMC) is implemented. The retransmission design is
based on weighted linear MMSE. It includes the transmit and
receiver filter, the power and eigenmode allocation and AMC
level when new packets are transmitted. The weight matrix of
WMMSE is used to appropriately weight streams with different
AMC levels in order to maximize the system throughput. Sim-
ulations show that the choice of the weight factors has a major
impact on the performance.

I. INTRODUCTION

Automatic Repeat Request (ARQ) design for MIMO com-
munications [1] offer many challenges mainly due to the
multiplicity of spatial channels for simultaneous transmission.
ARQ design includes the selection of the spatial channel
used for retransmission as well as for transmission of new
packets. This paper focuses on ARQ for MIMO eigenmode
transmission. The transmitter is assumed to have full channel
state information (CSI) which remains approximately constant
over a packet transmission. Based on the CSI, the transmit
filter, the power allocation and the adaptive modulation and
coding (AMC) level are adjusted.

In eigenmode transmission, independently coded streams
are subject to a linear processing which depends on the
singular vectors of the MIMO channel. The total transmit
power is constrained to be smaller than a set value and the
power assigned to each stream depends on the singular values
of the channel. When all the input packets are transmitted
for the first time, several criteria can be used to optimize the
transmit filter and power allocation. Popular criteria are the
maximization of capacity and weighted linear minimization
mean squared error (WMMSE). When the weight matrix of
WMMSE is appropriately selected, capacity maximization and
WMMSE give the same solution [2].

When packets are decoded in error, they are retransmitted
with the same data content, meaning that the AMC level
for the retransmitted packets is kept unchanged. Only pack-
ets decoded with errors are retransmitted. Soft information
about the erroneously decoded packets are kept in memory
and combined with the retransmitted packets to increase the
probability of correct detection. Retransmission optimization
includes: 1) the choice of the spatial channel for retransmitted
packets and newly transmitted packets, 2) the power allocation
among streams, 3) the transmit filter 4) AMC level for new
packets.

Let us take the example of a 2 x 2 MIMO system where 2
packets are newly transmitted. A criterion based on capacity
maximization or (linear) WMMSE can be used to optimize
the transceiver parameters. The result of the optimization is
optimal if the input streams are Gaussian. In practice, the input
data belongs to a discrete constellation resulting in a loss of
optimality. When adaptive modulation and coding (AMC) is
applied and as the number of possible AMC level increases,
this suboptimality is compensated for.

Assume that the 2 transmitted packets are decoded incor-
rectly and have to be retransmitted. The transceiver parameters
need to be optimized taking into account packet combining
with previous transmission. The main difference with the
first transmission optimization is that the AMC level is now
fixed. The design should account for the fact that the input
data belongs to a discrete constellation. This increases the
computational complexity of the solution in general. For this
reason, it is preferable to keep a linear criterion, such as
linear WMMSE. However, because the AMC level is fixed,
performance of linear WMMSE can actually be quite poor.
We propose to use linear WMMSE but select appropriately
the weight matrix. The weighting between 2 streams cannot be
the same in the case where the 2 packets have the same AMC
level and the case where they have a different one. Assume
that one of the streams carry a 16-QAM and the other stream
a QPSK. The first stream requires a higher post-processing
SNR to get good probability of correct detection. This can
be achieved by giving more weight to the first stream. After
the first transmission, when only 1 packet is decoded with
errors and the other one is decoded correctly, the packet in
error gets retransmitted and a new packet is transmitted. The
design additionally involves the choice for the AMC level for
the new packet.

In [3], a retransmission design for MIMO eigenmode trans-
mission was proposed based on linear MMSE. The design
criterion in [3] is not changed to account for the fact that
the retransmitted packets have a fixed constellation which can
affect performance as seen in the simulation section in our
paper. Furthermore, [3] does not consider to transmit new
packets when only a subset of the packets is decoded with
errors thus limiting the spatial efficiency.

The paper is organized as follows. Section II recalls the
two main criteria used when packets are newly transmitted.
Section III presents the design proposed in this paper. As
last, section IV presents simulations. Only the 2 x 2 case



is presented. However, the principles explained here can be
extended to more general cases. Furthermore, we treat the case
of 2 consecutive transmission periods, where new packets are
transmitted during the first period and retransmissions occur
during the second period. Again, the general case can be
constructed recursively based on the content of this paper.

