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A Class of Stochastic Hybrid Systems with State-Dependent Switching
Noise

John Leth, Jakob G. Rasmussen, Henrik Schioler, and Rafael Wisniewski.

Abstract— In this paper, we develop theoretical results based
on a proposed method for modeling switching noise for a
class of hybrid systems with piecewise linear partitioned state
space, and state-depending switching. We devise a stochastic
model of such systems, whose global dynamics is governed by
a continuous-time stochastic process. The main result of this
paper is that we may identify the realizations of the global
dynamics with the solutions of a differential inclusion. Hence,
an analysis of switched systems with switching noise can be
carried out either based on a non-deterministic method via
the differential inclusion, or on a stochastic method via the
stochastic process. Furthermore, we describe how to construct
intensity plots, which provide a quick overview of the behavior
of the system. An example is included to illustrate this.

I. I NTRODUCTION

Switching between dynamical systems is often connected
with uncertainties generated by disturbances, malfunctions
etc. To model such a scenario, one may use the concept of
a stochastic hybrid system, see [1], [2], [3] and references
therein for examples of how various uncertainties enters a
hybrid system.

The systems studied in this paper belongs to the class of
stochastic hybrid systems SHS, [3], [1], [4], [5], [2], [6].
Indeed, our setup is a special case of [1], [6], [4], but where
these strive for a general study of SHS, we specialize to
obtain results designed for a particular subclass. The trade-
off is of course that these results seem not to be valid for
the more general class studied in [1], [6], [4].

In this paper, we develop theoretical results based on a
proposed method for modeling switching noise for a class of
hybrid systems with piecewise linear partitioned state space
and state-depending switching, as described in [7]. In the
sequel, elements of this class will be referred to as switched
systems (we remark that the terminology for such systems in
the literature is not consistent, e.g., in [8, Chapter 3.3] it is
called a “state-dependent switched system”, in [9] it is called
a “hybrid system”, and in [10] it is called a “piecewise affine
system”).

We will partition a subset (state space) of then-
dimensional euclidean space into convex subsets (polyhedral
sets), here called cells, with disjoint interior such that each
cell has non-empty interior and the boundary of each region
is the union of convex subsets (facets). For a family of

This work was supported by the Danish Council for Technologyand
Innovation.

J. Leth, H. Schioler and Wisniewski are with Department of Electronic
Systems, J. G. Rasmussen is with Department of Mathematical Sciences,
all at Aalborg University, Fredrik Bajers Vej 7C, 9220 Aalborg, Den-
markjjl@es.aau.dk jgr@math.aau.dk hs@es.aau.dk
raf@es.aau.dk

vector fields defined on the partition (one for each cell), we
construct a differential inclusion whose corresponding set-
valued map gives a one point set at each point in the interior
of each cell and a finite set otherwise. This differential
inclusion is used to describe the (global) dynamics of the
switched systems.

In a switched system, a shift from one local system to
another, may be thought of as deterministic in the sense that
it occurs with probability one when a trajectory “hits” a face.
Looking towards (engineering) applications and simulations,
this constitutes a problem since faces have measure zero and
hence they will not be “hit” by any simulated trajectory, e.g.,
any step size or sampling rate will result in the points of
the discretized trajectory being on one side of a face at one
time instant and on the other side at the next time instant.
Moreover, in many situations, it is desirable to describe the
future behavior of the system. Since such predictions usually
are based on observations, one is forced to introduce some
uncertainty into the model. A way to model the uncertainty
related to a shift is to “thicken the corresponding face”, i.e.,
replace each face with some (small) open neighborhood of
it.

In this paper, we incorporate the “thickening of faces” into
our model of a switched system. More precisely, we construct
an open neighborhood around the faces on which there is
defined a probability measure. Subsequently, we use this
measure to describe the probability of a shift, in such a way
that the longer a trajectory stays within the neighborhood,
the higher the probability of a shift becomes. Based on this
construction, we devise a stochastic model of a switched
system with switching noise, whose global dynamics is
governed by a continuous-time stochastic process with values
in the state space. The main result of this paper is that, on
any finite time interval, we may, except for a set of measure
zero, identify the realizations of the global dynamics with
the solutions of a differential inclusion. Hence, for switched
systems with switching noise which can be modeled as
described in this paper, an analysis of such systems can
be performed in two ways; a stochastic analysis, via the
stochastic process which is useful when simulations of such
systems are required, and a non-deterministic analysis viathe
differential inclusion, if a more detailed analysis is required.
Furthermore, we describe how one applies the stochastic
model to construct intensity plots, which provide a quick
overview of the behavior of the system. We end with an
example illustrating the use of intensity plots.



