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Professor Peter V. Nielsen 
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ABSTRACf 

Ventilation effectiveness is strongly dependent on room air movement and 
contaminant source location. It is shown that there exist gradients in contaminant 
distribution in the room in case of mixing ventilation and this will give rise to 
effectiveness different from 1.0. It is also shown that the location of the return openings 
may be very important compared with the small influence this location has on the velocity 
distribution in the room. 

The air flow rate in a room is often at a level where low turbulence effect takes 
place and the ventilation effectiveness and the velocity distribution are strongly influenced 
by this effect. 

It is shown how the temperature gradient and the temperature effectiveness are 
dependent on the location and type of heat sources in displacement ventilation. 
Concentration distribution and ventilation effectiveness are studied in a room with both 
stationary sources and movable sources. 

The paper shows a description of the flow from a low level diffuser which is 
suitable for a design procedure in displacement ventilation. 

KEYWORDS 

INTRODUCTION 

Mixing Ventilation, Displacement Ventilation, Ventilation Effect­
iveness, Temperature Effectiveness, Velocity in Occupied Zone, 
Vertical Gradient. 

A large number of experiments with air distribution systems have been made at 
Aalborg University during the years. This paper will be a review of some of the 
experiments from the last five years. 

- Ventilation Effectiveness 

- Displacement Ventilation 
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and 

- Computational Fluid Dynamics 

are the big issue in room air distribution at the moment. 

The paper will discuss the ventilation effectiveness directly in some of the 
described experiments, or indirectly in other experiments with concentration gradients 
and temperature gradients. Displacement ventilation will be covered by the discussion of 
a number of experiments showing both vertical gradients and velocity distribution in the 
occupied zone. Experiments are very important in connection with the development of 
Computational Fluid Dynamics. The experiments in this paper show processes which are 
influenced by low turbulent effects and therefore difficult to predict by a numerical 
method. The experiments do also define the situations with high turbulent level which are 
easier to predict. 

All the experiments are made in one of the three full-scale test rooms situated at 
Aalborg University. The rooms have the following dimensions given as length, width and 
height, respectively. 

5.4 m x 3.6 m x 2.4 m 

5.4 m x 3.6 m x 2.6 m 

8.0 m x 6.0 m x 4.5 m 

The two small rooms correspond to a typical office room for two persons or a 
small meeting room. The large room has dimensions which are sufficient for experiments 
with industrial air distribution systems. All the rooms can be changed into smaller 
dimensions. 

VENTILATION EFFECTIVENESS AND TEMPERATURE EFFECTIVENESS 

The air quality and the efficient use of air are as important as thermal comfort. 
Different definitions of effectiveness for the evaluation of an air distribution system have 
therefore been commonly used during the last years. 

The ventilation effectiveness shows how fast contaminant is removed from a room. 
It is defined as the ratio of concentration of the contaminant in the return opening to the 
concentration in areas of the ventilated room. 

The ventilation effectiveness eoc in the occupied zone is given by 

(1) 
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where c and c are concentration in return opening and mean concentration in the 
R oc 

occupied zone, respectively. 

A local ventilation index e is defined as 
p 

eR 
e =­

p c 
p 

(2) 

where c is the concentration in a point of the room, e.g. the breathing zone of a person. e 
p p 

is also the reciprocal value of the normalized concentration in the point p. 

A mean ventilation effectiveness e is given by 

(3) 

where c is the mean concentration in the whole room including areas outside the 
occupied zone. 

Equations (1) to (3) assume that the supply flow is uncontaminated and it is also 
assumed that both the contaminant process and the flow are steady. 

The efficient use of air in a room can also be studied by the temperature 
effectiveness eT of the occupied zone 

TR-To 
e = ---

T Toe -To 
(4) 

where T , T and T are temperature in return opening, temperature in supply opening 
R o oc 

and mean temperature in the occupied zone, respectively. 

All the variables e , e , e and eT as well as the dimensionless COncentration 
oc p 

c 1 eR and the dimensionless temperature (T-T)/(TR-T) are independent of the 
Reynolds number in case of isothermal flow or flow with constant Archimedes' number 
and fully developed turbulence. The Reynolds number for a given geometry is 
proportional to the air change rate n, to the supply velocity u or to the flow rate q . 