II. DESIGN FOR FIRST TRANSMISSION

We consider the first transmission of two packets denoted
X'=F and X% from antenna 1 and antenna 2 respectively at
time ¢t = k. The m!* symbols of the packets are denoted
as #%7F and 5%, ()%, ()T, ()H denote respectively the
conjugate, the transpose and Hermitian transpose operations.
The vectorial input-output relationship for the 2 x 2 MIMO
system is:

yt:k: _ Ht:k%t:k + nt:k (1)
y'=F=[yi=F ys=F]T is the received signal at antenna 1 and
antenna 2. =" = [#47F #5%]7 is the vector of input data.
n!=k = [n!=% nt=*T is the received noise at antenna 1 and

antenna 2. It is assumed to be a centered complex circularly
symmetric Gaussian random variable: n ~ CA(0,021). The
channel matrix H'=F = [H{=F H=F], where H!=F is the i*"
column of H=F,

Two well-known design criteria for transmission of new
packets are presented below. They are used to optimize the
transmit and receive filters as well as the transmit power
allocation among eigenmodes. The first criterion relies on the
maximization of capacity and the second criterion on weighted
linear minimum mean squared error (WMSE). WMMSE be-
comes equivalent to capacity maximization when the weight
is appropriately selected [2]. This correspondence between
capacity and WMMSE motivates the design approach adopted
for retransmissions in this paper where maximization of the
throughput is the purpose. As explained in the introduction, re-
transmissions imply a decreased number of degrees of freedom
as the AMC level of the retransmitted packet has been fixed
in a previous transmission. Information theory or (non linear)
MMSE criteria can be developed based on a fixed AMC level
but result in high computational complexity. In this paper, we
rely on linear WMMSE and adjust the weight matrix to adapt
to the AMC level of the streams in order to maximize the
throughput.

A. Capacity maximization

When the full CSI (channel and noise variance at receiver)
is available at the transmitter and receiver, the system capacity
has the following expression:

1

C = max _ log,det (I+ QHRMHH) . Q)
Rzx, r (Rex<P) On

x = [va ap]T is the 2 x 1 input vector. Note that we

give up the superscript ¢ = k in this section for clarity. The
optimization parameters are the coefficients of the correlation
matrix of & denoted as Ry = Exx . The total transmit
power is constrained to be smaller than a set value P. As the
i'" diagonal element of R, is equal to the transmit power

P; from antenna i, the power constraint can be written as
trace(Rzs) < P. The optimal correlation matrix is a function
of the singular vectors and singular values of the channel
matrix . Consider the singular value decomposition of I:

H=UAVE. 3)

U and V are unitary matrices containing the left and right
singular vectors. A is a diagonal matrix containing the singular
values of H denoted as \;.

The optimal correlation matrix is Rge = VO2VH. &2 is a
diagonal matrix with element (4,4) equal to P;. The optimal
transmitter consists in a) independently coded streams using a
AWGN encoder 2) a transmit filter F":

F=V® “)
and a power assignment following the waterfilling policy:
1/2
R A 5)
+

where (z); = z if z > 0 and (2); = 0 otherwise. p is
adjusted to conform to the transmit power constraint P, +Ps <
P. Capacity maximization imply that the receiver is optimal
(based on maximum likelihood).

B. Weighted MMSE

We impose a transmit and receive structure consisting of a
linear filter at the transmitter denoted F' and a linear filter at
the receiver denoted G. The vector input of F' is denoted as
x. The output vector is & = Fx. The vector output of G is
Gy = G(HFx + n). Denoting the weight matrix as W and
the weighted error as 1W'/%e, the weighted MMSE criterion
is:

I;liélEHWl/26||2, e=xz—G(HFz+n). (6)
The solution is of the form F = V& and G = U7 &, with:
1/2
dp = (p_l/QA_l/QWl/z —A_l) )
+
Iy (/fl/QA_l/QW_l/Q - uA_1W_1)1/2 A—/2(8)
+

For W = A, the transmit filter is the same as the one resulting
from capacity maximization. Hence, the transmitter structure
is the same for both cases.

