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Abstract

Second-order characteristics are used to analyse the spatio-temporal structure of the under-
lying point process, and thus these methods provide a natural starting point for the analysis of
spatio-temporal point process data. We restrict our attention to the spatio-temporal product
density function, and develop a non-parametric edge-corrected kernel estimate of the product
density under the second-order intensity-reweighted stationary hypothesis. The expectation and
variance of the estimator are obtained, and closed form expressions derived under the Poisson
case. A detailed simulation study is presented to compare our close expression for the variance
with estimated ones for Poisson cases. The simulation experiments show that the theoretical
form for the variance gives acceptable values, which can be used in practice. Finally, we apply
the resulting estimator to data on the spatio-temporal distribution of invasive meningococcal
disease in Germany.

Keywords and Phrases: Edge Correction, Spatio-temporal separability, Second-order product
density, Second-order intensity-reweighted stationarity, Variance.

1 Introduction

Spatial and spatio-temporal point patterns are increasingly available in a wide range of scientific
settings, such as environmental sciences, climate prediction and meteorology, epidemiology, image
analysis, agriculture and astronomy. Today, much attention is paid to spatio-temporal point pro-
cesses, where each point represents the location and the time of an event, and thus we have data of
the form (u;,s;,) € W x T C R?2 x R, i = 1,...,n. There are some recent works on spatio-temporal
models with focusing on variety of ad-hoc approaches (Diggle (2006); Gabriel and Diggle (2009);
Mpgller and Diaz-Avalos (2010) Gelfand et al. (2010); Diggle (2013)). We consider here processes
that are temporally continuous and either spatially continuous or spatially discrete on a sufficiently
large support to justify formulating explicitly second-order spatio-temporal tools for the data.

For these processes second-order properties play an important role in the practical analysis of
point patterns, in terms of exploratory and modelling strategies. Usually, the K-function and pair
correlation function (g(-)) are used for model checking (Mgller and Ghorbani; 2013) and parameter
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estimation (Mgller and Ghorbani; 2012), while the product density is used for explanatory analysis.
The form of these functions helps to understand the type of interaction in the point pattern and
to find suitable point process models.

In this context, separate analyses of the spatial and the temporal components are of limited
value, because the scientific objectives of the analysis are to understand and to model the un-
derlying spatio-temporally interacting stochastic mechanisms. There are basically two ways for
modelling spatio-temporal point patterns (Diggle (2006); Daley and Vere-Jones (2008)). The first
is descriptive and aims at providing an empirical description of the data, especially from second-
order characteristics. The second is mechanistic and aims at constructing parametric point process
models by specifying parametric models for the conditional intensity function. Here, we will con-
sider the former and analyses will be based on extensions of the product density to summarize a
spatio-temporal point pattern.

The inhomogeneous K-function has been extended to the spatio-temporal setting by Gabriel and
Diggle (2009). Second-order characteristics are thus analysed using the spatio-temporal inhomoge-
neous K-function (STIK-function) or equivalently considering the spatio-temporal pair correlation
function under the assumption of second-order intensity re-weighted stationarity (Gabriel and Dig-
gle (2009); Gabriel et al. (2010), Gabriel et al. (2012); Gabriel (2013)). Spatio-temporal separability
of the STIK-function has been studied in Mgller and Ghorbani (2012). These two functions rely
very much upon first-order characteristics which are unknown in practice, and replacing the inten-
sity by an estimate must be made carefully as it may imply bias (Baddeley et al. (2000); Gabriel
(2013)). However, the product density does not show this problem, as will be shown in this paper.

Little attention has been paid so far to the first- and second-order moments (expected and
variance values) of the second-order properties of spatio-temporal processes. And they are needed
for performing statistical inference based on these characteristics. In the spatial context we can
only refer to Ripley (1988) who developed variance expressions for a series of estimators of the
spatial K-function for the Poisson process.

Then Stoyan et al. (1993) approximated the variance of spatial product densities, and Cressie
and Collins (2001a,b) obtained close expressions for the expected and variance values of the local
spatial product densities. To the best of our knowledge, nothing has been developed in the spatio-
temporal context. In this paper we develop a non-parametric edge-corrected kernel estimate of the
product density under the second-order intensity-reweighted stationary hypothesis. We extend the
original ideas of Stoyan et al. (1993) to the spatio-temporal case for developing exact and close
expressions of the expectation and variance of the proposed estimator. Note that since estimated
second-order characteristics deviate from their theoretical counterparts because of statistical fluctu-
ations, error bounds for these functions are important. For example, they are needed to distinguish
between statistical fluctuations in an estimated product density function and peaks which are due
to real properties of the spatio-temporal point process under study.

