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RGB-D-T based Face Recognition

Olegs Nikisins1, Kamal Nasrollahi2, Modris Greitans1 and Thomas B. Moeslund2

1) Institute of Electronics and Computer Science, Dzerbenes 14, LV-1006, Riga, Latvia
2) Visual Analysis of People Laboratory, Aalborg University, Sofiendalsvej 11, 9200 Aalborg, Denmark

Abstract—Facial images are of critical importance in many
real-world applications from gaming to surveillance. The current
literature on facial image analysis, from face detection to face
and facial expression recognition, are mainly performed in either
RGB, Depth (D), or both of these modalities. But, such analyzes
have rarely included Thermal (T) modality. This paper paves
the way for performing such facial analyzes using synchronized
RGB-D-T facial images by introducing a database of 51 persons
including facial images of different rotations, illuminations, and
expressions. Furthermore, a face recognition algorithm has been
developed to use these images. The experimental results show
that face recognition using such three modalities provides better
results compared to face recognition in any of such modalities in
most of the cases.

I. INTRODUCTION

Facial biometrics has a number of motivating points: it
is easily collectible, non-contact, universal, non-intrusive and
can be used without cooperation of the user [1] making it
practical in applications such as gaming, access control, and
surveillance. On the other hand face recognition systems have
to deal with challenges like noisy data, intra-class variations
and spoof attacks [2]. Noisy data can be caused by environ-
mental / illumination conditions, which are not acceptable for
normal operation of the particular image capturing device.
Head poses, expressions of the face, illumination conditions
and occlusions can result in significant intra-class variations
[3]. A recent research trend for the reduction of the above
mentioned downgrading factors is multi-modal biometrics [4].
An intuitive explanation of the improved performance in this
case is that particular kind of noise has unequal impact on
different modalities [5].

In order to keep both the ease of usage of the facial
biometrics and mutual complementarity of different modalities
we have developed a multi-modal face recognition algorithm,
which is based on the combination of RGB, depth and thermal
data. There are some significant attempts to combine different
modalities for face recognition, however in most cases it is
limited to 2-modal face recognition. Various combination of
the modalities for face recognition can be found in literature:
RGB-D [1], [6], D-T [7], RGB-T [8], [9]. To the best of
our knowledge the only similar combination RGB-D-T is
introduced in [10]. However the database utilized in the exper-
imental part of the paper [10] contains only non-synchronized
frontal view images, which were acquired under controlled
lighting conditions.

According to the taxonomy in [11] information fusion can
be done at feature level, score level, and rank / decision
level. Recent research in the field shows that feature level
fusion outperforms other approaches due to preservation of
raw information about the class label [2], [5], [12]. Therefore,
the proposed multi-modal face recognition algorithm is based

on feature level fusion. Some examples of bi-modal face
recognition algorithms with feature level fusion are introduced
in [6], [9]. However most publications in the field incorporate
score level fusion strategy [1], [6], [8], [10].

For evaluation purposes we have also developed a multi-
modal face database. To the best of our knowledge, this is
the first database including the synchronized RGB, Depth and
Thermal face images. The introduced database has a number
of noteworthy advantages. The proposed range of modalities
provides a comprehensive experimental platform for various
strategies of biometric data fusion. Moreover the database cov-
ers some of the most challenging aspects of face recognition
[3]: pose, expression and illumination variations, which are
organized in three acquisition sequences. A special evaluation
protocol is also introduced in order to unify the usage of the
database and split of the images into Training, Cross-Validation
and Test sets. The database is also supplemented with ground-
truth data for all modalities providing the coordinates of the
face bounding box in the images.

The rest of the paper is organized as follows: a description
of the database and evaluation protocol is given in Section
II. The details of the proposed multi-modal face recognition
algorithm are introduced in Section III. The experimental
results are then given in Section IV and finally the paper is
concluded in Section V.