C. AMC Level

The capacity based criterion and linear WMMSE are opti-
mal when the input signals are Gaussian. In practice, the input
signals belong to a discrete constellation and the number of
possible AMC level is finite. A known approach is to use
an alternate criterion aiming at maximizing the throughput
sometimes under a minimum bit error rate constraint [4]. Let
PERyk(vr) denote the packet error rate of the K*" stream:
it depends on the selected AMC and the post-processing SNR
of the stream 5. The throughput for stream K is:

rg [1 = PERk (V)] )

rx is the nominal throughout for stream K. In this paper, the
AMC level is selected as the one maximizing the throughput
(9). In practice, SNR intervals can be associated with each
AMC level.



III. RETRANSMISSION DESIGN

Linear WMMSE is optimal if the input data is Gaussian. In
reality, the input data belongs to a finite alphabet. However, in
general, the number of AMC levels is sufficiently high so that
the suboptimality gets decreased. Weighted and non weighted
MMSE gives reasonable performance in this case. The AMC
level of the retransmitted packet is fixed however. This should
be taken into account by an appropriate design.

Next, we formulate a criterion based on the maximization
of the total system throughput: this is the criterion we would
like to maximize but its optimization is too costly. As an
alternative, we adopt WMMSE where the weight matrix will
be tuned to maximize the throughput.

A. Main Assumptions

We recall the main hypotheses of the retransmission process.

o For each packet transmission, transmit and receive filters
as well as transmit power of each stream and eigenmode
allocation are determined.

o Packets transmitted over different eigenchannels might
have a different AMC level. Packets are assumed to
have the same duration: they contain the same number
of symbols, but possibly a different number of bits.
Retransmitted packets keep the same symbol content.

o Received signals containing contributions of erroneously
decoded packets are kept in memory and are combined
with received signals containing retransmitted packets.
When packets are successfully decoded, their contribution
is removed from the current received signal and possibly
from received signals corresponding to previous transmis-
sions.

o If 2 packets are decoded with errors at time ¢, they are
retransmitted at time ¢ + 1.

o If only 1 packet is successfully decoded, its contribu-
tion is removed from the received signal at time ¢ and
possibly from past received signals kept in memory. The
erroneously received signal is retransmitted at time ¢ + 1
as well as a new packet.

o When both packets are decoded correctly at time ¢, 2 new
packets are transmitted at time ¢ + 1.

B. Throughput Maximization

If the packets transmitted at time ¢ are newly transmitted, the
system throughput can be written as: r4 (1 — PERA(vA)) +
rg (1 — PERp(vp)). This expression is not valid in the
retransmission case, because it does not take into account that
packet errors occurred in previous transmission periods.

However, the following throughput maximization criterion:

max 74 (1 — PERA(ya)) + 7 (1 — PERp(y5)) (10)

was used in [5] where it was shown to be a good approximate
criterion for retransmission. There appears to be no low cost
solution for determining the transmit and receive filter using
this criterion. WMMSE will be used. However, we will come
back to this criterion to determine the power allocation.

C. Weighted MMSE

1) Equivalent channels: Suppose that packets X4 and Xp
are newly transmitted at time ¢ = 1. Both packets are first
processed by the transmit filter F*=!. Here, we assume that
F'=1 incorporates the power allocation information as in
section II-B . The output of the transmit filter is F'=1x!=!,
We denote H'=" = H'='F'=" at time ¢t = i and H}~" its j'"
column.