Our estimator is accurate in estimating the spatio-temporal product density both under separa-
ble and non-separable cases. It is unbiased and we present the close expression of its variance. The
simulation experiments show that the formulae derived for this estimator give acceptable values,
and thus can be used in practice.

The remainder of the paper is organised as follows. Section 2 provides a theoretical back-
ground on the first- and second-order properties of spatio-temporal point processes. In Section 3
we present the product density estimator and its expectation and variance for the general case,
and under Poisson processes. Appendix A discusses the corresponding moments of the product
density estimator under the hypothesis of separability. We then present some simulation results
in Section 4. Section 5 applies our methodology to analysis the spatio-temporal distribution of
invasive meningococcal disease in Germany. The paper ends with some final conclusions.



2 Definitions and statistical background

Mpgller and Ghorbani (2012) discussed the second-order analysis of structured inhomogeneous
spatio-temporal point processes. The definitions and notations introduced in that paper are used
throughout the present paper. Following them, we consider a spatio-temporal point process with
no multiple points as a random countable subset X of R? x R, where a point (u,s) € X corresponds
to an event at u € R? occurring at time s € R. In practice, we observe n events {(w;,8;)} of X
within a bounded spatio-temporal region W x T C R? x R, with area |[W| > 0, and with length
|| > 0. For formal definition of a point process based on measure theory see e.g. (Daley and
Vere-Jones; 2008).

For convenience, we introduce the following notations. Let N(A) be the number of events falling
in an arbitrary bounded region A C W x T'; ©,, = {(u1, $1), ..., (up, $p) € X} be a set of n-tuples
of events in X; [ = [...[ for k times, where B =W x T.

B®k B B

Assume that X has spatio-temporal nth-order product density function p(”), for n € N. For

any non-negative Borel function f defined on (R? x R)®",

ES f(ur,51), -, (Un, 50)) = / F((u, 51, -+ (Uny 50)
On Bon

x p™ (g, 1), (Wny $0)) d((u, 51), - (g 50))s (1)

where 77 means that we sum over the n pairwise distinct points (uy,s1),. .., (upn, sn) (see e.g.
(Mgller and Waagepetersen; 2004; Illian et al.; 2008; Chiu et al.; 2013)).

2.1 First- and second-order properties

Considering (1), in particular for n = 1 and n = 2 the n-order product density function is re-
spectively called the intensity function and the second-order product density (hereafter product
density) function.

A process for which p(u,s) = p for all (u,s) is called homogeneous or first-order stationary.
Further, if p(2)((u7 s), (v,1)) = p? (u — v, s—1), the process is called second-order or weak stationary
(Ghorbani; 2013).

2.2 Spatial and temporal components

It is assumed that the point process X is orderly, roughly meaning that coincident points cannot
occur. That is, any pair of points (u,s) and (v,l) of X are distinct, so u # v and s # [. We can
therefore ignore the case where the spatial and temporal component processes Xgpace and Xiime
have multiple points, and following Mgller and Ghorbani (2012) we define them by

Xspace ={u: (u,s) € X,s € T}, Xtime = {s: (u,s) € X,ue W}.
Note that, using this notation, it is clear that Xqpace depends on T', and Xiime depends on W.

2.2.1 First-order properties

Assume that X has intensity function p(u,s), then

Pspace (1) :/p(u, s)ds and piime(s) :/p(u, s)du.
T 1%



Throughout the paper we assume first-order spatio-temporal separability, i.e.

p(u,s) = ﬁl(u)ﬁ2(5)7 (u,s) € R? x R, (2)

where p; and po are non-negative functions.
Considering the hypothesis of first-order spatio-temporal separability,

pspace(u)ptime (S)
T o, ) du, )

For a stationary point process X, p, pspace and ptime are all constant. For non-parametric estimation
of pspace(W), prime(s) and p(u, s), see Ghorbani (2013).

p(u,s) =

2.2.2 Second-order properties

Throughout the paper we assume that X is second-order intensity-reweighted stationary (SOIRS),
ie.

p(Z)((uv 8),(V,l)) :p(z)(u—v,s—l), (u7 5)7(V7l) ERQ x R (3>
Baddeley et al.; 2000; Gabriel and Diggle; 2009; Gabriel; 2013). Further, if the process is isotropic,
( y 8g p p

then p@(u—v,s — 1) = p (Hu —v||,|s —]) for some non-negative function p( )( -), where || - ||
denotes the Euchdean distance in R? and | - | denotes the usual distance in R.
Using (1) (with n = 2) and (3) we obtain that Xqpace is SOIRS with product density

e, ¥) = et =) = [ [ 0P vis —dsa (4)

