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A Class of Stochastic Hybrid Systems with State-Dependent Swhang
Noise

John Leth, Jakob G. Rasmussen, Henrik Schioler, and Rafaeliédiski.

Abstract— In this paper, we develop theoretical results based vector fields defined on the partition (one for each cell), we
on a proposed method for modeling switching noise for a construct a differential inclusion whose corresponding se
class of hybrid systems with piecewise linear partitioned state ,4),ed map gives a one point set at each point in the interior

space, and state-depending switching. We devise a stochastic . . . . .
model of such systems, whose global dynamics is governed by,Of each cell and a finite set otherwise. This differential

a continuous-time stochastic process. The main result of this inclusion is used to describe the (global) dynamics of the
paper is that we may identify the realizations of the global switched systems.
dynamics with the solutions of a differential inclusion. Hence,

an analysis of switched systems with switching noise can be In a switched system, a shift from one local system to
carried out either based on a non-deterministic method via ’

the differential inclusion, or on a stochastic method via the gnother, m_ay be thOL_’ght of as determinjstic in thg sense that
stochastic process. Furthermore, we describe how to constric it 0ccurs with probability one when a trajectory “hits” a éac
intensity plots, which provide a quick overview of the behavior Looking towards (engineering) applications and simutzjo
of the system. An example is included to illustrate this. this constitutes a problem since faces have measure zero and
hence they will not be “hit” by any simulated trajectory, .9
any step size or sampling rate will result in the points of
Switching between dynamical systems is often connectgfle discretized trajectory being on one side of a face at one
with uncertainties generated by disturbances, malfunstio time instant and on the other side at the next time instant.
etc. To model such a scenario, one may use the concept\breover, in many situations, it is desirable to describe th
a stochastic hybrid system, see [1], [2], [3] and referencegture behavior of the system. Since such predictions isual
therein for examples of how various uncertainties enters ae based on observations, one is forced to introduce some
hybrid system. uncertainty into the model. A way to model the uncertainty
The systems studied in this paper belongs to the class @flated to a shift is to “thicken the corresponding faces, ,i.

stochastic hybrid systems SHS, [3], [1], [4], [S], [2], [6]. replace each face with some (small) open neighborhood of
Indeed, our setup is a special case of [1], [6], [4], but wherg,

these strive for a general study of SHS, we specialize to

obtain results designed for a particular subclass. Theetrad |n this paper, we incorporate the “thickening of faces” into
off is of course that these results seem not to be valid fgfur model of a switched system. More precisely, we construct
the more general class studied in [1], [6], [4]. an open neighborhood around the faces on which there is

In this paper, we develop theoretical results based ondefined a probability measure. Subsequently, we use this
proposed method for modeling switching noise for a class gheasure to describe the probability of a shift, in such a way
hybrid systems with piecewise linear partitioned statecepathat the longer a trajectory stays within the neighborhood,
and state-depending switching, as described in [7]. In th@e higher the probability of a shift becomes. Based on this
sequel, elements of this class will be referred to as switcheonstruction, we devise a stochastic model of a switched
systems (we remark that the terminology for such systems gystem with switching noise, whose global dynamics is
the literature is not consistent, e.g., in [8, Chapter 33 i governed by a continuous-time stochastic process withesalu
called a “state-dependent switched system”, in [9] it idechl in the state space. The main result of this paper is that, on
a “hybrid system”, and in [10] it is called a “piecewise affineany finite time interval, we may, except for a set of measure
system”). zero, identify the realizations of the global dynamics with

We will partition a subset (state space) of the the solutions of a differential inclusion. Hence, for s\uitd
dimensional euclidean space into convex subsets (polghedgystems with switching noise which can be modeled as
sets), here called cells, with disjoint interior such thatfe described in this paper, an analysis of such systems can
cell has non-empty interior and the boundary of each regidfe performed in two ways; a stochastic analysis, via the
is the union of convex subsets (facets). For a family oétochastic process which is useful when simulations of such