II. PRELIMINARIES

For completeness, we recall various definitions and results
from the theory of switched systems with state-dependent
switching.

A. Switched Systems

Before introducing the concept of a switched system,
we recall the definitions of a (polyhedral) complex and a
(piecewise linear) partition.

Let Λ be some index set, andK = {Pi}i∈Λ be a family
of polyhedral sets inE = R

n. We let |K| = ∪i∈ΛPi

with the subspace topology inherited fromE, and callK
a (polyhedral) complex if (1) each face of anyP ∈ K is in
K, (2) P ∩P ′ is a face ofP andP ′, for anyP, P ′ ∈ K, and
(3) each point of|K| has a neighborhood intersecting only
finitely many elements ofK. Condition (3) is only necessary
if Λ is infinite. For a complexK with index setΛ, we let
Λj = {i ∈ Λ| dim(Pi) = j} andKj = {Pi ∈ K | i ∈ Λj}.
ElementsPi ∈ K will be called cells ifi ∈ Λn, and facets
if i ∈ Λn−1.

Let E′ denote eitherE or a bounded polyhedral set (i.e.,
a polytope) inE of dimensionn. By a (piecewise linear)
partition ofE′, we mean a complexK such that|K| = E′.
An n-dimensional switched systemS with index setΛ is then
a triple S = (E′,K,G) where the state spaceE′ is either
E = R

n or a bounded polyhedral set inE of dimensionn,
where the complexK = {Pi}i∈Λ is a (piecewise linear)
partition of E′, and whereG = {fi}i∈Λn is a family
of smooth functions,fi : R

n → E, describing the local
dynamics ofS. The global dynamics ofS is governed by
the following differential inclusion

x′(t) ∈ f(x(t)), (1)

where the set valued mapf is defined by

f :E′ → 2E ;

x 7→ {v ∈ E|v = fi(x) for all i ∈ Λn such thatx ∈ Pi},

with 2E the power set ofE.
We say thatt 7→ x(t) follows systemi, and refer to

this as a local solution ifx′(t) = fi(x(t)). We remark that
for technical reasons a local solution is not confined to a
particular polyhedral set, e.g., a local solution ofx′ = fi(x)
is allowed to extend beyond the polyhedral setPi.

We recall various solution concepts related toS. For 0 <
T ≤ ∞ let JT = [0, T ). By a (Caratheodory) solution at
x0 ∈ E′ to S, we understand an absolutely continuous (AC)
function JT → E′; t 7→ x(t), which solves the Cauchy
problem

x′(t) ∈ f(x(t)) a.e., x(0) = x0. (2)

A relaxed (or Filippov) solution atx0 ∈ E′ to S is by
definition a solution atx0 to the differential inclusion

x′(t) ∈ f c(x(t)) a.e., f c(x) = co(f(x)), (3)

with co(f(x)) the convex hull off(x). A classical solution
at x0 ∈ E′ to S is a continuously differentiable function

JT → E′; t 7→ x(t), which solves the Cauchy problem;
x′(t) ∈ f(x(t)), x(0) = x0.

In the sequel, we usually drop the index 0 when we discuss
a family of initial conditions, as in Proposition 1 below.

Now, let TE′(x) denote the contingent cone toE′ at x,
i.e., the closure of the convex cone ofE′−{x}. We end this
section with the following existence results which easily can
be derived from standard results from differential inclusions,
e.g from [11].

Proposition 1: At any interior pointx of E′ there exists
a relaxed solution atx to S. Moreover, the solution is a
classical solution ifx is interior to a cell.

Proposition 2: For each unboundedPi, with i ∈ Λn,
assume thatfi(Pi) is bounded. Then at anyx ∈ E′ there
exists a relaxed solution toS defined on[0,∞)

1) if Λn is finite, in the caseE′ = E.
2) iff f c(x) ∩ TE′(x) 6= ∅ for all x ∈ E′, in the case

E′ 6= E.

III. SWITCHED SYSTEMS WITH SWITCHING NOISE

In this section, we devise a stochastic modelSǫh of a
switched systemS with switching noise, which can be inter-
preted as a (stochastic) approximation ofS. The switching
noise is assumed to have effect only in anǫ-neighborhood
around the switching surfaces (the facets) and the uncertainty
related to the occurrence of a shift within this neighborhood
is assumed to be governed by an intensity functionh as
described below.

As we shall see in Section IV, the stochastic model can
be used to derive a curve intensity measure giving a tool
for analyzing the mean behavior of solutions to switched
systems with switching noise.

A. Switching noise

In order to introduce switching noise, we will start by
recalling the intensity function of a random variable, [12].
Let (Ω,F ,P) be a probability space andU : Ω → R a
random variable with differentiable distribution functionFU :
R → R, and density functionp : R → [0,∞).