Analogously, Xiime is SOIRS with

91(;12121(3(37 l) = Pilzxile(S —1) // (2)(u —v,s—1)dudv. (5)
W W

It will always be clear from the context whether péf)ace is considered to be a function defined on
R? x R? or R?, and whether p(.z) is considered to be a function defined on R x R or R.

time

2.2.3 Spatio-temporal separability of the product density function

The spatio-temporal product density function is separable if

P2 ((u,5), (v.1) = 57 (w, )55 (s.1)

for non-negative functions ﬁ§2) and ﬁg). Under the assumption (3) of SOIRS, this hypothesis can

be rewritten as
PPa—v,s—1)=p(w-v)pP(s—1),  (w5),(v,l) ER*xR. (6)
Considering (4), (5), and (6),

2o —v) = o / / 25— 1) dsdl, 7)



and

pglIile(S - l) = _(2) // - V du dv. (8)

By substituting (7) and (8) in (6),
(2) (2)
@D (u—v.s—1) — Pspace (U — V)piin (s — 1)
g (u v ) ffp(Z) u—v,s—l)d( ,S)d(V,l). (9)

As in the spatio-temporal first-order case, equation (9) suggests that

P ((u,5), (v, 1)) o plee(u,v)p?) (5,1).

Suppose that p(2) u — v) respective p(2)

p? tlme(s —1) . If these are unbiased estimates of the expected number of distinct pairs of events,

s — 1) are estimators of p(Q)Space(u — v) respective

space ( time (

ie. [iy PP pace(u — v)dudv = [, p( )time(s — 1) dsdl = n(n — 1), then the estimate of the spatio-
temporal product density function given by

—

p(Q)space(u - V)p(2)time(s - l)
n(n—1) ’

pP(u—v,s—1) =

is also a ratio unbiased estimate of the expected number of observed points. See more details in
Section 3.

2.3 Relationship between the product density and the K-function

For a SOIRS, isotropic, spatio-temporal point process X, Gabriel and Diggle (2009) extended the
inhomogeneous K-function from the spatial to the spatio-temporal case. They defined the spatio-
temporal inhomogeneous K-function as

K(rt) = /1 [lul] <7, |s| <t]go(u,s)d(u,s), r>0, t>0, (10)

where 1[-] denotes the indicator function, and go(u, s) (with the abuse of the notations u and s for
u = |[u—vl| and s = |s—1]|) is the spatio-temporal pair correlation function. For a Poisson process,
go = 1 and K (r,t) = 2mr?t. For an unbiased estimator of the K-function, see Gabriel (2013).

Considering the hypothesis of the first- and second-order spatio-temporal separabilities, for
isotropic point process X and for non-negative Borel functions K; and Ko,

K(r,t) = K1(r)Kx(t), r>0, t>0. (11)

Assume that X is isotropic, and Xgpace and Xiime have pair correlation functions gspace and
Gtime Tespectively. The corresponding spatial and temporal K-functions are

t
Kpace(r) = / gspace (1) du, r >0, and Kime(t) = /gtime(s) ds, t> 0.
2

[[u]|<r



Both in the stationary and isotropic case, and in the SOIRS and isotropic case, the spatio-
temporal pair correlation function is proportional to the derivative of K (r,t) with respect to r and

t. So, in the planar case using (10),

1 0?K(r,t)
t)y=—
9o(r,?) drr Orot
Thus, for the SOIRS and isotropic point process X,

p(u,s)p(v,1) O*K(r,1)
Ay orot

PP ((u,s), (v,1) = r>0, t>0.

Further, under spatio-temporal separability (2) and (11), we have that

(2) r _ i Ps ace(u)ps ace(v) a-K's ace(r) Ptime(s)ptime(l) aI(time(t)
pQ(?t)_cSo(p P p )( 5 )

2mr or ot
Here
50 = o X 50,
with
o= [/Pwan] and do=| [5Ms)as).
172 T
and then

cso = (/ pP(u, s)d(u, 8)) :

which can be approximated by n(n — 1). Hence

(2) (T) x pspace(u)pspace(V) 8Kspace(’l") (2) (t) ~ ptime(s)ptime(l) aKtime(t)

pspace oy or ’ time 9 ot
For a stationary and isotropic point process X,
2 02
pD(r,t) = K
’ drr  Orot
Moreover,
2 2
2) Pspace a-Kvspace(’r) (2) + Ptime 8[(time(t)
pspace(r> X Iy 87‘ ’ pt1me< ) x 2 at :

3 Estimation of the product density function

(12)

(13)

We avoid estimating the product density by applying numerical differentiation to an estimate of
p*K (r,t). Alternatively, considering that p? K (r,t) stands for the expected number of ordered pairs
of distinct points per unit area of the observation window with pairwise distance and time lag less
than r and ¢, by extending the idea in Stoyan (1987) and Stoyan et al. (1995), we directly estimate

the product density using a non-parametric edge-corrected kernel estimate.