0 0 

The above-mentioned variables are therefore independent of n, u and q in case of 
0 0 

fully developed turbulence. A self-similar temperature distribution in a room at differet 
Reynolds' number is for example shown by Nielsen (1974). 
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The Archimedes number Ar is given by 

p . g . h . c.T 
Ar = 0 

2 
(5) 

uo 

where p , g and ll. T
0 

are volume expansion coefficient, gravitational acceleration and 

temperature difference between return flow and supply flow, respectively. u is the supply 
0 

velocity and h is a characteristic height which e.g. can be the slot height of a celing 
diffuser or the height of a wall mounted low velocity air terminal device for displacement 
flow. 

ROOM AIR MOVEMENT 

One of the main purposes of a design procedure is to find the maximum velocity 
in the occupied zone. This velocity is in case of mixing ventilation also the maximum 
velocity in the reverse flow u in situations where the main jets are outside the occupied 

rm 
zone. The velocity is often located close to the floor at a distance of 0.50 L to 0.7 L from 
the supply openings. 

Most of the experiments made at Aalborg University include measurements of the 
maximum velocity in the occupied zone u and measurements of the velocity distribution 

rm 
in the jets as well as measurements of the general velocity distribution. This paper will 
only review some of the u measurements. 

rm 

A normalized velocity as u 1 u will also be independent of the Reynolds 
rm o 

number or independent of n, u or q in case of a self-sernilar flow. As argued ealier this 
0 0 

type of air distribution takes place when fully developed turbulence and isothermal flow, 
or flow with constant Archimedes' number are present and it has for example been shown 
for jets and plumes by Turner (1979), and for room air motion by Miillejans (1963), 
Nielsen (1974), and Kato et al. (1988). 

A constant value of the dimensionless ratio urm 1 u
0 

for different Reynolds' 
numbers means that 

(6A) 

(6B) 
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uT71t = const n (6C) 

All the experiments with displacement ventilation shown in this paper are made 
with wall mounted low velocity air terminal devices. The supply air flows directly into the 
occupied zone and the maximum air velocity u , in different distances from the opening 

~ 

x, is therefore the important design velocity of the system. Mathiesen (1989); and 
Sandberg and Mattsson (1991); have worked with stratified flow in the occupied zone in 
a room with displacement flow. Nielsen (1990 and 1992); has shown that the stratified 
flow in practice can be described by 

(7) 

for radial flow from a single air terminal device and by 

ux 
- = K u dp 

0 

(8) 

for plane flow from a number of air terminal devices located close to each other. Kdr and 

K are functions of the Archimedes number and they are different for different types of 
ai'! terminal devices. The structure of equations 7 and 8 shows that the normalized 
velocity u 1 u is independent of the Reynolds number. The velocity depends on the 

~ 0 

Archimedes number via Kdr and Kdp. 

MIXING VENTILATION 

Mixing ventilation - or jet ventilation - is an air distribution principle where the 
air movement in the room is governed by the momentum flow from the supply openings. 
Jets are entering the room outside the occupied zone and they entrain air from the room 
and generate a recirculating flow with low velocity in the occupied zone. The basic idea 
of mixing ventilation is to obtain an even velocity and temperature distribution in the 
occupied zone due to a high level of recirculation. Contaminant from a source in the 
room is likewise dissolved in the recirculating flow and removed by the air exchange. 

Mixing Ventilation in Small Rooms 

The room in figure 1 has a side wall mounted air terminal device (air terminal 
device D). The jet flows through the room in the ceiling region and it entrains air in 
quantities that correspond to an internal air change rate of 20 to 60 h-1

. An emission 
source is located in the middle of the room and the concentration of the tracer gas is 
measured along a vertical line through the source. 
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Figure 1. Concentration distribution in a room with mixing ventilation and an end 
wall mounted heater. The two lowest figures show a vertical concentration profile 
without and with supply of heating to the room. Air terminal device D. Measured 
by Heiselberg and Nielsen (1988). 

