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Direct Control Implementation of a Refrigeration System

in Smart Grid

Rasmus Pedersen, John Schwensen, Senthuran Sivabalan, Chiara Corazzol

Seyed Ehsan Shafiei, Kasper Vinther, Jakob Stoustrup

Abstract— The thermal capacity of the content in a cold stor-
age room renders it possible to shift the governing refrigeration
system’s power consumption in time, without compromising
temperature constraints. In this paper we introduce a method
of implementing such a cold storage room into a directly
controlled smart grid, by use of a predictive control strategy.
In this application the shift in consumption is used to stabilize
a small grid by utilizing excess renewable energy to minimize
the need for fossil fueled production sources. In order for the
centralized grid controller to handle such a node, its flexibility
is communicated in form of a simple generic bucket model.
Finally, the provided experiments verify the effectiveness of the
proposed method.

I. INTRODUCTION

The growing demand of fossil fuel independent energy

is leading to a larger penetration of renewable energy

sources throughout Europe [1]. Power production from en-

ergy sources, like wind turbines, solar panels, etc., can vary

greatly according to the weather, leading to an increased

fluctuation in generated power. It is therefore required to

maintain an online power reserve to prevent shortages (e.g.

fossil fueled power plants where hydro plants are not fea-

sible). Increasing the overall coverage of renewable energy

will either require to greatly oversize production capabilities

as reaching the rated power outputs are inherently dependent

on the power source. This means that when the rated power

is reached it is not possible to fully utilize it. Alternatively,

the consumption could be controlled and thereby match the

fluctuating power source. The concept of connecting several

flexible nodes in an attempt to optimize the power grid is

often described as Smart Grid.

In this paper we investigate one possible solution for

storing excess energy from the electrical grid. This can help

stabilize the grid as consumption is essentially shifted in

time, although at a cost. With the ability to shift consumption

it can be shaped to fit the fluctuations in power production

arising from an increased penetration of wind and solar

power. The proposed solution is focusing on utilizing the

slow dynamics of refrigeration systems to store energy by

decreasing the operating temperature, within constraints, thus

power consumption is increased. The energy can thereby

later be released, as the lower temperature allows for below

nominal power consumption until temperature reaches the

upper constraint. These constraints of course depends on the

contents of the specific refrigeration system.
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The high-level control for both smart grid and refrigeration

system is designed using model predictive control (MPC),

although the individual refrigeration processes are controlled

by a number of simpler distributed PI controllers. The use

of MPC enables estimates of future inputs to be considered

when optimizing the usage of available storage.

Analysis of the refrigeration system used is done similarly

to [2] in which the goal was to optimize the system itself

initially from a set-point perspective.

On the grid side, possible advantages of utilizing storage

capabilities of certain nodes have been investigated in [3]

in addition to describing a method of describing nodes by a

bucket analogy. The limited capacity of the distribution net

is considered and using predictions of future consumption

the storage is controlled to optimally distribute power in the

grid. A more detailed proposal of the bucket model is seen

in [4].

Many previous publications address the problem of in-

directly controlling a node in the grid through the price

of power. In [5]-[6] an indirect method for controlling a

display case connected to a smart grid, by use of MPC,

is investigated. The objective is however to reduce the

financial cost of operating the display case, resulting in

an optimization of the local system. In [6] it shows that

savings of up to 9-32% are possible using predictions of

energy prices. Additionally, potential for participating in the

balancing market is also shown.

Air conditioning systems provide similar opportunities to

supermarket display cases as in [7]. Here a Thermal Energy

Storage unit is used to shift power consumption to off-peak

hours and shows significant savings in cost power despite an

overall increase in consumption. Through changes in power

prices on the grid the system can be indirectly controlled

from the grid point of view.

In [8] a setup similar to this paper is used to investigate

the potential of such direct control through simulations.