This _work was supported by the Danish Council for Technolagyl 3¥ffséfg:i|;r|enzze|3:|gid,|fa.:%i?eogec::ﬁeerdmg:zf;sgﬁi%i?dma
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all at Aalborg University, Fredrik Bajers Vej 7C, 9220 Aatgo Den- . . .
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1. PRELIMINARIES Jr — E'; t — xz(t), which solves the Cauchy problem;

For completeness, we recall various definitions and results(t) € f(x(t)), x(0) = zo. ) _
from the theory of switched systems with state-dependent " the sequel, we usually drop the index O when we discuss

switching. a family of initial conditions, as in I_Droposition 1 below.
Now, let T (x) denote the contingent cone @' at x,
A. Switched Systems i.e., the closure of the convex cone Bf — {z}. We end this

Before introducing the concept of a switched systenfection with the following existence results which easty c
we recall the definitions of a (p0|yhedra|) Comp|ex and @e derived from standard results from differential inm,

(piecewise linear) partition. e.g from [11]. o _ .
Let A be some index set, anli = {P,};cx be a family Proposition 1. At any interior pointz of E’ there exists

of polyhedral sets inE = R". We let |[K| = U;caP; @ relaxed solution at to S. Moreover, the solution is a

with the subspace topology inherited frof, and call X  classical solution it is interior to a cell. .

a (polyhedral) complex if (1) each face of afyc K is in Proposition 2 For each unbounded;, with i < A",

K, (2) PNP'is a face ofP and P, for any P, P’ € K, and assume thatf;(P;) is pounded. _Then at any € E’ there
(3) each point of K| has a neighborhood intersecting only€Xists a relaxed solution 5 defined on[0, o)

finitely many elements ok". Condition (3) is only necessary 1) if A" is finite, in the case?’ = E.

if A is infinite. For a complexis with index setA, we let  2) iff f¢(z) N T (z) # 0 for all z € E', in the case

A ={ieAldim(P) =j}andK’/ = {P, e K | i € A7}. E +E.
ElementsP; € K will be called cells ifi € A", and facets [1l. SWITCHED SYSTEMS WITH SWITCHING NOISE
if i e An1L,

In this section, we devise a stochastic mode), of a
'switched systens with switching noise, which can be inter-
preted as a (stochastic) approximation&fThe switching
noise is assumed to have effect only in @neighborhood
around the switching surfaces (the facets) and the unogrtai
related to the occurrence of a shift within this neighboxhoo
is assumed to be governed by an intensity functtomas
described below.

As we shall see in Section IV, the stochastic model can
be used to derive a curve intensity measure giving a tool
for analyzing the mean behavior of solutions to switched
systems with switching noise.

Let E’ denote eithe® or a bounded polyhedral set (i.e.
a polytope) inE of dimensionn. By a (piecewise linear)
partition of E’, we mean a compleX such that K| = E'.
An n-dimensional switched systedwith index setA is then
a triple S = (F’, K,G) where the state spade’ is either
E =R" or a bounded polyhedral set ifi of dimensionn,
where the complext = {P;};ca is a (piecewise linear)
partition of E’, and whereG = {f;}ica» is a family
of smooth functions,f; : R®™ — FE, describing the local
dynamics ofS. The global dynamics of is governed by
the following differential inclusion

a'(t) € f(a(t)), (1) A Switching noise
where the set valued mapis defined by In order to introduce switching noise, we will start by
, 5 recalling the intensity function of a random variable, [12]
[E =27 Let (Q, F7,P) be a probability space andl : Q@ — R a

x+— {v € Elv= f;i(x) for all i € A" such thatr € P;}, random variable with differentiable distribution funaiiéy; :