Assume that the stochastic variableU is distributed on the
interval [−ǫ, ǫ]. Then the distribution ofU can also be de-
scribed by the survivor functionu 7→ S(u) = 1−

∫ u

−ǫ
p(v)dv,

i.e., the probability ofU > u, P(U > u), or by its intensity
(or hazard) functionu 7→ h(u) with

h(u) =
p(u)

S(u)
=

1

P(U > u)
lim

∆→0+

P(U < u+∆)− P(U < u)

∆
,

(4)

i.e., ∆h(u) is, for small∆ > 0, approximately the prob-
ability of U being in small interval(u, u +∆), conditional
on U being bigger thanu, P(U ∈ (u, u + ∆) | U > u).
The intensity function turns out to be a convenient starting
point for defining the stochastic shifts between the different
dynamical systems.

It should be remarked that under mild conditions onh,
there is a one to one correspondence betweenh andp. More
precisely, ifh : [−ǫ, ǫ] → R is any map such that

u 7→ 1− exp(−

∫ u

−ǫ

h(v)dv), u ∈ [−ǫ, ǫ],



defines a differentiable distribution function, thenh is an
intensity function with the corresponding density function p
given by

p(u) = h(u) exp(−

∫ u

−ǫ

h(v)dv), u ∈ [−ǫ, ǫ]. (5)

To obtain an intensity function suitable for our purpose,
we need the following, see also Figure 2. LetS = (E′,K,G)
denote ann-dimensional switched system with index setΛ
and for each pair of neighboring polyhedral sets, sayPi and
Pj , define the mapxij = xij(·) by

E′ → R
n; x 7→ xij = x− πFij

(x),

whereFij is the affine hull of the facetFij = Pi∩Pj between
Pi andPj , andπFij

is the orthogonal projector ontoFij , [11,
p. 24]. Note thatxij is a vector pointing intoPi (resp.Pj)
whenx ∈ Pi (resp.x ∈ Pj).

Let nij (resp.nji) denote a normal vector for the facet
Fij which points intoPj (resp.Pi), and define the map

E′ → R; x 7→ uij(x) = |xij |sign(nij |xij), xij = xij(x).

To define the intensity functionhij for a shift from system
i to systemj, we need the following construction. Forǫ > 0
andP ∈ K, we letP ǫ denote theǫ-expansion ofP defined
asP ǫ = ∩Hǫ,H

i with {Hi} the (finite) family of half spaces
defining P (i.e., P = ∩Hi) and Hǫ,H

i the ǫ-neighborhood
of Hi with respect to the Hausdorff metric. Note thatP ǫ 6=
P ǫ,H , e.g., ifP is a square centered atc with side lengthl
thenP ǫ is a square centered atc with side length2ǫ+ l and
with the same orientation asP ; whereas,P ǫ,H is P ǫ with
rounded corners, see Figure 1.

P ǫ
P ǫ,H

ǫ ǫ

ǫ

Fig. 1. P ǫ,H andP ǫ with P indicated by the dotted square.

Let x(·) follow systemi andFij 6= ∅, then the intensity
function hij for a shift from systemi to systemj at x(t) ∈
F ǫ
ij is defined by

hij(x(t)) = h(uij(x(t))), (6)

where h is the intensity function defined above. Hence,
hij(x(t)) is the intensity of the signed orthogonal distance
from x(t) to Fij , the affine hull of the facetFij betweenPi

andPj , i.e., we have used the distribution on[−ǫ, ǫ] to induce
distributions, one for each solution, on trajectories. We note
that for a given solutionx(·), the density function connected
to h induces a density function connected tohij(x(t)) by
(5).

The above construction deals with shifts when a trajectory
approaches one facet, but it does not show how to handle

��

Fij
Fij

πFij
(x)

Pj

Pi

xij(x)

x(t)
ǫ

x

Fig. 2. An ǫ-neighborhood around the affine hullFij of the facetFij

between the polyhedral setsPi andPj (in the figure four polyhedral sets
are shown). Also indicated is the vectorxij(x) = x − πFij

(x), where
πFij

(x) is the is the orthogonal projector ontoFij of the pointx on the
solution curvex(·).

multiple facets simultaneously. To handle this situation,we
assume in sequel that ifx(t) ∈

⋂

i∈Λ′ P ǫ
i with Λ′ ⊂ Λn,

then shifts to each of the systemsfi, i ∈ Λ′ will happen
independently.