II. RGB-D-T FACIAL DATABASE

A. Hardware configuration

The Microsoft R⃝ Kinect for Windows has been used to
capture the RGB and depth images. The Near Mode was
enabled in the acquisition process enabling the device to see
objects as close as 40 centimeters in front of the sensor without
losing accuracy. The thermal camera AXIS Q1922 was used
for capturing the thermal face images and it was mounted right
under the Kinect RGB camera with the distance of 8.5 cm
between the lens centers (Figure 1). The resolutions of the
RGB, depth, and thermal images are 640 × 480, 640 × 480,
and 384× 288 pixels, respectively.

The capturing setup is schematically represented in Figure
1. The Kinect and thermal cameras were located at a distance
of 1 meter from the face at the hight of 1.5 meters from the
floor. The same distance was selected for light sources 1, 2, 4,
5 with a hight of 1.6 meters. The lamp 3 was placed behind
the capturing devices at a distance of 1.3 meters from the face
and at a hight of 1.85 meters. An average height at which
the face was located is 1.3 meters. The tripods of the lamps
were marked with numbered labels (at a hight of 1.35 meters),
which were used to control the rotations of the head in the
corresponding capturing scenario. The frontal tripod had two
additional labels at the hight of 0.4 and 1.85 meters.
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Fig. 2. Examples of RGB (top), corresponding synchronized depth (middle) and thermal (bottom) training images for all sequences.

Fig. 1. A schematic representation of the capturing setup.

B. Capturing scenarios

The images of each person in the database are orga-
nized in three sets corresponding to rotation, expression and
illumination scenarios. The total number of persons in the
database is 51. Each capturing sequence (rotation, expression,
illumination) has 300 images per person: 100 RGB, 100 Depth
and 100 Thermal synchronized images. The total number of
images per person is 900 resulting in 45900 images in the
database.

In the rotation acquisition scenario people were asked to
keep the neutral expression and to turn the head delaying a
look at the numbered labels, which were sticked to the tripods
of the lamps (Figure 1). The total of seven markers were used:
one for frontal view, four for side turns of the head, one for
turning the head up and one for turning down. The acquisition
was performed indoors with fluorescent ceiling lighting.

In the expression sequence individuals were asked to keep
the frontal position of the head and to change the expression of
the face according to the list of emotional moods (Ekman uni-
versal expressions): neutral, happy, sad, angry, and surprised.
The illumination conditions were unchanged.

The illumination sequence is intended to study the impact
of variable lighting on the recognition performance in the
absence of other complicating factors. People were asked to
keep the neutral expression of the face and frontal position
of the head. The lamps 1 to 5 (Figure 1) were sequentially
turned on and off by the operator. Only one lamp was on
at a time. The fluorescent ceiling lighting was also switched
on. Sample images for all sequences from RGB, Depth and
Thermal modalities are displayed in Figure 2.

C. Evaluation protocol

For development purposes the database is supplemented
with a Matlab indexing function, which must be used to
split the data into Training, Validation and Testing sets. This
function is introduced in order to unify both the development
and testing of the face recognition algorithms among the
researchers who use the database.

The number of Testing images in the indexing function
per person is always 50 for each modality in each capturing
scenario. To enable a fair comparison of different algorithms
on the introduced database, we ask the researchers to report
the results on the Test data (strictly defined by indexing
function), which should not be involved in the training process
in any manner. The Equal Error Rate (EER) is selected as the
performance criteria.

The user of the indexing function can also select up to 50
Training images per person for each modality in each capturing
scenario if Validation set is not needed. If both Training and
Validation sets are needed then the maximal number of images
in each set is 25 (the number of Training and Validation images
is always the same).

The introduced approach has a number of advantages.
First, the indexes generated by the function are always strictly
defined making the development process reproducible. Second,
the testing data is completely separated from the training and
validation sets. Moreover, the test set always covers a wide
spectrum of variability in face appearance, which is present in
each particular capturing scenario.

