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ABSTRACT 

In this paper modal parameter as well as wave load identification by calibration 
of ARMA models is considered for a simple offshore structure. The theory of 
identification by ARMA calibration is presented as an identification technique in the · 
time domain which can be applied for white noise excited systems. The technique 
is generalized also to include the case of ambient excitation processes such as wave 
excitation which are non-white processes. Due to those results a simple but effective 
approach for identification of the load process is proposed. Finally the theoretical 
presentation is illustrated by an experimental example of a monopile model excited 
by random waves. The identification results show that the approach is able to give 
very reliable estimates of the modal parameters. Furthermore, a comparison of the 
identified wave load process and the calculated load process based on the Morison 
equation shows that important information can be obtained about the wave loading 
by this approach. 

INTRODUCTION 

In this paper a procedure for evaluating the modal parameters and the wave load 
will be presented for the case of a monopile platform excited by random waves. 

The problem of system identification of ambient excited structures such as offshore 
structures is that the load process is difficult to measure and it will often be neces­
sary to apply the classical white noise assumption, for a review see Jensen (1990). 
This approach leads to estimates of the modal parameters. However, from obser­
vation of the response it is clear that the response also contains information about 
the wave load process, and the purpose of this paper is to quantify this information 
so that modal as well as wave load identification will be the result of the response 
analysis. 

A simple offshore structure such as a monopile platform, see (e.g. Cook 1982) can 
be assumed to be described by a vertical cylinder with diameter D( z) and length 
L excited by the forces of inertia due to a unidirectional wave excitation with the 
horizontal particle acceleration u(t, z) where z is the vertical coordinate (positive 
directions upwards with zero in the mean water level). This means that the load 
on the structure per unit length is assumed to be: 
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7r 7r 
p(t,z) = p

4
D(z)2 CMu(t,z)- p4D(z? [CM -1]x(t,z) (1) 

where the structural response x(t, z) has been taken into account and where the 
coeficient of inertia CM is assumed to be independent of z and the density of the 
fluid is given by p (e.g. Sarpkaya and Isaacson 1981 ). 

The structural model of the cylinder is described by a continuous beam with dis­
tributed mass m(z). The beam is clamped at the foundation and the topside is 
modelled by a discrete mass Mtop· At a water depth d this means with a contribu­
tion from a finite number of modes n that the structural model is given by the set 
of equations (e.g. Lin 1967): 

ii;( t) + ~; t L> "D( zt ( z) (CM - l)~(i)(z )~<il(z) dz ii;(t) + 2w;(;.j;( t) 

+w~qi(t) = ~1 L: </>(i)(z)p 7rD(~
2 

(z) CM u(t, z) dz i,j = 1, 2, ... n (2) 

where: 

JL-d ( ·) 2 ( ·) 2 Mi = -d </> 1 (z) m(z)dz + </> 1 (L- d) Mtop 

</> ( i) ( z) = the i th eigenmode 
n (i) x(z, t) = Li=I </> (z)qi(t) 

Wi = the i th eigenfrequency 

(i = the i th damping ratio 

In the frequency domain the modal load spectrum Sr;ri (w) due to a wave excitation 
can be given by: 

(3) 

where the load spectrum Spp(z1 , z2 , w) is derived from the linear wave theory (e.g. 
Sarpkaya and Isaacson 1981): 

2 2 ( 7r D( z )2 ) 2 ( Spp(ZI,Z2,w) = g k (w) p 4 CM s1J1J w) 

cosh(k(w)(z1 +d)) cosh(k(w)(z2 +d)) 
cosh 2 (k( w )d) 

(4) 

where S1111 (w) is the wave elevation spectrum and the wave number function k(w) 
2 

can be evaluated by the dispersion equation k(w) = ~ coth(k(w )d). 



3 

IDENTIFICATION BY ARMA MODELS 

Since information about the wave excitation is measured not to be avaiable, the 
identification method has to be based on the measured lesponse. Furthermore it 
is in principle necessary to assume that the excitation is white noise if information 
about the excitation process is not to be included in the analysis. 