Proposition 3: Assume thatt 7→ x(t) follows system
i, and thatx(t) ∈

⋂k
i=1 P

ǫ
ji

with ji ∈ Λn. Then the
intensity functionhi• for a shift from systemi to system
l ∈ {j1, . . . , jk} at x(t) is given by

hi•(x(t)) =

jk
∑

j=j1

hij(x(t)),

and if a shift occurs atx(t), we shift to systeml ∈
{j1, . . . , jk} with probability

hil(x(t))/hi•(x(t)).
Equivalently, we can let shifts happen according to all

of the intensitieshij1(x(t)), . . . , hijk(x(t)) independently of
each other, and disregard all shifts except the first one with
respect to timet.

Proof: Let x = x(·) and F ij
x denote the distribution

function corresponding tohij , i.e.,F ij
x (t) is the probability

of a shift from systemi to systemj before timet. Hence
1 − F ij

x (t) is the probability of no shift from systemi to
systemj before timet.

Now by assumption shifts to each of the systems will
happen independently; hence, we conclude that the product
Πj(1 − F ij

x (t)) is the probability of no shift from systemi
beforet.

Let F i•
x (·) denote the distribution function defined by

letting F i•
x (t) be the probability of a shift from systemi

beforet. Hence the corresponding intensity function ishi•,
and we then have

F i•
x (t) = 1−Πj(1− F ij

x (t))

= 1−Πj exp(−

∫ t

t′
hij(x(t))dt)

= 1− exp(−

∫ t

t′

∑

j

hij(x(t))dt),



wheret′ denotes the time for the last shift or 0 if no shifts
have occurred beforet. Thushi•(x(t)) =

∑jk
j=j1

hij(x(t)),
which proves the first part of the proposition.

Now let T denote the continuous random variable giving
the time of the shift from systemi, andI denote the discrete
random variable giving the number of the system which is
shifted to. With this notation we use (4) to conclude

hil(x(t))

hi•(x(t))
= lim

∆→0+

P(T ∈ (t, t+∆), I = l)

P(T ∈ (t, t+∆))

= lim
∆→0+

P(I = l | T ∈ (t, t+∆)),

hence completing the proof of the last assertion.
Example 1: Let

h(u) =
I[u ∈ [−ǫ, ǫ]]

ǫ− u
, (7)

where I denotes the indicator function. Then by (5) the
density function corresponding toh is

p(u) =
I[u ∈ [−ǫ, ǫ]]

2ǫ
,

i.e., p is the density function for the uniform distribution on
[−ǫ, ǫ]. Moreover,

hij(x) =
I[uij(x) ∈ [−ǫ, ǫ]]

ǫ− uij(x)
,

and by (7) any trajectory whose intersection withP ǫ
i ∩P ǫ

j is
contained in a normal subspace toFij will shift according
to the uniform distribution on this part of the trajectory.

B. A stochastic model of a switched systems with switching
noise

Having formalized the notion of a shift, we can proceed
to the model of a switched system with switching noise.

An n-dimensional stochastic switched system with index
set Λ is a quintupleSǫh = (E′,K,G, ǫ, h), where S =
(E′,K,G) is ann-dimensional switched system with index
set Λ, ǫ > 0 is a parameter determining the size of the
switching neighborhood, andh : [−ǫ, ǫ] → (0,∞) is
a strictly positive intensity function. Note that we in the
definition of a stochastic switched system assume that the
intensity functionh is strictly positive, a fact that is used to
prove Proposition 4.

To define the notion of a solution of a stochastic switched
system, we will henceforth assume that any local solution can
be extended to[0,∞), that is, local solutions do not blow
up. Moreover, we refer to the part of a local solution, which
follow systemi, say, lying inP ǫ

i as anǫ-local solution.
Now, let Ωx0i0 = Ωx0i0(Sǫh) ⊂ C([0,∞), E′) denote the

subset of continuous curves from[0,∞) to E′ starting at
x0 in systemi0 and which are piecewiseǫ-local solutions.
Hence, ifx(·) ∈ Ωx0i0 , then it starts as a local solution at
x0, for systemi0 and proceeds according to systemi0 and
either (1) stays in that system for all time, or (2) shifts to
another local solution, dictated by the intensity functionhi•,
in which case it proceeds according to the new system until
either case (1) or case (2) occurs.

By a solution toSǫh at x0 ∈ E′ (starting in systemi0 ∈
Λ), we understand anE′-valued continuous-time stochastic
processX = Xx0i0 : [0,∞)× Ωx0i0 → E′ given by

X(t, x(·)) = Xt(x(·)) = x(t), X0(x(·)) = x0 ∀x(·)

started atx0 which evolves according to the local dynamics
fi ∈ G and shifts between these systems according to the
intensity functionshij as described in Section III-A.