D. Ground-truth data

Each facial image in the database is supplemented with
ground-truth data, which includes bounding box parameters of
the face. The ground-truth data is generated automatically. One
of the most popular face detectors is Viola-Jones algorithm
[13]. However in our case this method produced a high
number of errors due to significant off-plane rotations of a
face in the input images. For this reason we have developed
previously unpublished algorithm for the detection of region of
interest (ROI), which is based on the depth images. It provides
reasonable stability of the ROI on a frame to frame level in
the input sequences of the images and does not generate false
detections in our data, which are the primary requirements
for the ground-truth information. The first step of the ROI
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Fig. 3. Generalized steps of the ROI detection algorithm.

Feature extraction

(LBP, HOG, HAAR)

and normalization

Fig. 4. The block-diagram of the proposed multi-modal face recognition
algorithm with feature level fusion.

detection algorithm is smoothing and binarization (Figure 3
(a)) of the input depth image (Figure 3 (c)). Next, the pixels
corresponding to the body region are set to zero (the part
exceeding the predetermined width limit), Figure 3 (b). In the
last step the rectangular region growing algorithm is applied
on the input image (Figure 3 (b)). The algorithm iteratively
increments the size of the rectangular region, which is centered
in the position of the mean of the binary image. The cost
function is the ratio of sum of pixel values to the number of
pixels in the current ROI. The execution is terminated when
the cost value is below the specified limit. The detection result
is displayed as a green rectangle in Figure 3 (b) - Figure 3 (c).

In order to map the ground-truth data obtained for depth
the images to other modalities, a registration of the inputs is
needed. In particular the D-to-RGB and D-to-T registration is
important. The transformation of the depth images is limited to
rotation, scaling and translation. One hundred corresponding
points were manually marked for each modality, so as to
estimate the D-to-RGB and D-to-T transformation matrices
with RANSAC method. Once the transformation matrices
are obtained, the binary images (e.g.: Figure 3 (b)) are first
registered to the corresponding modality. Next, the rectangu-
lar region growing algorithm is applied. The detection now
represents the ground-truth data for corresponding modality.

III. MULTIMODAL FACE RECOGNITION ALGORITHM

The standard pipeline of automatic face recognition sys-
tem is based on three major tasks: detection, alignment and
recognition (DAR pipeline) [14]. This section is dedicated to
the recognition problem, which in our case is multimodal. The
performance of the recognition algorithm is always better in
the case of manual alignment of the subject [14], but this
scenario is usually unrealistic in real-life applications. Despite
the fact that the DAR pipeline is not directly discussed here,
the performance reported on the proposed database is related
to the automatic face recognition problem, since ground-truth
data was generated automatically.

The generalized block-diagram of the proposed face recog-
nition approach is displayed in the Figure 4. In order to obtain
a clear understanding of “as is” possibilities of each particular
modality the preprocessing of the cropped facial regions is
excluded. The only preprocessing steps are conversion of RGB
data to gray-scale format and resizing of the input facial
regions from all modalities to the same scale.

First, the feature extraction is performed for each modal-
ity. The list of selected features is Local Binary Patterns
(LBP) [15], Histograms of Oriented Gradients (HOG) [16] and
HAAR-like features for face recognition [17]. The LBP is a
very popular descriptor in the field of face recognition [15],
[18]. The simplicity and high discriminative power of LBP
in various computer vision tasks motivated the development
of various extensions of the paradigm [19]. The literature on
the subject of HOG-based face recognition is not so vast,
however some significant research is done in the field [20].
Some authors tried to combine the LBP and HOG into the
single descriptor [21]. Recent research in the field of HAAR-
like features applicability to the face recognition task demon-
strated the effectiveness of the descriptor [17], [22]. The above
mentioned feature spaces are selected for the evaluation due to
their semantically integral nature and potential applicability to
any of the modalities in the introduced database. The advantage
of the selected features is computational simplicity and the
absence of the learning stage. One can argue that learning
based features, such as Learning-based (LE) descriptor [23]
and Spatial Face Region Descriptor (SFRD) [24] lead to the
state-of-the-art performance. However authors in [25] demon-
strate that high dimensionality of the feature space is also or
even more critical to high performance than the presence of
the learning stage. They show that simple high dimensional
LBP descriptor can achieve significant improvements over both
its low-dimensional version and the state-of-the-art [25]. Since
concatenation of feature vectors from various modalities is one
of the ways to increase the dimensionality of the feature space,
we find it is useful to report the results for non-learning based
descriptors.