Therefore as a start the structure is assumed to be excited by a Gaussian white 
noise vector process. The response measured at a single point is assumed to be 
sampled at discrete time instants Xt = x(t~) t = 1, 2, 3, ... T, where ~ is the 
sampling interval. From the discrete response record, an ARMA(2n, 2n - 1) model 
can be estimated. The ARMA model is given by: 

2n 2.n-1 
Xt = - L <PiXt-i +at+ L eiat-i 

i=l .._,_, 
AR-part 

i=l ..__,_.. 
M A-part 

(5) 

where n is the number of degrees of freedom of the structure, see (2), <Pi and 8i are 
the unknown parameters characterizing the ARMA model, and the discrete time 
series at is the residual process which is restricted to be a discrete Gaussian white 
noise process. The residual process at is estimated together with the unknown 
parameters. Different estimation approaches have been reviewed in Ljung (1987). 
The model order (2n, 2n - 1) can be shown to be a consistent choice since it gives 
the ARMA model of the discretisized response the same statistical properties char­
acterized by the 1st and 2nd moment as the random process in the continuous time 
domain, see Natke and Kozin (1986). 

(5) can be rewritten by the polynomial form if the backwards shift operator qi 

defined by Xt-i = qixt is introduced: 

where: 

<P(q) = 1 + <Plq + <P2q2 + ... + <P2nq2n 

e(q) = 1 + elq + 82q2 + ... + e2n-lq2n-l 

(6) 

(7) 

(8) 

The ARMA model . can be reformulated as a transfer function which can be trans­
formed into the frequency domain by the Z-transform. The Z-transform is defined 
by: X(Z) = ~i=~oo xtzt, (e.g. Rabiner and Gold 1975). An expression in the 
frequency domain is obtained by the substitution Z = eiw which gives: 

8(eiw) iw ((e-iw- ZII)(e-iw- z;2) ... (e-iw- Z12n-d) 
H(w) = <P(eiw) = e ((e-iw _ .\I)(e-iw _ _\2) ... (e-iw- ,\2n)) (9) 

j 
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where Aj and Vj are the jth roots of the characteristic equations of (7) and (8), 
respectively. The roots of (7) correspond to the poles of the transfer function and 
the roots of (8) correspond to the zeroes of the transfer function. Generally, a root 
will be a complex number. The modal parameters are found from the 2n roots >..i 
of (7). In e.g. (Pi and Mickleborough 1989) it is shown that the roots are related 
to the modal parameters through the 2n relations : 

( >..i) = ( exp(f.li~)) 

f.l(i)l2 = -wi(i ± iwiV1- (l 
(10) 

The index (12) refers here to the fact that the >..i-values are found as complex conju­
gated pairs if the modes are underdamped. It is seen that this set of equations gives 

the relation between the estimated AR parameters <I> T = ( <1> 1 <I> 2 <I> 2n ) and 
-T 

the modal parameters P =(]I, /2, ... ,Jn, (I, (2, .. . , (n)· 

As shown in Ljung (1987), the covariance matrix of the ARMA parameters follows 
from the estimation of the ARMA model. Therefore it is quite straightforward 
to obtain the uncertainty of the modal parameters by linearization ( Gersh 1974, 
Jensen et al. 1990). 

Non-White Excitation 

In the application of ARMA models it was assumed that the excitation process 
acting on the underlying system ideally was a white noise process. However, m 
practice the wave excitation process will always be a coloured process. 

Thus if an ndof system excited by the coloured excitation v(t) is consid~red: 

(11) 

the violated assumptions will mean that the estimated parameters of the ARMA 
model will be biased (Ljung 1987). However, the bias problem can be overcome by 
increasing the model order until the non-whiteness of the excitation has been built 
into the model. Such an ARMA model which exceeds the expected order of the 
underlying system will be called an oversized model. 

This ARMA model of the measured discrete response record will not only contain 
information about the structure but also information about the excitation. This 
means that the proper ARMA model of an ndof vibrating system will be of the 
order (2n + l, 2n- 1 +m) exceeding the ideal model order (2n, 2n- 1): 

'll(q)<I>(q)xt = A(q)8(q)at (12) 

where the polynomial 'll(q) and A(q) are of order land m, respectively and where 
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the non-white excitation has been modelled by an ARMA(l, m) model: 

(13) 

see figure 1. Thus the oversized ARMA model of the response may be considered 
as a result · of a two-stage ARMA modelling. 

at A(q) Vt 8(q) Xt 

w(q) <P( q) 

Figure 1. Two-stage ARMA model of a non-white excited system. 