B R — R, and density functionp : R — [0, c0).
with 2% the power set of-. Assume that the stochastic varialbleis distributed on the
We say thatt — x(t) follows systemi, and refer to interval [—¢,¢]. Then the distribution of/ can also be de-

this as a local solution i&'(t) = f;(x(t)). We remark that scribed by the survivor function — S(u) = 1— [ p(v)dv,
for technical reasons a local solution is not confined to &e., the probability ofU' > u, P(U > u), or by its intensity
particular polyhedral set, e.g., a local solutionzof= f;(z)  (Or hazard) function, — h(u) with

is allowed to extend beyond the polyhedral $t (u) = plu) 1 lim PU <u+A)—PU < u)
We recall various solution concepts relatedStoFor 0 < T S(u)  P(U > wu) asot A ’
T < o let J; = [0,T). By a (Caratheodory) solution at (4)

xo € E' to S, we understand an absolutely continuous (AC)i.e., Ah(u) is, for smallA > 0, approximately the prob-
function Jr — E’; ¢t — z(t), which solves the Cauchy ability of U being in small intervalu, v + A), conditional
problem on U being bigger tharm, P(U € (u,u+ A) | U > wu).
The intensity function turns out to be a convenient starting

/ p—
/(1) € fz(t)) ae. x(0)=wo. @ point for defining the stochastic shifts between the diffiere
A relaxed (or Filippov) solution aty € E’ to S is by dynamical systems. ' N
definition a solution atz, to the differential inclusion It should be remarked that under mild conditions /on

, . . there is a one to one correspondence betweandp. More
a'(t) € f(x(t) ae., f(z)=co(f(x)), () precisely, ifh : [—¢, €] — R is any map such that

with co(f(z)) the convex hull off(z). A classical solution w1 — exp(_/

at zp € E’ to S is a continuously differentiable function h(v)dv), u € [-ed,

—€



defines a differentiable distribution function, thénis an
intensity function with the corresponding density funaotjo
given by

h(u) exp(— h(v)dv),

—€

u € [—€el.  (B)

p(u)

To obtain an intensity function suitable for our purpose,

we need the following, see also Figure 2. ISet (E', K, G)

denote am-dimensional switched system with index set
and for each pair of neighboring polyhedral sets, Saynd
P;, define the map;; = z;;(-) by

/
E' = R"; x> x5 = 2 — 7y, (),

wherelF;; is the affine hull of the facek;; = P;NP; between
P; and P;, andry,; is the orthogonal projector oni;;, [11,

p. 24]. Note thatr;; is a vector pointing intaP; (resp. P;)

whenz € P; (resp.x € Pj).

Let n;; (resp.n;;) denote a normal vector for the facet

F;; which points intoP; (resp.F;), and define the map

E' = Ry x> ugi(x) = |ag|sign(ng|zi;), iy = ().

To define the intensity functioh;; for a shift from system
1 to systemyj, we need the following construction. Fer> 0
and P € K, we let P¢ denote the-expansion ofP defined
aspPc = ﬂHf’H with {H;} the (finite) family of half spaces
defining P (i.e., P = NH,) and H-'" the e-neighborhood
of H; with respect to the Hausdorff metric. Note that #
PeH eg., if Pis a square centered atwith side lengthl
then P¢ is a square centered awith side length2e +1 and
with the same orientation aB; whereas,P<" is P¢ with
rounded corners, see Figure 1.

Fig. 1. P<H and P¢ with P indicated by the dotted square.

Let z(-) follow systemi and F;; # (), then the intensity
function h;; for a shift from system to systemj at z(t) €
Ff; is defined by

hij(z(t)) = h(ui;(2(t))), (6)

z(t)

Fig. 2. An e-neighborhood around the affine hl; of the facetF;;
between the polyhedral sef3 and P; (in the figure four polyhedral sets
are shown). Also indicated is the vectog;(z) = = — 7y, (x), where
TR, (x) is the is the orthogonal projector onky; of the pointz on the
solution curvez(-).

multiple facets simultaneously. To handle this situatiae,
assume in sequel that if(t) € (., Py with A" C A",
then shifts to each of the systenfs 7 € A’ will happen
independently.