A spatio-temporal kernel density estimate of p?0K (r,t)/Orot takes the basic form of a smoothed
three-dimensional histogram,

_ #
(WiTh™ D7 ke(lu—vl=rls=1—1).
(u,s),(v,l)eX
We assume that the kernel function ks(-, ) has the multiplicative form
kes(lu— vl =7 [s =] = 1) = K1 (lu = V|| = 7) ka5 (|s = U] = 1),

where k95 and k1. are one-dimensional kernel functions with bandwidths € and J, respectively.
By extending the idea in Ohser (1983), an edge-corrected kernel estimate of the product density
function (13) is given by

pslrt) = Z# me(lu=vil=rrs(s=l=t) g 15550 (14)
| (u,s),(v,)EX dmryw (r)yr(t)

Here vy (r) and vp(t) are the spatial and temporal set covariance functions, respectively. For a
convex region W, a general approximation formula for vy (r) for small r is given by

()~ w) - S,

where U(W) is the perimeter of W, and for a small ¢, yp(¢) = |T'| — t.
Under the hypothesis of spatio-temporal separability, and considering (9),

) space,e (T)p(Z) time,d (t)

—— p
(2) ~ 15
p e,é(ra t) n(n _ 1) ’ ( )
v (= vl - )
Dy # Kiljlu—vj —r
(2) =
p2) (r) , r>e€>0,
space, uy;(g]pace 277"“")/W (7")
and

— —1—t
p(2)time,6(t) = Z?ﬁ M7 t>0d>0.

$,1E€ Xtime 2’YT(t)

3.1 Expectation and variance of the product density estimator

In this section the expectation and variance of the product density estimator (14) is obtained by
considering the general case. The corresponding moments of the product density estimator under
the hypothesis of separability are developed in Appendix A.

3.1.1 Expectation

Using (1) with n = 2, the estimator (14) satisfies
sy Kilel||x — —T)R —n|—t
B o) strt)] = [ [P D e 0 o) oy e — a1y

Aryw (r)yr (t)r
B K1(w)k2(V)yw (1 + ew)yr(t +6v) (o r+ eu v)(r + eu)dudv
_—// —t//6 ryw (r)yr(t) P ant ot andud

(16)



The detailed proof is as follows. By applying formula (1) and the Fubini’s theorem to (14), we have
that

E [p/(?\)e,g(r,t)} _E Zsﬁ Lw (Wlw (vV)17(s)1r(Dr1e ([lu = vl =) ros (Is — 1] — #)

() TeeX drryw (r)yr(t)

[ eyl = sl S 0oy e — o) e, ©) ()

Arryw (r)yr(t)
WxT WxT
- el =Ll 01 g . ) . ) (3.

(W=h1)x(T—hg) WxT
([he]] = ha| —t h h
- [ mllbalm el =0 Br B o)y . o) . o)

drryw (r)yr(t)
R2 xR
[ [ el ® = rmas(ha] = v (R)yr(ha) o)
_// 2ryw (r)yr () PR, [hal) RAR dh,
0 R
B T Oolﬂ(u)l@((hz—t)/5)7W(T+U€)7T(h2) @) (4 e 4 ue) du
‘_// / 25w (120 PR e dudi
0o 0
ri(w)re((=he — ) /0w (r +ue)yr(he) oy g
g // ZO S i D (r + ue, —ha) (1 + ue)du dhy
) 0o 00 k1(uw)ke(v)yw (1 + ue)yr(dvy + t) @ (1 ue. 5u e du do
-/ 2w (e () Pl ue o) ue)dudo
—r/e—t/d
0 oo k1(u)ka(va)yw (1 + ue)yr(dvy + t) @ (4 ue. 5v e du do
) 2w (e (D) prlrue du O+ uddude,
—r/e—t/d
B 7T k1(uw) ke (v)yw (1 + ue)yp(dv + t) (4 ue. 5v - we)du do
‘_// 4 (e ¢ Fuesv ki udud

If (r,t) is a continuity point of p(®)(r, ), then

lim E[p® YN
(675)2320,0) |:p 575(7”, t):| p (7,’ t)

Hence, p(2) 5,6(7"7 t) is an approximately unbiased estimator for the spatio-temporal product density.