Hence the problem is to choose the additional orders 1 and m and obvivously this 
choice may include investigation of a large amount of oppotunities. In practice 
it is therefore necessary to choose a model strategy and to investigate the models 
included to find a proper model. Pandit and Wu (1983) have shown that the order 
of the ARMA model should be of the form (2n + 1, 2n + l- 1) where lis an even 
number. 

The determination of the proper total model order can e.g. be based on the following 
two criteria: 

• The residual process at should be white noise. 
• The decrease in Akaike's final prediction error defined by: 

(FPE) = 1 + (4n -1)/T o-2 

1- ( 4n- 1)/T a 
(14) 

should be approximately zero if the model order was increased once more. a-~ 
denotes the variance of the residual process at (n/T << 1--+ (FPE) ~a-~). This 
criterion may be explained by the fact that as long as an increase in the model order 
leads to a decrease in a; it will mean that the ARMA is able to give a deterministic 
description of a larger portion of the measured time series. 

Furthermore, it may be noticed that if the moder order has been chosen too large 
this may be detected by inspection of the poles and zeroes given by (7) and (8). 
If a zero lies in the area of the confidence range of a pole or vice versa this might 
be a set of poles and zeroes of the model which could be removed from the model 
without changing the properties of the model. 

From (12) it is seen that the oversized ARMA model will contain poles and zeroes 
which will be characerizing the structure, the load process and potentional addi­
tional measurement noise. Thus, to estimate the eigenfrequencies and the damping 
ratios it will be necessary to determine which poles are associated with the struc­
ture. This can be done by inspection of the poles based on a priori knowledge: 
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• The damping ratio associated with structural modes will lie in the range below 
0.10 while modes associated with noise and excitation process typically will have 
considerably large damping ratios. 
• A priori knowledge on the source of an eigenfrequency associated with a pole will 
exist. 
• The uncertainty of the roots and poles associated with the structure will typically 
be low compared with those caused by the excitation and measurement noise. 

Wave Load Identification 

Since the modal parameters can be obtained as shown in the previous section it 
would be tempting also to try to quantify the information about the coloured load 
process. This could e.g. be done by determing the pure structural ARMA(2n, 2n-1) 
model from the modal parameters and then filter the measured response by a filter 
corresponding to the inverse ARMA(2n, 2n- 1) model: 

1>(q) 
Vt = f)(q)Xt (15) 

Thus the point would be that the filter contains all the characteristics of the response 
except those associated with the load process. In the case of noise present in the 
measurements, this means that the inverse ARMA model should contain not only 
the structural poles and zeros but also those associated with the measurement noise. 
This possibility of including the noise characteristics is a very important aspect of 
the approach. 

Just like the identification of the structural roots of the ARMA models the identi­
fication of the roots associated with the load process has to rely on inspection of 
the roots based on the a priori knowledge. The difficulty in the approach lies in 
determining the zeroes of the oversized ARMA model which are associated with 
the structure. The zeroes are associated with the weigthing of the different modes. 

In the case of displacement or velocity response of an sdof system excited by white 
noise it is possible to identify an eigenfrequency and a damping ratio, and it is 
straightforward to estimate the ARMA(2, 1) model since the exact expressions ex­
ist (e.g. Pandit and Wu 1983). This approach is not possible when acceleration 
data are applied. The reason is that the variance of the acceleration response due 
to a white noise excitation will be unbounded (e.g. Lin 1967) This means that 
the invertibility condition of the ARMA model cannot be fulfilled, see Pandit and 
Wu (1983) and consequently the zeroes cannot be evaluated directly. Instead it 
is suggested that the real zero of the oversized ARMA model with the smallest 
uncertainty is chosen, or alternatively general approach proposed below is applied. 