To a stochastic switched systemSǫh there corre-
sponds a probability space(Ωh,Fh,Ph) connected to
the intensity function h (see (5) and the paragraph
above this) and a family of induced probability spaces
{(Ωxi(Sǫh),Fxi,Pxi)}(x,i)∈A, A ⊂ E′ × Λ connected to
the family of solutions{X = Xxi}

(x,i)∈A
with Pxi(X

xi
t ≤

y) being the probability of a realization being in the set
{z ∈ E′ | z ≤ y} at timet, wherez ≤ y is to be understood
coordinate wise.

Moreover, toX = Xx0i0 there corresponds a discrete-time
stochastic processT = T x0i0 with values in[0,∞). More
precisely,T : N ∪ {0} × Ωx0i0 → [0,∞) is given by

T (i, x(·)) = Ti(x(·)), T0(x(·)) = 0 ∀x(·) (8)

with Px0i0(Ti < t) being the probability that shift number
i occurs before timet. Note that for each realizationx =
x(·) of X, there corresponds a realizationti = ti(x) of T
consisting of the switching times ofx. Note that we have
included 0 as the 0th shift only for technical reasons. In the
sequel, we will not count this as a shift.

We note that a solutionXx0i0 toSǫh exists and is unique in
the sense thatPx0i0 exists and is unique. This follows from
1) the existence and uniqueness onE′ of local solutions,
and 2) by the existence and uniqueness of the distribution
functionsFij , induced byhij , on [0,∞) which determines
the switching times (see the proof of Proposition 3).

Remark 1: We remark that the solutionX is not a Markov
process since for any∆,∆′ > 0 the distribution ofx(t+∆)
givenx(t) depends onx(t−∆′). More precisely consider an
example where the pointx′ is reached at timet′ following
two different realizationsy = y(·) and z = z(·) of X and
thaty 6= z except at timet′. KnowingXt′−∆ for some∆ > 0
we know which realization we are currently following and
thus we know the likely behavior ofX at time t′ +∆. This
means thatXt′+∆ depends onXt′−∆ when conditionedXt′

and therefor can not be Markov.
However, define theΛ-valued continuous-time stochastic

processI = Ix0i0 : [0,∞)× Ωx0i0 → Λ by

I(t, x(·)) = It(x(·)), I0(x(·)) = i0 ∀x(·),

with Px0i0(It = j) being the probability thatx(·) evolves
according to systemj at time t. Then a Markov process
X̄ = X̄x0,t0 : [0,∞) × Ωx0i0 → E′ × Λ is obtained by
defining

X̄(t, x(·)) = (Xt(x(·)), It(x(·))).
By the strict positivity assumption on the intensity func-

tion the following sufficient condition for a curve to be a
realization is immediate.



Proposition 4: For anyǫ > 0, let x(·) be a solution to the
Cauchy problem

x′(t) ∈ f ǫ(x(t)) a.e., x(0) = x0, (9)

with

f ǫ : E′ → 2E

x 7→ {v ∈ E|v = fi(x) for all i ∈ Λn such thatx ∈ P ǫ
i }.

Then x(·) is also a realization of a solution atx to the
stochastic switched systemSǫh for any (strictly positive)
intensity functionh.

It is easy to construct examples of realizations which are
not AC. Hence there are realizations which are not solutions
to (9). These solutions are the obstruction for (9) not beinga
necessary condition also. Luckily the set of these realizations
can be neglected as we will show. For this, we first prove
the following lemma.

Lemma 1: Let x(·) ∈ Ωx0i0 be a realization of a solution
to the stochastic switched systemSǫh

1. If x(·) is absolute continuous, then it is a solution to
the Cauchy problem (9).

2. If x(·) consists of finitely many local solutions, then it
is a solution to the Cauchy problem (9).

3. Any restriction ofx(·) to a bounded interval where it
consists of finitely many local solutions is a solution to
the Cauchy problem (9).
Proof: Statement 1 follows immediately from the

definition of a realization, and 3 follows immediately from
2. Hence, we need only to prove 2.

We will show thatx(·) is AC; hence, by 1. the proof
will be complete. Letx(·) consist ofk local solutions. For
i = 1, ..., k, let xi : Ji → E′ denote the local solutions
making upx : [0,∞) → E′, i.e., x(t) = xi(t) for all t ∈ Ji
and [0,∞) = ∪iJi. Sincexi is AC we may findδi > 0 for
each givenǫi > 0 such that

∑

j

|x(βi
j)− x(αi

j)| < ǫi (10)

for any finite family of disjoint intervals{[αi
j , β

i
j ]} with

[αi
j , β

i
j ] ⊂ Ji for each j and

∑

j |β
i
j − αi

j | < δi. Hence,
for a given ǫ > 0 let δ = mini{δi}, whereδi is such that
(10) holds true withǫi < ǫ/k. It follows that, for any finite
family of disjoint intervals{[αl, βl]} with [αl, βl] ⊂ J for
eachl and

∑

l |βl − αl| < δ, we have
∑

l

|x(βl)− x(αl)| =
∑

i,j

|x(βi
j)− x(αi

j)| <
∑

i

ǫi < ǫ

(11)

with {[αi
j , β

i
j ]} = Ji ∩ ∪l[αl, βl] the restriction of{[αl, βl]}

to Ji. This proofs AC ofx(·) and hence completes the proof
of the lemma.