Next, the concatenation of feature vectors from all modal-
ities into a single descriptive vector is performed. Normaliza-
tion of the feature vectors before concatenation is a critical
issue [26]. The normalization principles are discussed later.
According to the taxonomy in [11] the utilized concatenation
strategy corresponds to feature level fusion.

The final step of the pipeline is recognition. Three recogni-
tion strategies are tested here: the most simplistic one based on
Nearest Neighbor Classifier (NNC), the Weighted NNC based
approach [18], [19] and Linear SVM based principle with
“One-vs-All” classification scheme. The algorithmic details are
discussed later.

A. Dimensionality and normalization of feature vectors

The detailed process of calculation of LBP, HOG and
HAAR features is not discussed here since we keep it exactly
the same as in the original papers. The explicit details can be
found in [15] for LBP , in [16] for HOG and in [17] for HAAR-
like features. Only the aspects essential for understanding of
further discussions are introduced.



In order to be concatenated, the feature sets must be
compatible [26]. The compatibility implies that feature spaces
in all modalities are 1) semantically similar, 2) with equal
dimensionality and 3) are normalized.

Since the same features are extracted from all modalities
semantical similarity is ensured automatically.

The equal dimensionality means:

NRGB = NT = ND = Nm, (1)

where NRGB , NT , ND are the number of features for RGB,
Thermal and Depth modalities, respectively. Nm is the number
of features per modality.

In the case of LBP the dimensionality of the feature space
NLBP

m is equal to [18]:

NLBP
m = K2 · 2P , (2)

where K is the regioning factor (the LBP transformed image
is divided into K ×K regions), P is the number of sampling
points on the radius R. The notation (P,R) is usually used
for the description of LBP operator [15], [18].

The dimensionality of the HOG feature space per modality
is defined as follows [16]:

NHOG
m = ν · ς2 · β, (3)

where ν is the number of square overlapping blocks (the
overlap of the blocks is fixed at 50% in our case), each block is
divided into ς × ς cells, where ς is the block regioning factor;
β is the number of orientation bins in the histogram of the
cell. The value ν depends on the sizes of the input image and
of the cell:

ν = (W/η − 1) · (H/η − 1) , (4)

where W and H are correspondingly width and hight of the
input image in pixels, η is the size of the square cell in pixels.
Here we assume that the remainders of divisions (W/η) and
(H/η) are zero.

The dimensionality of the HAAR-like feature space is fixed
to the value introduced in the original paper [17]: NHAAR

m =
115.

Finally, for ensuring the normalization we suppose that
xm = (xm,1, xm,2, . . . , xm,Nm) is the feature vector of modal-
ity m. Then the elements of normalized LBP feature vector
x̂LBP
m can be found as follows:

x̂LBP
m,i = xLBP

m,i /∥xLBP
m ∥1, i = 1, . . . , NLBP

m , (5)

where ∥xm∥1 is L1-norm of the vector.

The normalization procedure of the HOG vector is the
same as in the original paper [16]. HOG feature vector of
the modality m is the concatenation of block feature vectors:
xHOG
m =

(
xHOG
m,1 ,xHOG

m,2 , . . . ,xHOG
m,ν

)
. The feature vector

of each block is normalized individually. The elements of
normalized feature vector of the block j can be determined
as follows:

x̂HOG
m,j,i = xHOG

m,j,i /
√
∥xHOG

m,j ∥22 + ϵ2, i = 1, . . . , ς2 · β, (6)

where ∥xHOG
m,j ∥2 is L2-norm of the vector, ϵ is a small

regularization constant, ϵ = 0.01 in our case.