In the general case of an ndof system it is possible to obtain estimates/a priori 
knowledge of the zeroes by a curvefit to the measured response spectrum of the 
calculated response spectrum given the residual spectrum Sa a ( w), and the transfer 
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function of the ARMA(2n, 2n -1) model given by (9) with the identified structural 
poles inserted: 

min V 
w.r.t .e 

V= L ( Sxx(wi)- Saa(wi) IH(wi, cl>, 0)1 2 
)

2 
(16) 

'-'iEO 

The frequency range n should be the range where the structural resonance 1s 
thought to dominate the measured response. 

EXPERIMENTAL EXAMPLE: 
WAVE EXCITED MONOPILE MODEL 

An experiment has been performed with a vertical pile excited by random waves 
in a wave bassin as shown in figure 2. The pile was made of a PVC pipe and 
stifftened inside such that only the 1st bending mode in the wave direction would 
dominate the response~ The pile was tested with and without a top mass of 7 kg 
corresponding to approximately a first eigenfrequency it = 2.0 Hz and it = 3.25 
Hz, respectively. 

Top Mass 

s 
0 
t-
o 

Figure 2. The experimental set-up. 

Wave Staff 

bk4370 
Accelerometer 

The waves were generated by a wave machine controlled by a computer loaded 
with a set of input parameters corresponding to the desired wave elevation spec­
trum which was a Jonswap spectrum modified to the Danish part of the North 
Sea, see DS449 (1983). The spectrum was characterized by a peak enhancement 
constant 1 = 3.3 and a peak frequency /p = 0.69 Hz while the significant wave 
height was varyed with H~ = 0.05, 0.10 and 0.15 m. With a water depth of 0.70 
m it was reasonable to assume the first order wave theory to be valid. The waves 
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corresponded to long crested deep water waves and with a diameter of the cylinder 
D = 0.07 m, the forces of inertia were dominating in the fluid-structure problem 
with a Keulegan-Carpenter Number of 6-7 and a Reynolds Number of 330000. Any 
contributions from drag forces were neglegted since forces of inertia were dominat­
ing. A typical wave and response spectre is shown in figure 3. 

s7J7J(f) [m 2s J 
2.4E-5 

1.6E-5 

8.0E-6 

0 . 0 E + 0 -h-+r--.--rr-"M-I"TT..,.,..m'""l"'"T'm'""l"'"T'"TO 

0.0 1.0 2.0 3.0 4.0 5.0 
f [Hz] 

a) 

Sxx(f) [m2s- 1
] 

6.4E-4 

4.8E-4 

3.2E-4 

1.6E-4 .1 ,. 
I ~ 
I ~ 

0 . 0 E + 0 -t-r..-T"TTT-;:.:r;=n-:T'"r-t-,-,-...,:.:,M-t-,...,,.., 
0.0 1.0 2.0 3.0 4.0 5.0 

f [Hz] 
b) 

Figure 3. a) Wave elevation spectrum for Ha= 0.10 m, b) Corresponding response 
spectrum with and without top mass. 

Modal Identification 

It was found that an ARMA(8, 7) model would be a proper model of all the measured 
records. An example of the (FPE) as a function of the model order is shown in 
figure 4a. It is seen that the (FPE) is significantly reduced until an ARMA(6, 5) 
model has been reached. However, an ARMA(8, 7) model was chosen to ensure the 
whiteness of the residual process at. The autospectrum of the residual process is 
shown in figure 4b. It is seen that the autospectrum of the residual process is quite 
broad banded. 

With this ARMA model the modal parameters have been estimated together with 
their coefficients of variation, see table 1. Generally, it is seen that the results 
are very satisfactory indeed with coefficient of variation of less than 0.2% and 3-
5% in magnitude for the eigenfrequency and the damping ratio, respectively. The 
exception is the results in the first row of the table where the uncertainty is quite 
large. However, this was found to be due to clipping in the measuring equipment 
so those results should not be weighted too much and have only been included for 
the sake of completeness. 
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(FPE) s •• ( n [m2s- 1
] 

-11 
2 

8000 
1.5 

7000 

1 
6000 

5000 
0.5 

0 
4 6 8 10 0 1 2 3 4 5 

Model Order 2n f [Hz] 
a) b) 

Figure 4. a:(FPE) versus model order, b: Autospectrum of the residual process of 
an ARMA(8, 7) model. (Hs = 0.05 m and Mtop = 0 kg). 