In this paper, a direct control method is investigated,

focusing on stabilizing the grid instead of maximizing fi-

nancial benefits for the individual node. The main control is

centralized and computes set-points for multiple refrigeration

systems while at the same time obeying the constraints for

each of them. For the central controller to be able to monitor

and predict flexibility of each node, the previously noted

bucket analogy is expanded to create a leaking bucket model

that can be applied to general refrigeration systems. The

proposed solution has been implemented on a test facility.

The paper will first describe the modeling of the refriger-



ation system in Section II followed by controller design in

Section III. Once the test setup is described, the actual test

will be discussed in Section IV before presenting the results

in Section VI. Finally, Section VII will conclude the paper

and discuss suggestions for potential future work.

II. MODELING

In Fig. 1 the direct, centralized smart grid controller

structure is depicted. The nodes can be categorized as being

either an intelligent producer, consumer or both. Focus of

this paper will be on the grayed areas (A cold storage

connected to a Virtual Power Plant) and therefore the node

can be seen solely as a consumer. In order for the Virtual

Power Plant (VPP) to utilize the MPC framework a model

of each node is needed. It should be noted, that a VPP is

an entity that can balance a local grid, based on flexibility

information provided by the connected nodes, by controlling

power consumption and production. It is clear that complex

models of the nodes will simply be cumbersome to both

obtain and solve optimization problems for, since several

nodes may be connected to the VPP. Therefore, a simple

generic model of each node is needed. First, this generic

model will be introduced. Followed by a simple model of a

cold storage room. Lastly, how the cold storage is fitted to

the generic model is explained.
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Fig. 1. General idea of a direct, centralized smart grid control setup. Each
node communicates its flexibility to a local VPP, which in return provides
the nodes with production and/or consumption demand. The lower level
VPP’s then communicates their flexibility to an upper level VPP, thereby
obtaining a hierarchical structure.

A. Grid-Node

To model each node, from VPP point of view, the generic

“bucket” model, described in [4], has been adopted. The

model can be further simplified when the node is treated

as a consumer, see e.g. [3]. The consumer “bucket” model

is illustrated in Fig. 2, where the model consists of a

consumption P , a storage rate b, a drain rate a, also the

energy stored is denoted by E.

The storage rate, b, describes how much of the consumed

power will be stored, e.g. for a cold storage it is the

refrigeration systems coefficient of performance (COP). The

drain rate, a describes how much of the stored energy will

be lost, e.g. for a cold storage it is due to heat exchange

P bP

E

E

E

b

a

aE

Fig. 2. Generic “bucket” model of smart grid consumer node.

with the surroundings. The energy stored, E, can take many

different forms, e.g. for a cold storage it could be in form

of sub cooled foodstuff. By subcooling foodstuff, energy is

not actually stored, instead consumption is shifted. However,

this shift in consumption can be seen as energy storage, from

a smart grid point of view. The change in energy level can

be described by the following equation:

dE(t)

dt
= −aE(t) + bP (t) (1)

From Eq. (1) it can be seen that whenever bP (t) > aE(t)
the energy level will increase and vice versa, given that a

and b are positive semi-definite. Furthermore, the model also

takes into account that when the energy level increases so

does energy loss, thereby this increase comes with a cost,

i.e. as E increase so does aE. The idea is then, that the

grid can freely regulate the energy level under limitations on

both power consumption and energy capacity:

P ≤ P (t) ≤ P (2)

E ≤ E(t) ≤ E (3)

where P and P for e.g. a cold storage describes the lower

and upper bound on refrigeration system power consumption

and E and E for a cold storage describes the temperature

limits set by the contents of it. This simple first order model

gives an approximation of fare more complex systems, which

is deemed valid under the assumption that each node is

governed by a local controller.

B. Cold Storage

To model the refrigeration system governing the cold

storage, a simple static modeling approach has been adopted

from [2], to describe the AAU refrigeration facility [9]. It

is deemed valid to develop a static model for the refrig-

eration system because of its considerable faster dynamics,

compared to the dynamics of the attached cold storage. A

complete system setup including distributed controllers is

illustrated in Fig. 3.