We now show that with probability one any realizations
on a finite interval is a solution to the Cauchy problem (9).
Let us remark that this is enough for most purposes.

Theorem 1: Let X = Xx0i0 be a solution to the stochastic
switched systemSǫh = (E′,K,G, ǫ, h) and J ⊂ [0,∞)

denote a finite interval containing0. Assume thatfj ∈ G
is bounded for allj ∈ Λ, and letO = O(X, J) be the
set of realizations ofX which consists of infinitely many
local solutions when restricted toJ . ThenO has probability
measure zero. Hence by Lemma 1 item 2, any realizations
restricted to any finite interval is a solution to the Cauchy
problem (9) with probability one.

Proof: To ease notation letΩ = Ωx0i0 andP = Px0i0 .
The set O can equivalently be described as the set of
realizations which have infinitely many shifts in finite time,
i.e.,

O = {x ∈ Ω | lim
i→∞

ti(x) ∈ J} = { lim
i→∞

ti(x) ∈ J}, (12)

where we recall that{ti(x)} is the sequence of switching
times ofx. As in (12), we leave out the notationx ∈ Ω for
any subset ofΩ in the sequel.

Let Hi denote the accumulated intensity from timeti, i.e.,

Hi(t) =

∫ ti+t

ti

hj(ti)•(x(t))dt,

and recall [13, p. 258 (Lemma 7.4II)] that

P({ti+1(x)− ti(x) < δ}) = P(ξi < Hi(δ)), (13)

where ξi is an exponentially distributed random variable
with mean 1. Now letp(δ) denote the proposition∀δ >
0 ∃N(δ) > 0 and consider the inclusions

O ⊆ {ti(x) ⊂ J is Cauchy}

⊆ {p(δ) : ti+1(x)− ti(x) < δ ∀i ≥ N(δ)}

= {p(δ) : Hi(ti+1(x)− ti(x)) < Hi(δ) ∀i ≥ N(δ)} (14)

⊆
⋂

δ>0

{Hi(ti+1(x)− ti(x)) < Hi(δ) ∀i ≥ N(δ)}, (15)

where in (14) we have used thatHi is strictly increasing and
whereN(δ) in (15) is chosen as the infimum of allN > 0
such thatti+1(x)− ti(x) < δ for all i ≥ N . Hence,

P(O) ≤ P

(

⋂

δ>0

{Hi(ti+1(x)− ti(x)) < Hi(δ) ∀i ≥ N(δ)}

)

≤ inf
δ>0

P ({Hi(ti+1(x)− ti(x)) < Hi(δ) ∀i ≥ N(δ)})

= inf
δ>0

P ({ξi < Hi(δ) ∀i ≥ N(δ)}) (16)

≤ inf
δ>0

∏

i≥N(δ)

P({ξi < Hi(δ)}), (17)

where (13) has been used to obtain (16), and (17) follows
from the independence of theξi’s.

Assume first that there exists an infinite setM(δ) ⊆
{N(δ), N(δ) + 1, N(δ) + 2, · · · } and a functionH(δ) > 0
such thatHi(δ) ≤ H(δ) for all i ∈ M(δ). As a consequence

∏

i≥N(δ)

P(ξi < Hi(δ)) ≤
∏

i∈M(δ)

P(ξi < Hi(δ))

≤
∏

i∈M(δ)

P(ξi < H(δ))

=
∏

i∈M(δ)

(1− e−H(δ)) = 0.



By (17) we conclude that a realization with a bounded
infinite shift time sequence and an upper bound,H, on
infinitely many of the accumulated intensity functions,Hi,
has probability zero of occurring.

Conversely, assume that there existsδ > 0 and no infinite
subset of the family of accumulated intensities{Hi}i≥N(δ)

which can be bounded by a single function. In particular,
take the whole set{Hi}i≥N(δ), then

∀k > 0 ∃j ∈ {N(δ), N(δ) + 1, N(δ) + 2, · · · }

such thatHj(δ) ≥ k.
(18)

We will argue that this is not possible. To do so we split
the argument into two cases: that there is (or is not) a lower
bound on the curve length of a realization between two
consecutive shift times.