Hs Mtop T fi b~t (I b(t 

[m] [Kg] [Hz] [%] [%] [%] 
0.05 7 36000 2.004 1.0 4.04 25.2 
0.10 7 27000 2.008 0.2 4.55 4.6 
0.15 7 36000 1.964 0.1 4.17 3.3 
0.05 0 36000 3.258 0.2 3.86 4.0 
0.10 0 36000 3.252 0.1 3.99 2.8 
0.15 0 36000 3.201 0.1 4.14 3.1 

Table 1. Estimated modal parameters for ARMA(8, 7) models obtained from accel­
eration records lmypass filtered with a cut-off frequency of 5 Hz and sampled with 
a frequency of 10 Hz. 

It is also noticed that the modal estimates seem to be independent of the applied 
Hs even though the eigenfrequency shows a tendency to drop for the most severe 
sea state. With regard to the damping ratio, it seems to be somewhat smaller than 
the damping ratio estimated in connection with previously performed free decay 
experiments in air and in still water. For the case with a top mass, in air the 
damping was found to be in the range of (I = 2. 7% while in water the range is 
(I = 4.8%. Without top mass in air (I = 2.3% was found. The increase in damping 
due to the water is likely to be due to wave radiation and hydrodynamic damping, 
(Cook and Vandiver 1982 and Vandiver 1980). 

Results of Wave Load Identification 

The modal load process was identified from the measured response due to the 
principles outlined earlier. Examples of the poles and zeroes of the oversized ARMA 
model which was inspected for determination of the inverse ARMA models are 
shown in figure 5. The rectangular boxes are the calculated 95%-confidence areas. 
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Fig 5. Examples of poles and zeroes of oversized ARMA model for H~ = O.lOm. a) 
Mtop = 7 kg. b) Mtop = 0 kg. 

The inverse ARMA(2, 1) models were determined by choosing the poles correspond­
ing to the eigenfrequency, and the zero was chosen to be the real zero with the 
smallest coefficient of variation. Then the response records were filtered by the in­
verse ARMA(2, 1) models and compared with the corresponding modal load proces 
which could be estimated according to (3)-( 4). This was possible since the wave 
elevation had been measured. The spectre of the wave elevation and the filtered 
response was obtained by FFT applying the Welch method with 50% overlap with 
time segments of 512 points and a Hanning window. Since the important point is 
the shape of the load process spectrum the modal load spectrum was calculated by 
a mean value of CM corresponding to the best fit in the peak area. The results 
are shown in figure 6. In the calculation the mode shape and the mass distribution 
were known by a priori knowledge. 

It is seen from figure 6a that a sensible agreement is found for Mtop = 0 kg (/1 = 3.25 
Hz) since the peak of the wave excitation is clearly identified with good agreement 
between (3)-( 4) based on the M orison equation and the filtered response. However, 
it is seen that (3)-( 4) give a much more narrow force peak than identified by the 
inverse filtering, which might be due to the fluid loading mechanism in and above 
the mean sea level which has not been taken into account by the application of the 
linear wave theory and the Morison equation. Beyond the peak area the agreement 
is very poor which is partly due to a low signal noise ratio on the measured wave 
elevation signal, and partly due to the limitations of the Morison equation. 

From figure 6b it is seen that it becomes difficult to estimate the load process when 
its peak frequency is closer to the eigenfrequency of the structure (!I = 2.0 Hz). 
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Figure 6. Comparison of normalized modal load spectrum acting on pile for H$ = 
0.10 m: a) Mtop = 0 kg, b) Mtop = 7 kg. 

Instead of comparing the modal load spectrum directly, a socalled coefficient of 
inertia has been considered as a function of frequency as shown in figure 7. Some 
people claim that a simplified expression of CM can be applied in the frequency do­
main even though everybody knows that the Morison equation cannot describe the 
fluid-structure interaction in random waves with structural, dynamic amplification. 
For the most simple case, a harmonic wave CM would vary along the structure and 
with the frequency of the wave. 