It is assumed that the temperature of the refrigerated goods

is the same as the cold storage temperature in this setup,

thereby not taking the heat transfer between evaporator-air

and air-goods into consideration. To describe the amount of

energy in the cold storage an energy balance equation is
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Fig. 3. Schematic of a generic refrigeration system and cold storage with
distributed controllers handling states of the vapor compression cycle. Where
Pe is the evaporation pressure, Pc is the condensation pressure, Te is the
temperature in the evaporator, Tcs is the cold storage temperature, Ta is

the ambient temperature, Q̇load is the heat load on the cold storage, Q̇e is
the heat energy taken out of the cold storage and Qcs is energy in the cold
storage.

formulated as

dQcs(t)

dt
= Q̇load(t)− Q̇e(t), (4)

with

Qcs = mcsccs Tcs (5)

Q̇load = UAcs(Ta − Tcs) (6)

Q̇e = ṁr[hoe(Pe)− hoc(Pc)] (7)

ṁr = Ncαρr(Pe), (8)

where mcs, ccs and Tcs is the mass, specific heat capacity

and temperature of the refrigerated goods, respectively. UAcs

is the overall heat transfer coefficient from cold storage to

surroundings, ṁr is the mass flow of the refrigerant through

the compressor, Nc is the speed of the compressor in Hz, α

is a compressor dependent constant, ρr is the density of the

refrigerant and hoe and hoc are the evaporator- and condenser

outlet enthalpies.

To model power consumption of the system only the

compressor is considered as it is by far the main consumer.

The static equation for the compressor work is given by

Ẇc = βNcαρr(Pe) [hic(Pc)− hoe(Pe)] , (9)

where β is a constant describing losses from electrical energy

to actual work done on the refrigerant (e.g. heat loss, loss in

conversion from electrical- to mechanical energy etc.), hic is

the condenser inlet enthalpy.

The above equations can be combined to form a state space

model of the system, where the state variable is temperature

in the cold storage Tcs, the input variable is compressor speed

Nc and the disturbance is ambient temperature Ta. If the

mass mcs and specific heat capacity ccs of the cold storage

is kept constant, the state equation becomes

dTcs

dt
= −

UAcs

mcsccs
Tcs −

Cc(Pe, Pc)

mcsccs
Nc +

UAcs

mcsccs
Ta, (10)

with

Cc(Pe, Pc) = βαρr(Pe)(hoe(Pe)− hoc(Pc)). (11)

This results in the following system matrices

A = −
UAcs

mcsccs
, B = −

Cc(Pe, Pc)

mcsccs
(12)

C = 1, D = 0, E =
UAcs

mcsccs
(13)

C. Fitting Cold Storage to Grid-Node Model

The cold storage can now be fitted to the generic grid node

model.

a) Stored Energy: In order to account for the minimum

power needed to run the system, the upper (E) and lower (E)

bounds on energy are functions of both ambient temperature

as well as maximum and minimum display case tempera-

tures, thereby describing the total energy stored, instead of

only excess. The equations are as follows:

E = mcsccs (Ta − Tcs,max) (14)

E = mcsccs (Ta − Tcs,min) (15)

E = mcsccs (Ta − Tcs) . (16)

b) Power Limits: Given the compressor power con-

sumption stated in Eq. (9) it can be seen that this is

directly dependent on compressor speed, Nc, and therefore

the constraints on it. It also depends on the evaporation- and

condensation pressure, thus the constraints may change over

time. The equations can be stated as:

P = Ẇc(Nc,min, Pe, Pc) (17)

P = Ẇc(Nc,max, Pe, Pc). (18)

c) Drain & Fill Rates: As stated previously the storage

rate, b, can be identified as the refrigeration systems COP.

The drain rate times the stored energy, aE, can be identified

as Q̇load, thus the drain rate is dependent on the cold storage

heat transfer coefficient, the mass and specific heat capacity

of the refrigerated goods. The two equations are given as

b =
Q̇e

Ẇc

(19)

aE = Q̇load ⇒ a =
UAcs

mcsccs
. (20)

III. CONTROLLER SYNTHESIS

The algorithms developed for the two different MPCs

described in the following rely on methods described in [10]

and [11] which has been adapted for use with the CVX

Toolbox [12].