Proposition 3: Assume thatt +— xz(t) follows system
i, and thatz(t) € N, Ps with j; € A™. Then the
intensity functionh;, for a shift from system to system
l € {j1,...,jx} atz(t) is given by

Jk
hie(z(t) = > haj(x(t),
J=i1
and if a shift occurs atr(t), we shift to systeml €
{j1,---, 7k} with probability

ha((1)/hie (x(1)).

Equivalently, we can let shifts happen according to all
of the intensitiesy;;, (z(t)), ..., hij, (x(t)) independently of
each other, and disregard all shifts except the first one with
respect to time.

Proof: Let z = z(-) and F¥/ denote the distribution
function corresponding té;;, i.e., /() is the probability
of a shift from system to system; before timet. Hence
1 — Fi(t) is the probability of no shift from systemto
system;j before timet.

Now by assumption shifts to each of the systems will
happen independently; hence, we conclude that the product
II;(1 — F¥(¢)) is the probability of no shift from system
beforet.

Let Fi*(-) denote the distribution function defined by

where /. is the intensity function defined above. Henceletting Fi*(¢) be the probability of a shift from system
hij(x(t)) is the intensity of the signed orthogonal distancéeforet. Hence the corresponding intensity functionvis,

from z(¢) to IF,;, the affine hull of the facef;; betweenp;
andP;, i.e., we have used the distribution pre, €] to induce
distributions, one for each solution, on trajectories. \Wéen

that for a given solution:(-), the density function connected

to h induces a density function connected /tg (z(t)) by

(5).

The above construction deals with shifts when a trajectory

and we then have

Fo(t) =1-11;(1 = F/ (1))

=1—1Iexp(— /t, hij(x(t))dt)

=1-—exp(— /t/ Z hij(x(t))dt),

approaches one facet, but it does not show how to handle J



wheret’ denotes the time for the last shift or 0 if no shifts By a solution toS,, at zo € E’ (starting in system €

have occurred before Thush;e(z(t)) = ?’;jl hi;(z(t)), A), we understand ait’-valued continuous-time stochastic
which proves the first part of the proposition. processX = X% : [0, 00) X Q,.,;, — E’ given by

Now let T" denote the continuous random variable giving B B B
the time of the shift from syster) andI denote the discrete X (6#()) = Xi(z () = x(t),  Xo(x(-)) = zo Va(/)
random variable giving the number of the system which istarted atz, which evolves according to the local dynamics

shifted to. With this notation we use (4) to conclude f; € G and shifts between these systems according to the
ha(z(t)) _ P(Tett+A),I=1) intensity functionsh,; as described in Section IlI-A.
W = A1_>IT01+ P(T € (1,t + A)) To a stochastic switched systens., there corre-

sponds a probability spacé(,, F,,P;) connected to
the intensity function h (see (5) and the paragraph
above this) and a family of induced probability spaces

= lim P(I=1|T A
Jim P =1]T e (tt+A),

hence completing the proof of the last assertion. |

Example 1: Let {(Qi(Sen)s Feis Pai) }wyiyea, A C E' x A connected to
' the family of solutions{X = X*'} _ with P,;(X}" <
h(u) = Iu € [—¢,¢€]] @) y) being the probability of a realization being in the set
e—u {z € E' | z <y} attimet, wherez < y is to be understood
where I denotes the indicator function. Then by (5) thecoordinate wise. .
density function corresponding tois Moreover, toX = X*o% there corresponds a discrete-time
I stochastic procesg = T with values in[0, c0). More
p(u) = w’ precisely, T : NU {0} x Q,,;, — [0,00) is given by
i.e., p is the density function for the uniform distribution on T(i,z() = Ti(z(-),  To(z(-)) = 0 va() (8)
[—€, €. Moreover, with P, (T; < t) being the probability that shift number
M[u; () € [—e, €] i occurs before timeg. Note that for each realization =
hij(z) = ———— @ z(-) of X, there corresponds a realization= ¢;(z) of T

) : . ) consisting of the switching times af. Note that we have
and by (7) any trajectory whose intersection WRhN P7 is  jncluded 0 as the Oth shift only for technical reasons. In the

contained in a normal subspace &9; will shift according  sequel, we will not count this as a shift.

to the uniform distribution on this part of the trajectory. We note that a solutiof *0 to S, exists and is unique in
the sense thdP,,;, exists and is unique. This follows from
1) the existence and uniqueness Bh of local solutions,

) ] ) ] and 2) by the existence and uniqueness of the distribution
Having formalized the notion of a shift, we can proceeqctions F

) ) e s ; ij, induced byh,;, on [0, co) which determines
to the model of a switched system with switching noise. pq switching times (see the proof of Proposition 3).