If there is a lower bound, this implieslimi→∞ |ẋ(ti)| =
∞. However, this is impossible since|ẋ(ti)| = |fj(i)(x(ti))|
and fj(i) is bounded by assumption. If there is no lower
bound then by (18) we conclude thatlimi→∞ x(ti) belongs
to the boundary of theǫ-neighborhood. Hence, for any
constantc > 0 there existsN ′ > 0 such thatH2k(t2k+1 −
t2k) ≤ c (or H2k−1(t2k − t2k−1) ≤ c) for infinitely many
k ∈ {L,L + 1, · · · } with L = max{N,N ′}. But this
contradicts (18), completing the proof.

In summary, assume that we are presented with a switched
system with switching noise which can be modeled as a
stochastic switched systemSǫh for someǫ and h. We can
then approach the analysis of this system in two ways;
one via the stochastic processX which is useful when
simulations ofSǫh are required, and one via (9) if a more
detailed analysis is required.

In the sequel, we focus on the first approach, i.e., how can
we useX to study a switched system with switching noise.

C. Simulation algorithm

We describe how to simulate the solutions atx0 (starting
in systemi0) for a switched systemS under switching noise.
That is, we describe how to simulate the solution atx0

(starting in systemi0) to Sǫh for someǫ > 0 and (strictly
positive) intensity functionh.

1. Given initial conditionsx0 and i0, compute the local
solution atx0 starting in systemi0 for a long period
of time. As a result, we obtain a sequence of points
p0, p1, . . . , pk with the index corresponding to the sam-
pling times (here it is taken to be unit sampling time
for simplicity, in practice this might not be possible).

2. The shift to systemj is simulated as follows. The
part of the solution (from 1.) which lies within the
first shift region (theǫ neighborhood) is identified,
say pu, pu+1, . . . , pu+v (here we assume thatpu and
pu+v are approximately at the boundary of the epsilon
neighborhood). The intensity is calculated at the points
h(pu+l), l = 1, . . . , v on that part of the curve and
the integral (of the intensity) is computed sequentially
∑l

j=1 h(pu+1), l = 1, . . . , v. An exponentially dis-
tributed random variableξ with mean 1 is simulated,
and compared with the sequence of numbers obtained

by the integral computation. The shift then occurs at
that point where the integral exceeds the exponentially
distributed variable, i.e., for the pointpu+v′ whereξ ≤
∑v′

j=1 h(pu+j),
∑v′−1

j=1 h(pu+j) ≤ ξ, 1 ≤ v′ ≤ v (with
the second inequality being void ifv′ = 1). The above
follows Algorithm 7.4III in [13, p. 260]. The process
then starts over by computing the solution (obtained
from systemj) at the shift point.

IV. CURVE INTENSITY

In principle, the distribution of the solution holds all
information needed for analyzing a system with a stochastic
shifting structure, but the distribution itself is quite complex
and difficult to visualize. To solve this, we construct the curve
intensity function (or measure) to summarize the typical
behavior of a solution, and using this, we visualize the
distribution of the solution through the intensity plot.

A. Construction of intensity measure and function

Let X be the solution toSǫh at x0 ∈ E′. For any
realizationx = x(·) and each pair(A, I) with A ⊆ E′

and I ⊆ [0,∞), we defineZx(A, I) to be the arc length
of x(I) ∩ A. Since by constructionZx is non-negative and
countable additive we obtain.

Proposition 5: Zx is a locally finite measure on the Borel
σ-algebra onE′ × [0,∞).

Intuitively Ωx0
→ [0,∞); x 7→ Zx(A, I) is a non-

negative random variable. Hence,Z(A, I) has a mean which
will be called the curve intensity measure and denoted
µ(A, I). The term measure is justified by the following.

Proposition 6: µ is a measure onE′ × [0,∞).
Proof: To prove countable additivity let{Bi}, with

Bi = (Ai, Ii), be a family of disjoint sets. We then have

µ(∪iBi) =E(Zx(∪iBi)) = E(
∑

i

Zx(Bi))

=
∑

i

E(Zx(Bi)) =
∑

i

µ(Bi),

where we have used thatZx is countably additive, and
then Lebesgue’s monotone convergence theorem (or Fubini’s
theorem).

Let λ denote the Lebesgue measure onE′ × [0,∞).
Using the Lebesgue-Radon-Nikodym Theorem, we may split
µ into two measuresµa and µs such thatµ = µa + µs

with µa absolutelyλ-continuous, andµs and λ mutually
singular. Roughly speaking, these two measures have the
following interpretation:µs(A, I) is the mean length of the
deterministic part of the trajectory, whileµa(A, I) is the
mean length of the stochastic part. In most examples, the
deterministic part would be the part of the trajectory until
the first time the trajectory hits theǫ-neighborhood, and the
stochastic part is the part of the trajectory occurring after the
first shift. However, the part of the curve between the first
time the ǫ-neighborhood is hit and the first shift occurs is
a intermediate area, where the trajectory contributes to both
measures.