A. Grid-Node Controller

The purpose of the grid-node controller is to track the

given power reference with the only exception being when

constraints cannot simultaneously be met. Thus inside the

feasible region it is simply a matter of solving one equation in

one unknown for each sample over the horizon, while a more



complex minimization problem arises when considering the

inequality constraints, as in Eq. (21).

minimize ‖Pn(u(k))− Pref(k)‖1 (21)

subject to Tcs(k + 1) = ATcs(k) +Bu(k) +ETa

Tcs,min ≤ Tcs(k) ≤ Tcs,max

umin ≤ u(k) ≤ umax,

where k is the set of samples over the horizon [1, N ], Pn is

in this case equivalent to Ẇc from the modeling section,

the matrices A, B and E constitute the local model of

the refrigeration system and u(k) the choice of controllable

input.

The choice of cost function is based on the fact that the

model is inherently inaccurate and repeatedly updated over

time. Using the 1-norm will result in many samples reaching

the reference over the horizon and predicted infeasibility

is not preemptively handled to the same extent as higher

norms. This allows the controller to avoid reducing tracking

performance and allow for the updated flexibility model

to cause the power reference received from the smart grid

controller to become feasible again. Had the 2-norm been

used instead, the system would disregard the reference prior

to reaching the infeasible region, through the use of the

prediction in the minimization, and thereby attempt to reduce

the larger predicted errors. In the extreme end using the ∞-

norm to minimize the largest predicted error. Again with

emphasis on predicted as these larger norms risk reducing the

tracking capabilities in cases of reduced prediction accuracy.

B. Virtual Power Plant

The objective of the VPP is kept simple as the focus is

on the flexibility of refrigeration systems. Figure 4 presents

an overview of the inputs available and outputs required for

the overall system. As seen, the VPP must provide a power

reference for each of the nodes along with one for the power

plant(s) and a measure of the overproduction. To calculate

these, the flexibility models of each node are provided in

addition to knowledge of available (present and predicted)

renewable energy.

Renewable
Energy
Production

Pr VPP Pref,1

Pref,2

Pref,N

Power
overproduction

Po Pp

Power Plant

Excess Power
Production
Demand

Flexibility
Interface

FlexModel1

FlexModel2

FlexModelN

Node 1

Node 2

Node N

Fig. 4. Illustration of the VPP’s inputs, outputs and connection with nodes.
All signals contain a vector of current and predicted values.

The power plant is assumed governed simply by:

Pp = Pn − Pr + Po, (22)

where Pp is the controlled power production, Pn the sum

of power consumed by nodes, Pr the available power from

renewable sources and Po as a description of excess power

not consumed in the local grid.

Using this as one constraint on the VPP the remaining

optimization problem is constructed by use of the models

provided from each node as additional sets of constraints and

minimizing the amount of power required from the power

plant as seen in Eq. (23). Additionally, the power gradient is

minimized to avoid unnecessary fluctuations of the references

when there is an excess amount of renewable energy, as it

otherwise would have been possible to run with a cost of

zero for a whole range of different consumptions.

minimize W1‖Pp(k)‖2 +W2‖P∆(k)‖1 (23)

subject to

Production











Pp(k) = Pn(k)− Pr(k) + Po(k)

Pp(k) ≥ 0

Po(k) ≥ 0

Node











En(k + 1) = adnEn(k) + bdnPn(k)

En ≤ En(k) ≤ En

Pn ≤ Pn(k) ≤ Pn

Power gradient

{

P∆(k) = Pn(k − 1)− Pn(k),

where adn and bdn constitutes the provided discrete bucket

model, P∆(k) is the gradient of the power reference for the

node and Pn(k− 1) is the previously applied reference, thus

not a variable over the MPC horizon.