Figure lB shows vertical concentration profiles for three different air change rates 
in case of isothermal flow. The concentration profiles are normalized by the 
concentration in the return opening and the deviation between the three profiles indicates 
that the flow is not fully developed. It is further shown that the dimensionless 
concentration is getting close to 1.0 at the highest air change rate (3 h"1

) in more areas 
of the room. 

Figure lC shows a very significant change which is obtained when heating is 
supplied to the room. Entrainment in the plume will increase the recirculating flow in the 
room corresponding to an internal air change rate of 20 h-1 and it will further generate 
a horizontal movement in the stratified air in the middle of the room. A combination of 
those two effects produces a very even concentration profile independent of the air 
change rate to the room. The results do necessarily not indicate a high turbulent level 
everywhere in the room. It can be concluded that free convective flow in some situations 
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is able to generate a very efficient mixing process in cases when a passive emission source 
is present in the room. 

Generally figure 1 shows that the concentration has a high level around and 
directly below the source. The source is placed in an area of the occupied zone where the 
air velocity is very low and the tracer gas will reach a high concentration level before it 
is entrained and discharged with the surrounding air in the room. Measurements by Oppl 
(1969) show a similar effect when the source is placed in an area with a low velocity. 

2.0 

1.0 

0.0 '---------'------"-----------'---' 
0.0 1.0 2.0 3.0 n(h- 1) 

Figure 2. e, e and e measured at isothermal flow in the room shown in figure 
oc p 

1. 

Figure 2 shows the level of information which can be obtained from measurements 

of the ventilation effectiveness in different versions. The mean ventilation effectiveness e 
indicates a very high level at the air change rate of 1 h"1

• The concentration profile shows 
that the concentration is high in the occupied zone but lower in the upper part of the 
room, see figure lB. The low concentration in the ceiling region will therefore decrease 

the mean concentration c to a value which is low compared with the level in the 
occupied zone. The ventilation effectiveness e shows a more realistic level of 

oc 

effectiveness and the ventilation index e shows the real situation at the given position 
p 

of the measuring point. All three values are dependent on the air change rate n. The 
flow is not a fully developed turbulent flow although it is indicated from the development 
of the curves that constant values might be obtained at higher air flow rates. This is an 
important problem in connection with CFD simulations because turbulence models, as 
the k-e model, will be unable to predict this effect. 
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Figure 3. Mean ventilation effectiveness in a room with two different locations of 
the return opening. Air terminal device A (Heiselberg and Nielsen 1987). 

It is well known that the return opening only has a very small influence on the 
velocity distribution in a room, but it may have large influence on the ventilation 
effectiveness as discussed in the following example. Figure 3 shows the mean ventilation 
effectiveness in a room with a wall mounted supply nozzle (air terminal device A) and 
two different locations of the return opening. The flow is isothermal and it is obvious 
from the measurements that a high location of the return opening will decrease the 
effectiveness at low air change rates. The flow in the room is not fully developed and the 
lower part of the room will only obtain air movement if the return opening is located in 
this region. 

The location of the return opening is also important for the effectiveness in case 
of non-isothermal flow. Low location is important in systems where heating takes place. 

A fully developed turbulent flow will show proportionality between the velocity at 
a given location in the room and the air change rate n, see equation 6C. Figure 4 shows 
the maximum velocity in the occupied zone versus the air change rate. The measurements 
for the empty room are made at isothermal flow. The experiments have been made up 
to very high values of n (outside the comfort range) in order to study the proportionality, 
and it is seen that deviations take place at low air flow rate while equation 6C is fulfilled 
for higher air flow rates outside the comfort range. 