If both packets X4 and Xp are decoded with errors, they
are both retransmitted through channel H'=2. Two options
are available for selecting the eigenchannel for retransmission.
Grouping y'=! and y'=2, the received signal at time ¢t = 1
and ¢t = 2, in the vector ):

Y=Kz'=2 4+ N (11)

1T —oT . .
where N = [n?=1" n!=2" T K is the composite channel,
having the following expression according to the eigenmode
allocation for retransmission:

t=1  qt=1 t=1
K—{Hl T } or K—{Hl

! }
H=2 M2 2 |

Hi=?
(12)
If only 1 packet, say Xp, is decoded without errors, its
contribution is removed from the received signal at time ¢ = 1.
X 4 is retransmitted and a new packet X, is transmitted.
The vector input at time t = 2 is € = [T4 Zpnew]’. Vector Y
grouping the received signals at time ¢ = 1 and ¢ = 2 can be
written as in (11) with composite channel:
t=1 t=1
K= [ Z%:z H9:2 ] or K= { gl}:z H9:2
1 2 2 1
depending on the eigenmode selection for retransmission.
The zero column in (13) comes from the removal of the
contribution of Xp in the received signal at time ¢ = 1.
2) Transmit and receive filters: A full length derivation of
the transmit and receive filters F*=2 and G*=2 can be found
in [3]. Here we give an alternate and brief derivation that is

based on the results in [2].
The weighted MMSE criterion is:

E||W1/2 (Gt:Qy o mt:2) ”2

] 13)

min
Ft=2 7Gt:2

(14)

G'=? is the receive filter at time ¢t = 2 and W is the diagonal
weight matrix. The solution for G*=2 is the classical receive
MMSE filter based on the received signal ):

G'=? = (KK + 021) " H™. (15)

The transmit filter F'*=2 is solution of:

= 52
Fi=2 o2

1 - N
min tr [W <D+ Ft2HHt2H'Ht2Ft2> ] (16)
where D = [ + LFETp=tTyisip=l The
cost function can be rewritten as: tr [D‘l/ 2y p-1/2

-1
(I + le/QFf:zH’HtZQH'Ht:QFt:QDl/Q) } . Denoting

Fi=2 F'=2D1/2_ the optimization problem for F'=2
is similar to the problem in [2] with weight matrix
equal to D~Y2WD~/2 The main difference is in the



power constraint which becomes: tr (FtZQHFtZQ) =
tr (D1/2(ﬁt:2)Hﬁt:2D1/2) < P. Using the same kind

of arguments as in [2] to find the power allocation, F'*=2
verifies:

Ft:2 — Vt:2q)t:2 (17)

Ht=2 — (M—l/Q [At=2]*1/2W1/2_ [At=2]*1 D)i/Q(IS)
The structure of F*=2 is similar to the case where the packets
are all newly transmitted. The difference is in the power
allocation between streams which depends on the previous
transmission. The weight matrix 1/ only impacts the power
allocation and not the transmit filter. Based on these last
observations, the idea is:

(a) base the design of the transmit filter F*=2 on the (un-
weighted) MMSE criterion.

(b) the power allocation is determined using an alternate
criterion. A given power allocation corresponds to a given
weight matrix W. So the alternate criterion serves also to
select the weight matrix.

D. Power allocation

Plugging the optimal expression of F*=2, the MMSE is:
1 -1
MMSE = (I + U—%Alcb(l)z + pA2<I>(2)2> : (19)
The post processing SNR for stream K is chosen as the output
of the unbiased MMSE receiver [6]:
1

— 1
MMSEk
where MMSE ¢ jc is K" diagonal element the 2 x 2 matrix

MMSE. Denoting p’i™ the power on stream A at time ¢ = i,
the post-processing SNR is:

(20)

1= = 1

YA = 7)\5_117%_1“‘;/\3_11?2_2 2n
n n
101 = 1 5, = -

vBo= NP+ N (Popi). (22)

n n
The ideal would be to choose the power allocation which
minimizes the throughput (10) as:

r;lin raAPERA(ya) + r5PERE(vB). (23)
A

When the AMC level on stream A and B is the same, the
optimization problem has an easy solution for most cases. It
can be proven that maximizing (23) is equivalent to finding
the power allocation that makes 4 equal to g, in the domain
where the cost function is concave, which is the case for
medium to high SNR [5].

This finding motivates the treatment of the case of different
AMC levels on both streams. Indeed, we propose to optimize
the power allocation as the one verifying:

YA = BaB VB 24

Bap is determined through simulations for each combination
of AMC levels by averaging over many channel realizations.
In the simulation part, we will see that this gives performance
closed to the optimal one.