The choice of norm has been made based on several

simulations of the VPP, showing that the 2-norm was a com-

promise between minimizing the energy production or the

peak power production. This setup can be further expanded

to facilitate multiple nodes by adding a corresponding set of

constraints for each.

IV. EXPERIMENT SETUP

The test facility used to obtain the data discussed later

is a 4 kW vapor-compression refrigeration system, using

refrigerant R134a and with a 60 liter water tank simulating

a cold storage. To control the load a water heater is installed

and the transfer of energy in the evaporator is done from

refrigerant to water [9]. The refrigeration system has two

distributed controllers for maintaining condensation pressure

and superheat, respectively, each of them kept at a constant

reference. The control is handled by a PC connected through

Matlab Simulink and xPC Target which is also used to

implement the grid-node MPC in combination with the

optimization toolbox CVX. All refrigerant enthalpies and the

density are found using the refrigerant properties toolbox:

REFEQN [13]. The parameters obtained for the model are:



α = 35.5 · 10−6 [-], β = 1.02 [-], mcs = 63.0 [kg],

ccs = 3730 [J/(kg·K)] and UAcs = 120.0 [-].

During the experiment the condensation pressure is kept at

a controlled constant reference of 9 [bar] and a water heater

is used to simulate a fixed load. Thereby, the water tank

temperature is only controlled by altering the compressor

speed, which affects the evaporation pressure. Given that

there are a relationship between compressor speed and power

consumption, the system is able to follow a power reference

set by the virtual power plant. The compressor speed is

restricted to be in the interval 35-60 Hz, thus it is not possible

to stop power consumption only lower it, i.e. P > 0.

The VPP governs the real system alongside three similar

virtual nodes, based on a simulated prediction of future wind

power production. The experiment is run for approximately

7 hours with a sampling time of 30 sec. and the horizon for

the VPP MPC is 6 hours, enabling it to see a full period of

the simulated wind power production signal.

When the real node is running at its constraints and

at times violating them, because of the nondeterministic

behavior of it, the refrigeration system controller will do

what ever is in its power to bring the system back in

the constraint region. If e.g. the system has violated the

upper temperature (lower bucket) bound, it will increase its

consumption up to P . By doing so the flexibility of the

system is suddenly changed, giving fluctuations in power

plant production, which is of course undesirable when the

objective is to stabilize the grid. One way to account for

it could be to have a boundary area before the constraints,

slowly increasing the cost, as the system approaches the

constraints. Solving this problem is a subject for further

research. Because of this, the test has been conducted so the

real system does not violate the constraints on temperature.

V. EXPERIMENTAL RESULTS

Fig. 5 and 7 show the results of implementing the proposed

method. It is clear that when ever wind power production

is high the VPP stores energy in the four nodes by raising

power consumption references. By doing so the VPP can uti-

lize the stored energy, when wind power production lowers,

to minimize the need for power plant production. In contrast

to a system without flexibility, shown in Fig. 6. Fig. 7 shows

how well the estimated bucket of the real system fits with

the simulated nodes.

In the experiment setup all nodes have relatively fast

dynamics (energy drains fast) which in combination with the

nondeterministic behavior of the real node results in a very

little decrease in power plant peak production (approximately

1%) and an increase in overall production (approximately

1%). This indicates that for a consumer to offer energy stor-

age capabilities the drain rate should be improved compared

to the real refrigeration system used for the test. A suggestion

could be to use thermal storage units as in e.g. [7] or a

larger cold storage room (only 60 liter tank for the test

setup) containing frozen foodstuff, as these have a wider

temperature band.

The main difference in production, between the system

with flexible nodes and the system without, is the overpro-

duction. Without flexibility there is a large overproduction

when wind energy production is high. This overproduc-

tion needs to be handled elsewhere in the grid. With the

flexible nodes this overproduction is lowered significantly

(approximately 75%), indicating that the system used for

the experiment could be used as an overproduction “blowoff

valve”, thereby offering some flexibility services to the grid.
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Fig. 5. Test run for approximately 7 hours, with a sampling time of
30 sec. Where (blue) is simulated wind power production, (red) is power
overproduction, (green) is power plant production, (yellow, cyan, magenta)
are power consumption references for the virtual nodes, (black, solid) is
power consumption reference for the real node and (black, dashed) is the
overall consumption. Each bucket is filled/emptied to utilize as much as
the wind energy as possible, thereby trying to minimizing the power plant
production.