Heating of the empty room with a heater will decrease the velocity u as shown 
rm 

in figure 4. The curves are measured at a constant heat load (600 W) and a variable 
Archimedes number. It is therefore not possible to make any conclusion on the presence 
of fully developed flow. 
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urm(m/s) 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0. 0 L....--'---L---'----L-l.--....JL--L-...L..J 

012345678 
A n(h-1) 

0 Empty room 

\7 Empty room, 600W 

o With furniture 

X With furniture 
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0.4 

0.3 

0.2 

0.1 

0.0 L....--'--'--L---'----'.___.JL--L.._..L..J 

012345678 

D n(~~ 

Figure 4. Maximum velocity in the occcupied zone of a room versus air change 
rate. Air terminal device A is a wall mounted nozzle and air terminal device D 
is a wall mounted diffuser with high entrainment. 

The experiments in figure 4 do also show the situation with light furnishings and 
people in the test room. Four tables and four chairs will reduce the maximum velocity 
in the occupied zone and four persons seem to give further reduction, but other 
measurements may also show increased velocity level in rooms with obstacles (furniture). 
The measurements in the empty room are reported by Heiselberg and Nielsen (1988), 
and the furnished room by G0thgen (1987). 

Xre (m) 

6r---------------------------, 

2 

0 L---~----~--~----~--~ 
0 20 40 60 

Figure 5. Penetration depth of a plane jet versus flow rate (Hau et al. 1985). 
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Figure 5 shows some experiments with isothermal two-dimensional flow and a 
small air change rate (0 to 2 h"1

). The recirculating flow in the occupied zone is very 
weak and it is not possible to measure any velocity of significance -outside the supply jet. 
The figure shows the outcome of smoke tests and it is obvious that the air movement is 
very dependent on the flow rate which indicates low turbulent effects. 

Mixing Ventilation in a Large Area 

Experiments with mixing ventilation have been made in a full-scale room with the 
height 4.5 m in order to simulate the situation in industrial areas. 

Figure 6. Fabric air flow duct with supply openings. 

urm -
L 

H 

~I 

Figure 6 shows the supply device which consists of a fabric air flow duct with more 
rows of small circular openings. The duct is mounted below the ceiling and the air 
pressure keeps it inflated. Jets from the openings merged into two plane wall jets with 
opposite direction below the ceiling and two recirculating areas are obtained in the room. 
A large industrial area is ventilated by a number of air flow ducts mounted below the 
ceiling in a distance of 2 L from each other. 

The maximum velocity u in the occupied zone is in practice a linear function of 
rm 

the flow rate for q
0 

~ 500 m3 /s, see figure 7. The velocity level is high but different 
layout of openings in the fabric duct will reduce the velocities to values down to 40% of 
the values shown in figure 7. Different dimensions of the ventilated area will of course 
also change the level of u . The measurements are made at isothermal flow and they 

rm 
indicate a fully developed turbulent flow, see equation 6B. Ventilation with cool air will 
increase the velocity u even without a reduction of the penetration depth of the wall 

rm 
jet below the ceiling. 
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Figure 7. Maximum velocity in the occupied zone versus flow rate in an area with 
plane recirculating flow. 

The flow in the room is mainly two-dimensional. This should also be expected 
because the boundary conditions will support this type of flow, but there are tendencies 
to higher velocities in two opposite corners of the four corners of the room. This type of 
problem is often met at measurements in rooms. The flow in the symmetric room 
discussed in the beginning of this chapter does also show some unsymmetric flow in areas 
with lower velocities as e.g. in the occupied zone. 

E..r 
1.2 .-----------'lr--, 

1. 0 :. ::: :;: ::::::: :;: ::::: :;: : :; ::::: ;: :::: ;: ::::::; :; :: :;:;::::::.:.:::::: ... ::::::: ;: :::::: ;: ::: ~ 

0.8 -D 
0.6 

0 .4 

0.2 

0.0 L--L--.L...--.L...--..1..----11 

-4 -2 0 2 4 

Figure 8. Temperature effectiveness r.T versus Archimedes' number Ar. 
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Figure 8 shows the variation of the temperature effectiveness. The air distribution 
system seems to be very efficient in the mixing process in cases with supply of cool air. 
The temperature effectiveness is close to 1.0 for Archimedes' number up to 14 · 10-6, and 
there is no variation in the temperatures in the occupied zone. 