3.1.2 Variance

The variance of the product density estimator (14) can be obtained by the direct application of the
extended Campbell’s Theorem (Illian et al.; 2008; Chiu et al.; 2013) for the spatio-temporal case.



In particular, we have

E {(;(215(7“, t))Z] _ (0(26’5))2 {4E1(B) +2B(B) + E3(B) (17)
with )
(1) = mryw (r)yr(t)
and

Ey(B) = / rie(lx =yl = r)mellx — 2l = r)r2s(1€ = 0l = t)ras(|€ — ¢ = 1)

B®3

X< PP ((1x = yll, 1€ = nl). (Ix = zl, |& = ¢)d(x, )d(y, n)d(z, ¢),

Ey(B) = / mie(lx =yl = r)rs(1€ = nl = )P (Ix =y, 1€ = nl)d(x, £)d(y, ),

B®2

E3(B) = / Kie([[x =yl = )r1e(l|z = W = r)r2s([§ — 0| — t)r2s(IC — 7] —¢)

B®4
< pD((Ilx =yl 1€ = nD), (Ix = 2l 1€ = <), (Ix = wl|, [€ = n]))
x d(x,&)d(y,n)d(z, )d(w, 7).

Finding an expansion for the variance in terms of (¢, d) will require knowledge of the form of the
third and fourth-order product density function for a given point process model.

3.2 Expectation and variance under Poisson processes

3.2.1 Expectation

For a Poisson process with intensity p, the nth-order product density p(™ is equal to p™, so using
(16) when (e,0) — (0,0),

2 ] sk )y (r + ue)yr(t + v)
B [p), 5(r1)| = / / 1(u)k2 WVVVV(MT@)T )
—r/e—t/d

« ,0(2) (r 4+ ue, t 4+ 6v)(r + ue)dudv = p2,

if the lower bound for the value of k1 and kg are larger than —r/e and —t/4, respectively.

3.2.2 Variance

Considering (17), and the unbiasedness property of the product density estimator,

Var [;12\)675(7«, t)] - (0(25))2 {4;;351 + 2p252], (19)



where

S1 = / Fie(llx = yll = r)rrellx — 2l = r)r2s(1€ = nl = t)r2s (€ — ¢ — 1) d(x, §)d(y, n)d(z, )

Bes
2
_ / { / wre(x — yll = r)ras (1€ — ) —t)d(y,m} d(x,€) = 535!

B B

and
5, = / k2.1 — vl — r)2s (1€ — nl — Hd(x, )d(y,m) = S3SL.
Be?
Here,
2 2
si= [{ [mtixsi-nayfas st= [ [rate-n-nw} o
w w T T

S5 = / W2.(x —y] - r)dxdy and %= / k25(1€ — | — t)dedn.
W®2 T®?2

For the spatial case, and using the Epanechnikov kernel, Stoyan et al. (1993) showed that
6 2
S5 = = <|W7T7’ —U(W) (67 + 7‘2> ) and S5 = 4n?r? (W] — A) +4(r + €)*(7 — 1)? 4,
€

where A = U(W)(r +¢€) — 4(r +€)2.
For the temporal case, by using the uniform kernel, it is easy to show that
T 128 .2

53:T and S{:4|T|—8(zf+5)+T (t+9).

By combining the above expressions, an estimate of the variance of the product density estimator
N(W xT)

is obtained. In practice we substitute p by its estimate p = WITTT

4 Simulation study

The spatio-temporal product density function is of interest as it can be used to discriminate among

several spatio-temporal point process models. For example, for a Poisson process ]E[p(Q)Ey(;(r, t)] = p?
as we have shown previously in (18). Values of the spatio-temporal surface of the product density
function larger than the values of the plane p?, indicate that the interevent distances around (r,t)
are relatively more frequent compared to those in a Poisson process, which is typical of a cluster
process, and conversely, values of the spatio-temporal surface of p(2)€’5(r, t) smaller than the values
of the plane p? indicate that the corresponding distances are rare and this is typical of an inhibition
process. The product density function can take all values between zero and infinity.