The HAAR-like features are sensitive to the dynamic range
of pixel values, which might vary significantly for different
modalities. The following normalization is introduced in this
case:

x̂HAAR
m,i = xHAAR

m,i /∥xHAAR
m ∥1, i = 1, . . . , NHAAR

m , (7)

Once normalization is completed the concatenation of
modalities into a single normalized multi-modal face feature
vector x can be performed (Figure 4):

x = (x̂RGB , x̂D, x̂T ). (8)

B. Recognition stage

The first sequence of recognition experiments is performed
with NNC. Despite of the fact that this recognition approach is
the most simplistic, it is still useful for defining the borderline
values of the performance of each particular feature and
modality.

The second sequence of experiments is based on Weighted
Nearest Neighbor Classifier (WNNC). In this instance the
features are weighted according to their discriminative power
prior the recognition. Following [18], [19] we have used
an iterative feature weighting method called a Mini-Batch
Discriminative Feature Weighting (MB-DFW) algorithm. The
MB-DFW has a number of significant advantages: only two
training samples per class are needed, which is important
for biometric applications. The algorithm incorporates a mini-
batch learning principle accelerating the learning process and
it is a critical factor in the case of high-dimensional training
data (multi-modal feature vectors). The weights obtained in the
learning process are the same for all classes meaning that no
learning is needed if more persons are added to the database.
Moreover the algorithm is extended in two levels of feature-
level and block-level weighting. In the feature-level weighting
each feature in the descriptive vector has a unique weight,
while in the block-level weighting the features within the block
have the same weight. According to the results in [18], [19]
block-level weighting slightly outperforms the feature-level
weighting concept.

However, one drawback can be mentioned: the original
MB-DFW is not able to operate with more than two training
samples per class. For this reason we have extended the MB-
DFW concept. Basically, the extension does not modify the
MB-DFW algorithm itself, only the process of learning data
forming is updated.

Suppose, that dintra(i,i),(1,k) is the value of Squared Euclidean
distance between two weighted intra-class (of the same person)
feature vectors x̃

(1)
i and x̃

(k ̸=1)
i , where (k) is the number of

the training sample for person i. If NTrain
c is the total number

of training samples per class / person, then k = 2, . . . , NTrain
c ,

and dinter(i,j),(1,k) is the value of Squared Euclidean distance
between two weighted inter-class (of different persons) feature
vectors x̃

(1)
i and x̃

(k ̸=1)
j with constraint i ̸= j.

The cost function to be optimized in the MB-DFW is
formed from pairs [18], [19]:

(
dintra(i,i),(1,k), d

inter
(i,j),(1,k)

)
. The

number of pairs in our extended version is (NTrain
c − 1) ·M ,

where M is the number of classes. In the original version
NTrain

c = 2 resulting in the total of M pairs.



TABLE 1. EER VALUES (FOR TEST DATA) IN % FOR VARIOUS MODALITIES, CLASSIFIERS, FEATURES AND NUMBER OF TRAINING SAMPLES PER CLASS

NTrain
c : No training (NNC) 2 5 10 25

Mod: RGB D T All RGB D T All RGB D T All RGB D T All RGB D T All

W
N

N
C

R
ot

. LBP 31.9 34.6 31.3 31.4 27.4 26.1 30 24.8 23.3 21.5 31.1 18.4 23.1 21.3 30.4 18.5 23.6 21.8 30.5 18.5
HOG 30.1 35.2 34.4 32.5 24.9 38.3 31.6 30.1 21.3 36.2 26.9 23.4 20.5 35.3 25.7 21.8 21.2 35.5 26.4 22.4