The location of the return openings is important in case of heating (Ar < 0). A 
high location of the return openings will remove air from the room with a temperature 
which is higher than the temperature in the occupied zone, and this is inefficient in case 
of heating, see figure 8. The necessary heat loss from the room is obtained as conduction 
through the walls, and this may explain the temperature effectiveness being slightly larger 
than 1.0 in situations where the return openings have a low location. 

All the measurements shown in figures 7 and 8 are made by Bukh et al (1991). 

DISPLACEMENT VENTILATION 

Ventilation systems with vertical displacement flow have been used in industrial 
areas with high thermal loads for many years. Quite recently the vertical displacement 
flow systems have grown popular as comfort ventilation in rooms with lower thermal 
loads e.g. in offices. 

Figure 9 shows the main principle of displacement ventilation. The airflow q
0 

is 
supplied directly into the occupied zone at low velocity from a wall mounted diffuser. The 
plumes from hot surfaces, from equipment and from persons entrain air from the 
surroundings in an upward movement, and cold downdraft may transport air down into 
the occupied zone. A stratification will take place in a height where the flow q -q is 

yl y3 

equal to q
0 

in the situation shown in figure 9. 

t---------, 

Figure 9. Room with displacement flow and natural convection. 
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The displacement flow system has two advantages compared with a traditional 
mixing system. 

- An efficient use of energy. It is possible to remove exhaust air from the room 
where the temperature is several degrees above the temperature in the occupied 
zone, which allows a higher air inlet temperature at the same load. 

- An appropriate distribution of contaminant air. The vertical temperature 
gradient (or stratification) implies that fresh air and contaminated air are 
separated, and the most contaminated air can be found above the occupied 
zone. 

Temperature Distribution 

One of the characteristic parameters in displacement ventilation is the vertical 
temperature gradient. Heat from heat sources is supplied to the room as convection and 
radiation. Free convection will raise the ceiling temperature compared to the 
surroundings, and radiation from the ceiling will then increase the temperature of the 
floor, which on the other hand is cooled by the cold supply flow from the diffuser. The 
total effect is a vertical temperature gradient which is rather similar at different locations 
due to the stratified flow in the room. 

y/H 

1.0 

0 

0.8 
0 

X 

0.6 

0.4 

0.2 

0.0 
0.0 

Point source 

Four thermal 
manikins 

Floor heating 

0.2 0.4 0.6 0.8 1.0 1.2 
T- T0 

TR-To 

Figure 10. Vertical temperature gradients in a room with different heat sources 
at equal Archimedes' number (Christensen et al. 1990). 

Figure 10 shows the vertical temperature gradient for different heat sources. The 
point source is a small cylindrical heater with open heating elements, 0.3 x 0.1°. The 
thermal manikin is a black painted cylinder with the dimensions 1.0 x 0.4°. The floor 
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heating consists of more electrical heating carpets covering a large part of the floor 
surface. 

The location of the normalized temperature gradient in figure 10 depends on 
geometrical extension and temperature of the heat source. A concentrated heat source 
as the point source will give a temperature distribution with a high temperature 
effectiveness ET = 2.0. while four thermal manikins generate a temperature distribution 

with a lower effectiveness ET = 1.3. Floor heating shows a bad utilization of displacement 

flow with a temperature effectiveness of eT = 1.2. It is likely that the ratio between 
radiation and convection is an important parameter. A high level of this ratio will 
displace the curves to the right side in figure 10 because it will increase the amount of 
heat supplied to the floor. Experiments with four thermal manikins covered with 
aluminium foil support this theory because the vertical temperature profile in this 
situation is displaced to the left side in figure 10. 

The heat sources are located on the floor in the experiment shown in figure 10. 
A higher location of the sources will increase the temperature effectiveness. 

Practical engineering methods within displacement ventilation assume a linear 
temperature distribution in the room from the value 0.5( TR -T) at the floor to the value 

TR at the ceiling. This distribution is shown in figure 10 by the dotted line. 

y/H 

1.0 .-------------------o------, 

0.8 

0.6 

0.4 

0.2 

0 Four thermal manikins 

X One thermal manikin 
Three sedentary persons 

17 One thermal manikin 
Two sedentary persons 
One person in motion 

0.0 '-----"------'----..J........I.-'---'*l----'----' 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
T-T0 

TR-To 

Figure 11. Vertical temperature gradients in a room with thermal manikins, 
sedentary persons and persons in motion (Christensen et al. 1990). 