1) Eigenmode allocation:

a) 2 packets in error: The eigenmode allocation of the
retransmitted packets is selected as the one minimizing |y4 —
Bap ~vp| for a predetermined fixed power allocation (power
equally distributed among eigenmodes). This insures a more
efficient optimal power allocation. Indeed, in some cases, it is
not possible to make v 4 equal to 54 vp by playing on power
allocation. But, by insuring that |y4 — 645 vp| is minimal for
the predetermined power allocation, we maximize the chance
of satisfying the targeted criterion.

In [3], the eigenmode allocation is switched compared to
the previous transmission. If one packet was transmitted from
the strongest eigenmode of the channel at time ¢ = 1, then it
is retransmitted from the weakest eigenmode of the channel
at time ¢t = 2. This allocation can be detrimental especially
if the streams have different AMC levels. This aspect will be
highlighted in the simulation section.

b) I packet in error: When only 1 of the packets is
decoded with errors, a new packet is transmitted for which
the AMC level has to be decided. We test all the AMC levels
for this new packet and select the eigenmode allocation that
minimizes |ya — Sap v5|- When the AMC level for the new
packet is too high, an allocation such that v4 = [Bapvyp is
not possible. So the rule is to select the highest AMC level
for which 4 can be made equal to Sap V5.

IV. SIMULATIONS

The simulation part treats the case where the streams have
different AMC levels. Indeed, the performance difference
between the power allocation proposed in this paper and an
unweighed MMSE approach as in [3] is mostly noticeable in
this case.

The packets are uncoded and AMC levels can be selected
among BPSK, 4-QAM, 16-QAM, 64-QAM. For first transmis-
sion, we select channel realizations that result in a 16-QAM
for the first stream and 4-QAM for the second stream. The
value of Bap in equation 24 is determined by simulations
and is equal to 6.32. The channel follows a Kronecker model
with same transmit and receive correlation equal to 0.3. For
each packet transmission, a new channel realization is drawn
independent of the previous one.

In figure 1, 2, 3, we show the performance measure for the
second transmission. Three different scenarios are tested:

Scen 1 The first transmission results in 2 packets in error.
Two packets are retransmitted. As r4 and rp are the
same for the 3 designs that we compare, we show the
average value of ryPER,(va) +rgPERp(yp) for
the second transmission as a function of average SNR.

Scen 2 The stream with strongest AMC level is decoded
with errors and the other stream is decoded cor-
rectly. We show the average value of rgThrs(va) +
rgThrp(yp) as a function of average SNR.

Scen 3 The stream with weakest AMC level is decoded
with errors and the other stream is decoded cor-
rectly. We show the average value of 7o Thra(va) +
rgThrp(yp) as a function of average SNR.

The following designs are compared:



Design 1: Power allocation optimizes (23).

Design 2: Power allocation optimizes (24).

Design 3: Power allocation using unweighted WMMSE.
Eigenmode allocation is switched.

Design 3 corresponds to [3]: in [3], when only 1 packet is
decoded correctly and the other one is decoded with errors, the
error free packet gets retransmitted along with the erroneous
packet during the subsequent transmission period. Here, we
modify this design. The contribution of the error free packet is
removed from the received signal at time ¢ = 1. At time ¢ = 2,
the erroneous packet gets retransmitted and a new packet is
transmitted.

The following conclusions can be drawn from the sim-
ulations: a) Design 2 gives performance very close to the
more optimal Design 1, b) Design 3 gives worse performance
than Design 1: power allocation should take into account the
difference of AMC levels between the streams.

V. CONCLUSION

This paper has proposed a design for retransmissions in
MIMO eigenmode transmission. To achieve a low compu-
tational complexity, we have based our design on linear
weighted MMSE. We have shown how important it is to
appropriately weight the streams of the MIMO transmission,
especially when the AMC level of the streams is different.
Using unweighted MMSE results in performance that can
be quite far from optimal. This problem is specific to a
retransmission process where packets are retransmitted with
the same symbol content. When packets are newly transmitted
and provided that the number of AMC levels is not too
limited, non weighted MMSE performs reasonably well. In the
retransmission process, the AMC levels are fixed: the weight
matrix has be to appropriately selected and depends on the
AMC levels of each stream.
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