10



We conducted a simulation experiment to analyse the behaviour of our estimator of the second-
order spatio-temporal product density function under random Poisson structures. In addition, as
we have developed close expressions for the variance under the Poisson case, we use them to generate
the corresponding confidence surfaces. We considered the volume W x T = [0,10]% x [0,10] and
simulated spatio-temporal point patterns with a varying expected number of points E[N (W xT)] =
n = 100, 200, 300. We considered Ng,, = 100 repetitions per pattern and scenario. The work has
been implemented in R, and has used the stpp package Gabriel et al. (2012). We used a fine grid
for each spatial and temporal distances u and v spanning the sequence starting from u > ¢ > 0 to
2.50 and v > 0 > 0 to 2.50 with small increments of distances. In the spatial case, Fiksel (1988)
suggested the use of the Epanechnikov kernel with bandwidth parameter e = 0.11/5/p. In practice,
we use the dpik function in kernsmooth package to obtain the bandwidth (Wand and Ripley; 2013)
based on the distances between the spatial locations of the process. For the temporal case the
uniform kernel is used, where again we calculate the bandwidth § using the dpik function based on
the time lag between the temporal instants of the process. Note that the product density function
was evaluated for any scenario and repetition over the same spatio-temporal grid.

Table 1 shows some descriptive measures of the second-order spatio-temporal product density
kernel estimator for homogeneous Poisson process under different expected number of points. The
homogeneous Poisson processes are simulated using the rpp function in stpp package, with constant
intensity. The spatial and temporal bandwidths are estimated for each one hundred repetitions.
Table 1 displays the average optimal bandwidths for each sample size (named “Est” in Table 1). We
also show the behaviour of the product density under two other fixed bandwidth values designed
to overestimate and underestimate the optimal values (named “Fix” in Table 1). From all possible
grid cells, in Table 1 we have only shown the descriptive measures for some particular values of
(r,t), for comparison purposes.

Table 1 also shows the theoreticil\ product density under a Poisson case (,0(2) = p?), together

with the estimated average surface (p(2)), (Q5%(,;(?))) and (Q95%(;(2\))) are the 5% and 95% sample
quantile values. Note that, we have estimated p) by % which is an unbiased estimator in the
case of Poisson process (Stoyan and Stoyan; 1994). In terms of variances, we present the average
approximate theoretical standard deviation surface (o(p(?))) together with the average empirical

standard deviation surface values (5(p(2))).

Table 1 shows the results for only three selected cells over the fine grid of spatial and temporal
distances to save space. We note that in general the difference between the estimated product
density and the theoretical one is smaller when using the estimated bandwidth using dpik, compared
with those cases where we use some other fixed values for the bandwidth. In addition, the variances
coming from our theoretical developed expression are in the same order of the empirical variance
for the selected cells, and even lower for many other cells.

The estimated product density function over the whole grid is depicted in Figures 1, for the
case n = 200, ¢ = 0.73§3\and 0 = 0.2466./ln this Figure: The top panels show the Monte
Carlo mean estimate of p(2)_(r,t). Clearly p(®)_s(r,t) is an approximate unbiased estimator of
p(2) (r,t). Bottom left panel shows the Monte Carlo mean estimate of standard deviation. Bottom
right panel shows the confidence surfaces under a Poisson process based on the estimated product
density (constant surface with value 0.0398) and two standard deviations calculated using the closed

form expression of the variance in Section 3.2.2. We have obtained the same results for the cases
n = 100 and n = 300, but the plots are omitted here.
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n | Type ¢ 5 r t o PP =02 Quu(®) B Qusu(p?)  o(p?)  F(p®)

1.1610 0.6192 0.0099 0.0097 0.0103 0.0160 0.0039 0.0030

Fix. 0.70 0.15 1.6631  1.3245 0.0099 0.0097 0.0104 0.0162 0.0063 0.0034
2.1653  2.0298 0.0099 0.0097 0.0100 0.0157 0.0115 0.0032

1.1610 0.6192 0.0099 0.0101 0.0102 0.0145 0.0038 0.0025

100 Est. 0.9936  0.3841 1.6631  1.3245 0.0099 0.0099 0.0101 0.0149 0.0069 0.0027
2.1653  2.0298 0.0099 0.0099 0.0099 0.0154 0.0128 0.0028

1.1610  0.6192 0.0099 0.0101 0.0100 0.0140 0.004 0.0023

Fix. 1.20 0.50 1.6631  1.3245 0.0099 0.0100 0.0100 0.0144 0.0075 0.0026
2.1653  2.0298 0.0099 0.0098 0.0099 0.0151 0.0138 0.0027

1.1610  0.6192 0.0398 0.0405 0.0407 0.0576 0.0113 0.0107

Fix. 0.48 0.07 1.6631  1.3245 0.0398 0.0414 0.0413 0.0584 0.0165 0.0105
2.1653  2.0298 0.0398 0.0398 0.0408 0.0582 0.0293 0.0100