An n-dimensional stochastic switched system with indeX Remark 1: We remark that the solutioR is not a Markov
setA is a quintupleSy, = (E', K,G,e,h), where S = process since for angs, A’ > 0 the distribution ofz(t + A)
(F',K,G) is an n-dimensional swﬂche_d_system vy|th 'ndexgivenx(t) depends om:(t — A'). More precisely consider an
setA, e > 0 is a parameter determining the size of th&yample where the point’ is reached at time’ following
switching neighborhood, and : [—¢,e] — (0,00) is o different realizationg) = y(-) and z = z(-) of X and
a strictly positive intensity function. Note that we in thethaty £ - except at time’. Knowing X, for someA > 0
definition of a stochastic switched system assume that th&, xnow which realization we are currently following and
intensity functionh is strictly positive, a fact that is used t0 ;s we know the likely behavior of at time#’ + A. This

prove Proposition 4. . __ means thafX,, » depends orX,_x when conditionedX,
To define the notion of a solution of a stochastic switched,q therefor can not be Markov.

system, we will henceforth assume that any local solution ca oyever, define the\-valued continuous-time stochastic
be extended td0, o), that is, local solutions do not blow processl = I%0% : [0, 00) x Qi — A by

up. Moreover, we refer to the part of a local solution, which

follow systemi, say, lying inPf as ane-local solution. I(t,2(-)) = L(2(")), lo(z()) = io Vz(-),

Now, let Q,.i, = Quyio (Sen) C C([0,00), E') denote the
subset of continuous curves frofi,c0) to E’ starting at
o in systemiy and which are piecewiselocal solutions.
Hence, ifz(-) € Q,.4,, then it starts as a local solution at

B. A stochastic model of a switched systems with switching
noise

with P,;,(I: = j) being the probability that(-) evolves
according to systemy at time ¢t. Then a Markov process
X = X®oto : [0,00) X Qupsy — E' x A is obtained by

. . . defining
xg, for systemiy, and proceeds according to systégnand B
either (1) stays in that system for all time, or (2) shifts to X(t,z(-) = (Xe(z(), Li(z(-))).
another local solution, dictated by the intensity functigp, By the strict positivity assumption on the intensity func-

in which case it proceeds according to the new system untibn the following sufficient condition for a curve to be a
either case (1) or case (2) occurs. realization is immediate.



Proposition 4: For anye > 0, letz(-) be a solution to the denote a finite interval containing. Assume thatf; € G

Cauchy problem is bounded for allj € A, and letO = O(X,J) be the
. set of realizations ofX which consists of infinitely many
2'(t) € f(2(t) ae., w(0)= o, ) |ocal solutions when restricted . ThenO has probability
with measure zero. Hence by Lemma 1 item 2, any realizations
C 5 restricted to any finite interval is a solution to the Cauchy
[OE =2 problem (9) with probability one.
x+— {v € Elv = f;(x) for all i € A™ such thatx € Pf}. Proof: To ease notation l& = Q,,;, andP =P, .

The setO can equivalently be described as the set of
realizations which have infinitely many shifts in finite time
ie.,

Then z(-) is also a realization of a solution at to the
stochastic switched systeis,;, for any (strictly positive)
intensity functionh.