More importantly, also by the Lebesgue-Radon-Nikodym
Theorem, we obtain aλ-density ofµa, denotedφ and given
by

µa(A, I) =

∫

(A,I)

φ(x, t)dλ

We call φ the curve intensity function.
Heuristically, the numberφ(x, t) is the mean curve length

in an infinitesimal area centered at the point(x, t) in the
spaceE′× [0,∞). By integrating outt, we obtain a function
φI(x) =

∫

I
φ(x, t), with I ⊆ [0,∞), describing the mean

curve length in an infinitesimal area centered at the pointx.
We callφI the mean curve intensity function, and use this as
our main tool for analyzing trajectories ofS with switching
noise.

B. Intensity plot

We illustrate the mean behavior of a switched system
with switching noise by means of the mean curve intensity
function φI . However,φ (and henceφI ) is obtained via an
(non-constructive) existence result, soφ is rarely explicitly
available. Instead, we approximateφI by simulation as
follows.

• Fix time intervalI ⊆ [0,∞) and a rectangleA ⊆ E′.
• Simulaten realizationsx1, . . . , xn.
• Divide A into small rectanglesAi

• Approximate φI on Ai by E[Z(Ai, I)] ≈
1
n

∑

j Zxj
(Ai, I).

Note thatZxj
(Ai, I) is approximated by the number of

points falling in Ai (since solutions are approximated by
points).

V. EXAMPLE

In this section, we illustrate how the above developed
theory can be used. Let us assume that we are given a
switched systemS = (E′,K, {fi}) whereE′ = R

2, K2 =
{Pi, P2, P3, P4, P5, P6} with Pi as depicted in Figure 3, and
the local dynamics, see Figure 4(a), given by

f1 = f4 =

[

3 0
5 1

] [

−1 2
−1 −1

] [

3 0
5 1

]−1

f2 = f5 =

[

3 0
5 1

] [

−1 2
−1 −1

] [

−3 0
5 1

]−1

f3(x) = f6(x) = −x.

It is straight forward to see that 0 is an equilibrium point
for the global dynamics (1); note however that the relaxed
solutions along thex2-axis have unstable behavior (i.e., 0 is a
weakly stable equilibrium, [14], for the differential inclusion
(3)). This fact can have consequences in applications as
we now illustrate. For this purpose assume that the system
has to be confined to some (safety) region, say a ball as
in Figure 3, with a high probability. This yields a region
of possible initial conditions, i.e., initial conditions yielding
solutions belonging to the ball. In Figure 3(b), this regionis
illustrated as the shaded and crossed area. However, if there
is switching noise, we need to make this region smaller, as
shown by the shaded area in Figure 3(b). To illustrate this,

assume that the radius of the (safety) ball is 5, and that
the disturbances can be modeled by the stochastic switched
systemSǫh = (S, ǫ, h) with ǫ = 0.1 and the intensity
function h corresponding to the uniform density function.
Let us concentrate on a region around thex2-axis. Here,
the region of possible initial conditions is approximately
bounded by the (two) local solutions starting at(0, 1.53),
see Figure 4(a). If we now simulate some realizations of the
solutionX(0,1)1 of Sǫh, see Figure 4(b), we see that we need
to choose a smaller region of acceptable initial conditions
in order to obtain robustness of the state constraints. Here,
intensity plots can help to guide in the choice of this region
of acceptable initial conditions. In Figure 5, the intensity
plot based on 2000 simulations ofX(0,1)1 is presented. This
plot gives a measure of how frequently solutions violate the
safety region. E.g. if only very few violations are allowed,
then the intensity plot suggests that the safety region should
have a boundary lower than the two local solutions starting
at (0, 1), as the intensity around the point(0, 1.53) is still
notable.
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Fig. 3. Illustration of the switched systemS. (a) The three thick lines
(two diagonal lines and thex2-axis) indicate the switching lines, the lines
with arrows indicate (local) trajectories of the system, andthe stippled circle
indicate the boundary of the region in which the system has tostay. In (b)
the shaded and crossed area together indicate the region of possible initial
conditions while the shaded area alone indicate the region of acceptable
initial conditions.
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Fig. 4. (a) Two local solutions, one at(0, 1) and one at(0, 1.53), of the
local system governed byf1. (b) 10 realizations ofX(0,1)1.
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Fig. 5. Intensity plot based on 2000 realizations.