1.1610  0.6192 0.0398 0.0399 0.0403 0.0525 0.0093 0.0067

200 Est. 0.7383 0.2466 1.6631  1.3245 0.0398 0.0405 0.0402 0.0518 0.0167 0.007
2.1653  2.0298 0.0398 0.0396 0.0402 0.0510 0.0313 0.0069

1.1610 0.6192 0.0398 0.0395 0.0398 0.0509 0.0096 0.0062

Fix. 0.90 0.36 1.6631  1.3245 0.0398 0.0392 0.0399 0.0508 0.0178 0.0066
2.1653  2.0298 0.0398 0.0396 0.0400 0.0497 0.0333 0.0064

1.1610  0.6192 0.0897 0.0923 0.0935 0.1305 0.0248 0.0238

Fix. 0.42 0.03 1.6631  1.3245 0.0897 0.0914 0.0944 0.1394 0.0326 0.0236
2.1653  2.0298 0.0897 0.0946 0.0948 0.1293 0.0546 0.0196

1.1610  0.6192 0.0897 0.0934 0.0933 0.1144 0.0166 0.0135

300 Est. 0.6093  0.1862 1.6631  1.3245 0.0897 0.0941 0.0947 0.1187 0.0295 0.0157
2.1653  2.0298 0.0897 0.0942 0.0953 0.1219 0.0556 0.0144

1.1610  0.6192 0.0897 0.0923 0.0926 0.1124 0.0171 0.0122

Fix. 0.81 0.34 1.6631  1.3245 0.0897 0.0931 0.0936 0.1160 0.0319 0.0137
2.1653  2.0298 0.0897 0.0929 0.0944 0.1161 0.0600 0.0135

Table 1. Descriptive measures of the estimation of the second-order spatio-temporal product
density under the Poisson case.

5 Invasive Meningococcal Disease (IMD): Second-order analysis

Meyer et al. (2012) quantified the transmission dynamics of the two most common meningococcal
antigenic sequence types observed in Germany between 2002 and 2008. The conditional intensity
function was modelled as a superposition of additive and multiplicative components in space and
time. The Invasive Meningococcal Disease (IMD) is a known human disease which involves menin-
gitis (50% of cases), septicemia (5% to 20%) and/or pneumonia (5% to 15%) caused by the infection
with the bacterium Neisseria meningitidis. Meningococci can be transmitted airborne or by other
mucous secretions from infected humans. The risk of contracting IMD is much higher inside the
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Figure 1: Statistical properties of the second-order spatio-temporal product density kernel estimator

under Poisson point process with expected number of points n = 200, p2 = 0.0398, ¢ = 0.7383 and
6 = 0.2466.

household of an infected person, and the risk of secondary infections is highest during the first few
days. Meyer et al. (2012) claim that most meningococci are commensal in humans, but only a few
isolates are virulent and cause invasive disease.

The area of Germany is 357603 km? with a perimeter of 6146 km. The IMD dataset consists of
the spatio-temporal reports of 636 cases of IMD caused by two specific meningococcal finetypes in
which the times are given by 2569 days over the 7-year period, so the temporal region is defined as
T = [0,2569]. Figure 2 shows the estimated spatial intensity (a) and estimated temporal intensity
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(b). In the purely spatial case, this figure shows clearly the inhomogeneity condition of IMD, with
a notorious high intensity of points per km? in the western border of Germany, and some lower
intensity (but noticeable concentrations) near the north-eastern and southern borders.
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(a) Estimated spatial intensity. (b) Estimated temporal intensity.

Figure 2: Estimated spatial and temporal intensities for the IMD dataset.

Figure 3 shows the surface of the estimated product density using ¢ = 13.9686 km and § =
28 days. This figure shows large values for small spatial and temporal distances, which is a typical
behaviour of a cluster spatio-temporal point pattern. However, the spatial aggregation decreases
with increasing spatial distances, while the temporal aggregation is kept throughout most of the
temporal range, as clearly shown in the right panel of Figure 2(a). This result is a consequence
of many reports of IMD occurring close in space and time, and thus for short temporal periods
it is quite likely that at least two reports of IMD occur close enough of each other. Additionally,
the spatial aggregation shows the same behaviour even during periods of time sufficiently large.
One way to emphasis this clustering behaviour is to compare the empirical surface of the product
density function for IMD with the theoretical one for a Poisson point pattern with equal expected
number of points than IMD. This result is clearly expected after visual inspection of Figure 3, and
goes in the line found by Meyer et al. (2012)).

The left panel of Figure 4 shows the 95%-envelope surfaces obtained from 39 simulations
of a spatio-temporal Poisson point pattern, see Mgller and Ghorbani (2010) and Mgller and
Waagepetersen (2004)), together with the empirical product density. This figure shows how the
empirical surface of the product density function for the IMD is larger than the upper 95%-envelope
for small spatial and temporal distances.