It is easy to construct examples of realizations which are O = {xeq| hm ti(x) € J} = {lim t;(z) € J}, (12)
not AC. Hence there are realizations which are not solutions b
to (9). These solutions are the obstruction for (9) not beingwhere we recall tha{t;(z)} is the sequence of switching
necessary condition also. Luckily the set of these reatimat times ofz. As in (12), we leave out the notatianc Q for
can be neglected as we will show. For this, we first provany subset of? in the sequel.

the following lemma. Let H; denote the accumulated intensity from timei.e.,
Lemma 1: Let z(-) € Q,,,, be a realization of a solution A
to the stochastic switched syste$p, H,(t) = / Rijceye (2 (t))dt,
1. If (-) is absolute continuous, then it is a solution to L '
the Cauchy problem (9). and recall [13, p. 258 (Lemma 7.411)] that
2. If z(-) consists of finitely many local solutions, then it
is a solution to the Cauchy problem (9). P({tit1(z) — ti(z) < 0}) = P(& < Hi(9)), (13)

3. Any restriction ofz(-) to a bounded interval where it where &; is an exponentially distributed random variable
consists of finitely many local solutions is a solution toyjth mean 1. Now letp(§) denote the propositiois >
the Cauchy problem (9). 0 IN(d) > 0 and consider the inclusions
Proof: Statement 1 follows immediately from the

definition of a realization, and 3 follows immediately from O C {ti(z) C J is Cauchy

2. Hence, we need only to prove 2. C{p(d) : tipa(z) —ti(z) <46 Vi> N(6)}

We will show thatz(-) is AC; hence, by 1. the proof = {P(0) @ Hi(tisi(z) —ti(z)) < Hi(8) ¥i 2 N(9)} (14)
will be complete. Letx(-) consist ofk local solutions. For - ﬂ{H,-(tM(x) —ti(z)) < Hi(6) Vi > N ()}, (15)
i=1,..k letz’ : J;, = E' denote the local solutions 5>0

making upz : [0,00) — E', i.e., x(t) = 2'(t) forall t € J;  \here in (14) we have used thé is strictly increasing and
and |0, c0) = U;J;. Sincez’ is AC we may findj; > 0 for  where N(§) in (15) is chosen as the infimum of aV > 0

each giverg; > 0 such that such thatt; 1 (z) — t;(z) < ¢ for all i« > N. Hence,

Z (6 aj)l < (10) P(O) <P (ﬂ{Hi(ti.H(a:) —ti(x)) < Hi(8) Vi > N(d)})

§>0

for any finite family of disjoint intervals{[aj, 5]} with < inf P ({Hi(ti+1(2) — ti(2)) < Hi(0) ¥i 2 N(9)})
[a!, 8] C J; for eachj and ), |8 — af| < J;. Hence, — inf P ({& < Hi(6) ¥i > N(5)}) (16)
for a givene > 0 let § = min; {6 + Where(S is such that >0 -
(10) holds true withe; < ¢/k. It follows that, for any finite < inf [I Pds < H:i(6)}), (17)
family of disjoint intervals{[«;, 5;]} with [ay, 5] C J for i>N(8)
eachl and}_, |6 — ai| <0, we have where (13) has been used to obtain (16), and (17) follows

_ i i from the independence of thg’s.
_ = ) — | < i < . . s
§z z(61) — z(c)| EZ |2(85) — =(a))] ;6 ‘ Assume first that there exists an infinite sef(d) C

@a1) {N(),N(6) +1,N(6) +2,---} and a functionH (5) > 0
o such thatH;(§) < H(¢) for all i € M(J). As a consequence

with {[a}, 8;]} = J: N Ui[ay, Bi] the restriction of{[ay, 4]}
to J;. This proofs AC ofz(-) and hence completes the proof H P& < Hi(0)) < H P(& < H;(0))
of the lemma. [ | i>N(5) ieM ()

We now show that with probability one any realizations H P& < H(5))
on a finite interval is a solution to the Cauchy problem (9). €M (5)
Let us remark that this is enough for most purposes. _HEG)

Theorem 1: Let X = X“o% be a solution to the stochastic IT a-e ) =0.
switched systemS., = (E',K,G,¢,h) and J C [0,00) icM(3)