HAAR 24.2 31.8 32.6 27.5 27.6 28 27.9 27.4

E
xp

r. LBP 1.2 1.8 1.5 1.1 0.7 2.3 1.9 0.8 0.7 1.8 1.2 0.7 0.6 2 1.2 0.7 0.7 1.9 1.2 0.7
HOG 1.6 6.1 2.2 1.7 0.7 6.6 0.9 0.6 0.7 6.5 0.9 0.6 0.8 7.1 0.8 0.6 0.8 6.5 0.8 0.6

HAAR 2.6 8.8 3.2 2.8 2 2.1 2.1 2.1

Il
lu

m
. LBP 15.2 8.8 9.8 8.4 11.2 5.2 4.7 3.8 12.3 4.9 4.4 3.5 9.8 4.7 3.8 3 10 4.8 3.8 3

HOG 15.7 16.3 8.7 11.2 8 24.6 4.9 4.4 8.2 15.7 4.9 4.5 6.6 13.8 4.4 3.9 6.5 14.3 4.5 4
HAAR 21.3 23.3 16.2 16 15.2 15.3 15.3 15.2

SV
M

R
ot

. LBP 13 14.1 17.1 10.6 1.9 3.9 4.9 1.5 0.5 1.1 0.9 0.2 0.1 0.2 0.3 0
HOG 13.5 22.5 16.7 13.9 2.5 8.2 4.2 2.3 0.6 3.8 1 0.5 0.1 1.6 0.3 0

E
xp

r. LBP 0.1 0.1 0.2 0 0.1 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0 0.1 0
HOG 0 0.6 0.1 0 0 0.2 0.1 0.1 0 0.2 0.1 0 0 0.1 0.1 0

Il
lu

m
.

LBP 1.4 0.9 0.7 0.6 0.4 0.3 0.1 0 0 0 0 0 0 0 0 0
HOG 2.3 4.8 1 1.3 0.6 2.4 0.1 0.3 0 0.7 0 0 0.2 0.4 0 0.1

TABLE 2. THE IMPORTANCE OF EACH MODALITY IN MULTI-MODAL
FACE RECOGNITION

RGB D T

Rotation 0.37 0.37 0.26
Expression 0.35 0.15 0.50

Illumination 0.06 0.25 0.69

The last sequence of recognition experiments is based on
the Linear SVM classifier with “One-vs-All” technique. This
methodology is well known, thus the details are not provided.
However, it is worth to mention, that it has a serious drawback:
learning is needed every time a new person is added to the
database.

IV. EXPERIMENTAL RESULTS

Evaluation of the proposed multi-modal face recognition
algorithm is performed on the introduced database. The al-
gorithm has a lot of variables to be optimized. First, the
parameters of LBP and HOG features are estimated. The
parameters of HAAR-like features are the same as in original
paper [17]. In order to do so the grid search is utilized.
At the same time the Equation (1) should be satisfied, in
other words the parameters affecting the dimensionality of the
feature space must hold the same values for all modalities.
The evaluation criteria which should be minimized is the
sum of EER values for all modalities. The EER is calculated
for training data, which is selected according to the database
evaluation protocol (10 images per person for each modality).
Only Expressions and Illumination sequences are utilized in
the parameter selection procedure. In all experiments facial
regions were resized to (W = 100,H = 130) for LBP and
HAAR features and to (W = 96,H = 128) for HOG features.
The selected values for the parameters of the features are:

• LBP: P = 8,K = 5, RRGB = 5, RD = 2, RT = 6;

• HOG: η = 16, β = 18, ς = 2.

The corresponding dimensionalities of the feature spaces:
NLBP

m = 6400, NHOG
m = 2520, and NHAAR

m = 115.

Once the best parameters of the features are selected the
NNC-based recognition is applied to testing data. The experi-
ment is performed for all types of features and for all capturing

scenarios. The resulting EER for each modality separately
(RGB, D - depth and T - thermal) and for concatenated
modalities (All) appear in Table 1 in the “No training (NNC)”
column. The abbreviations “Illum.”, “Expr.” and “Rot.” in
Table 1 stand for capturing scenarios Illumination, Expressions
and Rotations, respectively.