The right @Eel of Figure 4 shows the confidence surface under a Poisson pattern based on

the estimated p(2) 4+ 2 x standard deviations calculated using the close form of the variance in
Section 2. We also superimpose the empirical product density for the IMD data. Again, the
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Figure 3: Product density kernel estimator for the spatio-temporal IMD dataset with ¢ =
13.9686 km, and § = 28 days.

empirical density goes out the upper confidence surface. These two figures reveal that IMD has a
contagious behaviour in their immediate spatio-temporal neighborhoods. These are solid arguments
to reject the hypothesis of complete randomness in favour of a clustering structure.

6 Discussion

The spatio-temporal inhomogeneous product density function describes second-order characteristics
of point processes. It is useful to analysis the spatio-temporal structure of the underlying point
process, and thus provides a natural starting point for the analysis of spatio-temporal point process
data. It can be considered an exploratory tool, for testing spatio-temporal clustering or spatio-
temporal interaction.

We have proposed a non-parametric edge-corrected kernel estimate of the product density under
the second-order intensity-reweighted stationary hypothesis. The expectation and variance of the
estimator are obtained, and close expressions are derived under the Poisson case. First- and second-
order spatio-temporal separability has also been considered and discussed. It is known (see Gabriel
(2013)) that the performance of the pair correlation function and K-function can be severely altered
by the intensity estimate. This can be explained by over-parametrisation or over-fitting in the case
of a parametric estimation of the intensity function, or by the incapacity of distinguish first- and
second-order effects from a single realisation of the point process in the case of a kernel-based
estimation. This is in any case a kind of handicap and weakness in using these characteristics. We
postulate the use of the product density as it provides the same amount of information, but with
the added value that there is no need to estimate the intensity function.

We have provided sufficiently statistical grounds in favour of using this second-order tool in the
practical analysis of spatio-temporal point patterns. However, we have based under developments
on the hypothesis of second-order intensity-reweighted stationarity. The statistical properties of the
spatio-temporal product density under general non-stationarity conditions or anisotropic structures
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(a) 95%-envelope surfaces. (b) Confidence surfaces.

Figure 4: (a) Empirical surface for IMD dataset (white surface), and average and pointwise 95%
envelope surfaces calculated from 39 simulations under Poisson process (grey surfaces). (b) Em-
pirical surface for IMD dataset (white surface), and average and pointwise 95% confidence surfaces
under Poisson process (grey surfaces).

remains an open problem.
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Appendix A :Moments of the product density estimator under
spatio-temporal separability
For non-negative Borel functions h; and hs defined on (R?)®" and R®" respectively, we assume that

h((ay,81),..., (4, 8n)) = hi(uy,...,u,)ha(s1,-..,Sn), and considering n-order spatio-temporal
separability we can rewrite (1) as

# n =
ES 7 h((ur,s1), ., (n, 50)) = / B, ) (s, ) T duw
on Won i=1

X /hg(sl,...73n)ﬁgn)(517...,sn)Hdsi
i=1

T&n

=F Z;ﬁ fi(ug,...,u,)E Z;A fa(s1,. -5 80),

ui,..., u'n,eXspaCe S1yees 8n € Xtime
(20)
where
n
fl(ul,...,un)—hl(ul,...,un)/(/® Y (uy,. . uy) [ duy)
wen i=1
and

Folstr s sm) = hg(sl,...,sn)/(/T®n (1, 5a) [ ds)
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A.1: Expectation
Combining (15) and (20) for n = 2 we have,

2)!E Z# &1e(||uz—u]|| E Z Kas(si — 851 — 1)

2myw (r 2yr(t)

E (o), 4(r,1)] =

uiyquXspace 854585 €Xtime
0o 00 5
t
= / / ra(Wra(W)yw (r + ewyr(t + v>p(2)(r + eu,t + 6v)(r + eu)dudv
ryw (r)yr(t)
—r/e—t/5

Note that under separability we obtain the same expression (16) as in the general case.

A.2: Second-order moment

Under the same assumptions as in the above case for n = 3,4 in (20), and using (14) the second-
order moment of the product density estimator under separability is given by

B | (1.0 | = el O 260(8) + 4(B) + Ea(B),

where F1(B), E2(B) and E3(B) are slightly different from their general corresponding and can be
obtained by the same procedure as expectation under separability. So, expression (17) as in the
general case is obtained. Thus all results and properties for the general case are also satisfied under
the separable case.
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