IN



By (17) we conclude that a realization with a bounded by the integral computation. The shift then occurs at

infinite shift time sequence and an upper boutf, on that point where the integral exceeds the exponentially

infinitely many of the accumulated intensity functioris;, dist,ributed variable/, i.e., for the poipt,., where¢ <

has probability zero of occurring. Z;’:l h(pu+;), Z;’:‘ll h(pu+j) <&, 1 <o’ <wv(with
Conversely, assume that there exists 0 and no infinite the second inequality being void if = 1). The above

subset of the family of accumulated intensitigl’; } ;> v (s) follows Algorithm 7.411l in [13, p. 260]. The process

which can be bounded by a single function. In particular,  then starts over by computing the solution (obtained

take the whole sefH;};> n(s), then from systemj) at the shift point.

Vk>03j€{N(@G),NO)+1,N)+2,---}

such thatt; (9) 2 k- In principle, the distribution of the solution holds all
We will argue that this is not possible. To do so we splithformation needed for analyzing a system with a stochastic
the argument into two cases: that there is (or is not) a lowekitting structure, but the distribution itself is quitenaplex
bound on the curve length of a realization between twgnd difficult to visualize. To solve this, we construct theveu
consecutive shift times. intensity function (or measure) to summarize the typical
If there is a lower bound, this implie$m; . [#(i)] = pehavior of a solution, and using this, we visualize the

oc. However, this is impossible sinde(t:)| = | f:) ((t:))|  distribution of the solution through the intensity plot.
and f;;) is bounded by assumption. If there is no lower

bound then by (18) we conclude thait,_, . z(¢;) belongs A. Construction of intensity measure and function
to the boundary of thes-neighborhood. Hence, for any Let X be the solution toS., at z, € E’. For any
constantc > 0 there exists\’ > 0 such thatil(far1 —  oqjization s — z(-) and each6 paiA,I) with A C FE’

tok) < ¢ (O Hop—y(for — tax—1) < ¢) for infinitely many 7 C [0,00), we defineZ,(A,I) to be the arc length

: / , :
K Et {d]';,tL J:T.SL ) v|v|tth Lthi ma)}f{N’N }- But this o x(I) N A. Since by constructior,, is non-negative and
contradicts (18), completing the proof, cguntable additive we obtain.

In summary, assume that we are presented with a switche . ) . _
. o . . Proposition 5: 7, is a locally finite measure on the Borel
system with switching noise which can be modeled as a ,
. . c-algebra onE’ x [0, c0).
stochastic switched syste$};, for somee and h. We can iy .
. : . . Intuitively ©,, — [0,00); = — Zy(A,I) is a non-
then approach the analysis of this system in two ways . . .
! : N Hegative random variable. Hencg(A, I) has a mean which
one via the stochastic proces§ which is useful when

. . : . . will be called the curve intensity measure and denoted
simulations ofS,, are required, and one via (9) if a more L .
. e ) w(A, I). The term measure is justified by the following.
detailed analysis is required.

i+ i ; i
In the sequel, we focus on the first approach, i.e., how can Proposition 6: 4 is a measure o’ x [0, 00).

: : o . Proof: To prove countable additivity le{B;}, with
X to stud tched t th tch . . S !
We LiseA 1o stlicy a switched system with switching n0|seBi = (4;,1;), be a family of disjoint sets. We then have

(Ui Bi) =E(Z,(U; B;)) = E(Z Z:(Bi))

(18) V. CURVE INTENSITY

C. Smulation algorithm
We describe how to simulate the solutionszgt(starting

in systemig) for a switched syster§ under switching noise. !
That is, we describe how to simulate the solutionagt = E(Z(B)) =Y _ u(Bi),
(starting in systemiy) to S, for somee > 0 and (strictly i i
positive) intensity functior.. where we have used thaf, is countably additive, and
1. Given initial conditionszy and iy, compute the local then Lebesgue’s monotone convergence theorem (or Fubini's
solution atx starting in systemy for a long period theorem). ]

of time. As a result, we obtain a sequence of points Let A denote the Lebesgue measure 8h x [0, o).
Do, D1, - - -, Pr With the index corresponding to the sam-Using the Lebesgue-Radon-Nikodym Theorem, we may split
pling times (here it is taken to be unit sampling timex into two measures:, and us such thaty = pg + ps
for simplicity, in practice this might not be possible). with n, absolutely A-continuous, andu, and A mutually