VI. DISCUSSION

In the presented work a strictly static method for modeling

the refrigeration system governing the cold storage was

taken. This resulted in a pure deterministic linear model

of what in fact is a highly nondeterministic and nonlinear

system. This simplified model is expected to be the main

reason why the system can not run closer to constraints

without violating them. A natural step for future work would

be to derive a more describing model.

A natural expansion would be to look into more sophisti-

cated MPC algorithms, such as stochastic model predictive

control (SMPC) as presented in e.g. [14] and [15], which

takes into account nondeterministic disturbances in the model

and a mean of handling constraint violation.

Another issue is the simplified grid stabilization example,

which does not bare resemblance to the real power grid.

There are made rough assumptions such as no power plant

startup time, no capacity limits on distribution networks (see

e.g. [3]) and all nodes are always available. This leads to the

need for future research, incorporating more detail into the

grid setup.

However, it has been shown that it is possible to modify

the bucket model to a cold storage unit and use it as a



0 100 200 300 400 500 600 700 800
0

1000

2000

3000

4000

5000

6000

Time [Sample]

P
o
w

e
r 

[W
]

 

 

Wind Power Power Plant Over−production Sum of Nodes

Fig. 6. Simulation of the same run seen in Figure 5, but without flexible
nodes, meaning that the nodes always will run at there minimum power
consumption (bucket is always empty). The minimum power consumption
of the real node is estimated to a constant by taking the mean value of
samples from 360 to 450 in Figure 5. The consumption references for the
nodes are not plotted as they are constant.

0 200 400 600 800
3.5

4

4.5

5
x 10

6 Bucket 1:

E
n

e
rg

y
 [

J
]

0 200 400 600 800
3.5

4

4.5

5
x 10

6 Bucket 2:

E
n

e
rg

y
 [

J
]

0 200 400 600 800
3.5

4

4.5

5
x 10

6 Bucket 3:

Time [Sample]

E
n

e
rg

y
 [

J
]

0 200 400 600 800
3.5

4

4.5

5
x 10

6 Bucket 4:

Time [Sample]

E
n

e
rg

y
 [

J
]

Fig. 7. Bucket levels of the three virtual nodes and the real node. Where
(red, dashed) is the constraints on bucket limits and (blue, solid) is the
bucket level. The buckets are filled/emptied according to Figure 5.

flexibility model. Cold storages can indeed be used for grid

down-regulation, thereby lowering power overproduction.

Provided a cold storage with larger capacity and lower drain

rate it would be possible to decrease overall power plant

production as well as peak production.

VII. CONCLUSION

In this paper, an approach for implementing a refrigeration

system into a directly controlled smart grid, using a predic-

tive control strategy was investigated. The MPC framework is

well suited for this task as estimations of the system states

can be used for communicating its flexibility, adhering to

constraints. This gives the VPP an opportunity to intelligently

stabilize the grid based on the nodes ability to offer flexibility

and estimations of future renewable power production. To

implement the system as a flexible consumer it is shown

how a refrigeration system can be fitted to a generic bucket

model.

The presented experiment showed that the simplified VPP

tried to minimize power plant production by utilizing the

flexibility of the connected nodes to shift consumption, by

storing energy in them. Due to the examined refrigeration

system dynamics only slight decrease in power plant peak

production was achieved, while an increase in overall pro-

duction was seen, compared to a setup with no consumption

flexibility. However, this is caused by the systems low storage

capabilities and high drain rate and is therefore easily im-

proved. The main difference between the two setups was in

the power overproduction, which was significantly decreased

with flexible consumers, indicating that the investigated

system could be used for down-regulation, thereby offering

a balancing service to the grid.
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