Next, a WNNC-based face recognition concept is tested.
The MB-DFW algorithm is applied in the block-level in order
to adjust the feature weights according to their discrimina-
tive importance. Block-level weighting principle implies that
features extracted from local image neighborhoods have the
same weight. In the case of LBP the facial image is divided
into K ×K regions, where each region is considered to be a
local image neighborhood. Thus all features extracted from
particular region will have the same weight, and the total
number of unique weights per modality is K · K = 25. The
total number of unique weights in the concatenated feature
vector is M · K · K = 75, where M = 3 is the number
of modalities in our setup. In the case of HOG features
the smallest unit, which can be considered as local image
neighborhood is cell. Thus the total number of unique weights
per modality is ν ·ς2 = 140. In the case of HAAR-like features
the regioning of the input facial image is not incorporated in
any form, therefore MB-DFW in the block-level can be applied
for concatenated modalities only and the number of unique
weights is M = 3. Only the training data is utilized in the
learning process, where the number of training samples per
class is selected from the list NTrain

c = (2, 5, 10, 25). The
resulting EERs obtained for test data and various scenarios
are reported in Table 1.

The last sequence of experiments is performed for SVM
based face recognition. The classifier in this case is a linear
SVM, which operates in “One-vs-All” mode. Thus the total of
C classifiers should be trained, where C = 51 is the number
of classes in the database. The recognition is then performed
by predicting using each binary classifier, and choosing the
prediction with the highest confidence score. The results are
reported in Table 1 in the SVM-related rows. The linear SVM
optimization does not work with HAAR-like features, due to
low dimensionality of the feature space.



Towards a clear understanding of the importance of each
modality in the multi-modal face recognition process we also
calculate the average modality weight based on the results
obtained with MB-DFW algorithm. LBP features in most
cases outperform HOG and HAAR-like descriptors, thus the
experiment is limited to LBP features only. In particular each
modality has K ·K = 25 unique weights. Here the importance
of the modality is considered to be an average of these weights.
The results are reported in Table 2. Some of the values in
Table 2 are highlighted in bold to demonstrate the two most
important modalities for the particular capturing scenario.

V. CONCLUSION

To the best of our knowledge this is the first work observing
the task of multi-modal face recognition for synchronized
RGB-D-T modalities. Since the problem is novel the paper
introduce both a new multi-modal face database with spe-
cific evaluation protocol and the facial recognition algorithm
itself. The database covers some of the most challenging face
recognition scenarios: rotation of the head, expression and
illumination variations, which are organized in three acqui-
sition sequences. The database, ground-truth information and
evaluation protocol will be publicly available for the research
community upon the acceptance of the paper.

The face recognition algorithm is based on feature-level
fusion concept. The experimental results cover various com-
binations of classifiers (NNC, WNNC + MB-DFW, Linear
SVM) and feature spaces (LBP, HOG, HAAR-like). It is
worth mentioning that preprocessing of the input face images
was deliberately excluded from the algorithmic pipeline in
order to get a clear insight of “as is” possibilities of each
particular modality. From experimental results (Tables 1 and
2) a few important conclusions can be made. First, based
on the complexity for the recognition the capturing scenarios
can be prioritized as follows: rotations (difficult), illumination
(less difficult), expressions (the most simple one). Second,
the importance of each modality in the recognition process
depends on the capturing scenario. However, thermal data
constantly holds high impact in the recognition regardless
of the scenario. From the list of observed features LBP in
most cases provides the best recognition results. However, the
dimensionality of the LBP feature vectors is the highest, which
possibly leads to high performance [25]. From a classification
point of view SVM outperforms the combination of WNNC +
MB-DFW. However SVM has a serious drawback, training of
the classifier is needed every time a new person is added to the
database. Thus, WNNC is preferable if simplified management
of the database is needed.
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