2. The shift to systemj is simulated as follows. The singular. Roughly speaking, these two measures have the
part of the solution (from 1.) which lies within the following interpretation:u (A, I) is the mean length of the
first shift region (thee neighborhood) is identified, deterministic part of the trajectory, whilg,(A,I) is the
say Pu, Putls---,Pute (hEre we assume that, and mean length of the stochastic part. In most examples, the
Putv are approximately at the boundary of the epsilometerministic part would be the part of the trajectory until
neighborhood). The intensity is calculated at the pointthe first time the trajectory hits theneighborhood, and the

h(put1), I = 1,...,v on that part of the curve and stochastic part is the part of the trajectory occurringréfie
the integral (of the intensity) is computed sequentiallyirst shift. However, the part of the curve between the first
Z;Zlh(puﬂ), I = 1,...,v. An exponentially dis- time the e-neighborhood is hit and the first shift occurs is

tributed random variablé with mean 1 is simulated, a intermediate area, where the trajectory contributes tb bo
and compared with the sequence of numbers obtain@deasures.



More importantly, also by the Lebesgue-Radon-Nikodynassume that the radius of the (safety) ball is 5, and that

Theorem, we obtain a-density ofy,, denotedp and given
by
paldi D)= [ olat)an
(A1)

We call ¢ the curve intensity function.

the disturbances can be modeled by the stochastic switched
systemS., = (S,e,h) with €
function h corresponding to the uniform density function.
Let us concentrate on a region around theaxis. Here,

the region of possible initial conditions is approximately

0.1 and the intensity

Heuristically, the numbep(z, ¢) is the mean curve length Pounded by the (two) local solutions starting (@t 1.53),

in an infinitesimal area centered at the pointt¢) in the

see Figure 4(a). If we now simulate some realizations of the

spacelZ’ x [0, o). By integrating out, we obtain a function SOlUtionX V" of S, see Figure 4(b), we see that we need

o1(x) = [; ¢(x,t), with I C [0,00), describing the mean
curve length in an infinitesimal area centered at the peint

to choose a smaller region of acceptable initial conditions
in order to obtain robustness of the state constraints. ,Here

We call é; the mean curve intensity function, and use this a&1t€Nsity plots can help to guide in the choice of this region

our main tool for analyzing trajectories of with switching
noise.

of acceptable initial conditions. In Figure 5, the intepsit
plot based on 2000 simulations &f(%1! is presented. This

plot gives a measure of how frequently solutions violate the

B. Intensity plot

safety region. E.g. if only very few violations are allowed,

We illustrate the mean behavior of a switched systerihen the intensity plot suggests that the safety regionldhou
with switching noise by means of the mean curve intensithave a boundary lower than the two local solutions starting
function ¢;. However,¢ (and hencep;) is obtained via an at (0,1), as the intensity around the poi(,1.53) is still

(non-constructive) existence result, as rarely explicitly —notable.
]acac\)/lﬁ;ila\;gle. Instead, we approximatg; by simulation as REFERENCES
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Fig. 4. (a) Two local solutions, one &b, 1) and one a{0, 1.53), of the

P, Py local system governed by, . (b) 10 realizations off (O-1)1,

(b)

Fig. 3. lllustration of the switched systes. (a) The three thick lines
(two diagonal lines and thes-axis) indicate the switching lines, the lines
with arrows indicate (local) trajectories of the system, #relstippled circle
indicate the boundary of the region in which the system hastag. In (b)
the shaded and crossed area together indicate the regiowssibfe initial
conditions while the shaded area alone indicate the regfoacceptable
initial conditions.
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Fig. 5. Intensity plot based on 2000 realizations.