From figur 7 it is seen that sensible but frequency dependent values are found 
from 0.5 Hz to just above 1 Hz while the values increase out of range for increasing 
frequency. It is noticed that CM(!) tends to become smaller for increasing H~ which 
is in agreement with general observations (e.g. Sarpkaya and Isaacson 1981). On 
the other hand, it is seen that CM(/) seems to increase with increasing frequency 
which is just the opposite of the suggested simplifications of Karadeniz (1985) in 
which CM(/) decreases almost e::ponentially from a maximum value of 2 in the low 
frequency region. However, most of this disagreement might again be explained by 
the low signal/noise ratio in the higher frequency regions. 
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Figure 7. CM as a function of frequency: a) Without top mass, b) with top mass. 

Conclusion 

This paper has shown that identification with ARMA models gives reliable modal 
estimates not only for simulated cases but also for real experiments. The reliability 
of the estimates can be directly quantified by coefficients of variation of the modal 
parameters. 
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Furthermore, the paper has shown that the ARMA model of a response record will 
also contain information about the load process when the process is coloured. This 
will lead to an oversized ARMA model which means that information about the 
load process can and should be extracted from the ARMA model. The inverse 
ARMA model can be found from the oversized ARMA model by inspection of the 
poles and zeroes based on the available a priori knowledge of the structure and the 
excitation process. 

For an sdof structural system it will often be sufficient to apply an inverse ARMA(2, 1) 
model when the eigenfrequency and peak frequency of the load process are well 
seperated. When they become closly spaced problems may arise which is a subject 
which should be studied further. 

The presented appoach of extracting information about the load process should 
be followed by studies when the structural system has several excited eigenmodes 
and also by cases where the drag mechanism is significant. If further reasonable 
success is obtained the approach will be useful in the analysis of the response 
records of simple offshore structures such a monotowers and structures in general. 
Furthermore, the approach may be useful in laboratories within hydrodynamics 
where estimation of the wave loads is an important research topic. 
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Appendix. Notation 
at Residual process. 

CM Coefficient of inertia. 

D Diameter of cylinder. 

d Water depth. 

f Frequency. 

fi The i th eigenfrequency. 

g gravity. 

Hs Significant wave height . 

H ( q) System transfer function. 

k(w) Frequency dependent wave number. 

L Length of structure (cylinder). 

l Model order. 

Mtop Mass at cylinder top. 

m Distributed mass per unit length . 

m Increased model order. 

n Number of degrees of freedom . 

p( t , z) Load process at given z . 
qi Modal coordinate of response. 

Spp(z1,z2,w) Load spectrum. 

S TJTJ ( W) Wave elevation spectrum. 

Bxx(w) Response autospectrum for given z. 
Sri r i ( w) Modal load spectrum. of the i th and j th modes. 

T Number of sampled points. 

t Time. 

V Error function . 

Vt Load process. 

X(Z) Z-transformed. 

x( t , z) Displacement response of structure. 

x( t, z) Acceleration response. 

X t Discrete time series of X ( t, z) for given z. 
z Cylinder coordinate. 

8 Coefficient of variation. 

(i The ith damping ratio. 

77( t) Wave elevation process. 

Ai Pole/root of polynomial. 

1-L( i) 12 Complex eigenvalue. 

1/i Zero/root of polynomial. 

p Density of fluid. 

<f;(i) The ith eigenmode. 

Wj The ith eigenfrequency in [rad/s]. 

W The frequency in [rad/s] . 

ri(t) ith modal load process . 

.6. Sampling interval. 

'1' ( q), A( q) Polynomials. 

8( q) MA polynomial. 

0 i MA parameter. 

<P( q) AR polynomial. 

<Pi AR parameter. 

n Frequency range. 
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Appendix. Additional Results 
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Figure A. Comparison of normalized modal load spectrum acting on pile for 
H~ = 0.05 m: a) Mtop = 0 kg, b) Mtop = 7 kg. 
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Figure B. Comparison of normalized modal load spectrum acting on pile for 
H~ = 0.15 m: a) Mtop = 0 kg, b) Mtop = 7 kg. 
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