Figure 11 shows the vertical temperature distribution in a room with thermal 
manikins and persons. The manikins seem to give a sufficient thermal description of a 
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person. It is especially important to see that a person in motion is unable to spoil the 
stratification, and the measurements show only a slight reduction in the temperature 
effectiveness. Other measurements with heavy activity and an open door to the test room 
do also confirm the large stability of the stratified flow in the room. 

Concentration Distribution 

Efficient use of energy is one of the advantages of displacement ventilation. 
Another advantage, mentioned in the introduction to this chapter, is an appropriate 
distribution of contaminated air with a separation between fresh and contaminated air. 

y(m) 

2.4 ,.---------r--------, 

o Thermal con-
tamination sources 

o Passive con-
1.8 tamination source · 

1.2 

0.6 

0.0 .;-----,---,.----!-----,---....---~ 
0.0 1.0 2.0 c/cR 

Figure 12. Vertical contaminant distribution in a room with displacement 
ventilation (Brohus et al. 1992). 

The relative concentration distributions given in figure 12 show in one example 
a stratification with a high concentration in the upper area of the room and a low 
concentration in the lower part of the room. The heat load consists of four thermal 
manikins and the tracer gas ( C0

2
) is released in the plumes from the manikins. The 

average value of the concentration in the lower part of the room is 0.25 c R corresponding 

to a ventilation index of e = 4.0. The situation is different when the contaminant source 
is passive and located outside the plumes below the stratification height. The figure shows 
a high level of concentration in the room height corresponding to the height of the 
source. Very high concentrations may be obtained in this situation because the air 
movement is small in the area around the source and the contaminant is stabilized in a 
horizontal layer due to the temperature gradient. 
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The thermal boundary layer around a person entrains air from the surroundings. 
This air has a low content of contaminant in the lower part of . the room and it may 
therefore protect the persons although the breathing zone is located above the 
stratification level. Measurements show that the average concentration of 0.25 c R is found 

in the plume in heights where the concentration outside the plume is cR. This effect has 
also been shown by Holmberg et al. (1990); and Stymne et al. (1991). 

y(m} 

2.4 -,..----------.------------, 

o Four thermal 
manikins 

o Four sedentary 
1.8 persons 

1.2 

0.6 

\/ Two sedentary 
persons and two 
persons in motion 

0.0 1.0 2.0 c/cR 

Figure 13. Concentration distribution in a room with thermal manikins, sedentary 
persons and persons in motion (Brohus et al. 1992). 

It is important to preserve the stratification in the room when persons are present 
and in motion. Figure 13 shows the vertical concentration distribution with four thermal 
manikins. co

2 
is released in the plumes above the manikins. The relative concentration 

distribution for four persons is also shown and the C0
2 

concentration is, in this case, the 
values obtained from the presence of persons in the room. It is shown that two persons 
in motion are able to smooth the vertical gradient slightly, but it is in all situations 
possible to observe a stratification of C0

2
• 

Velocity Distribution at the Floor 

Wall mounted low velocity air terminal devices are often used in displacement 
ventilation. The air flow is supplied directly into the occupied zone and it is therefore 
important to have design methods which can predict the velocity distribution. A number 
of experiments in full-scale rooms have shown that the flow can be described as semi­
stratified. The velocity u in the distance x from the diffuser is inversely proportional to 

X 

x, see equation 7. The velocity level is individual for each diffuser (within certain limits), 
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and it is a function of the Archimedes number (Nielsen 1990 and 1992). It is also shown 
by experiments that the dimensionless velocity distribution is fairly independent of the 
Reynolds number in the area of practical relevance (Nielsen 1988). 
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Figure 14. Velocity decay in the flow from a wall mounted air terminal device 
(Berg and Larsen 1991). 

Figure 14 shows the velocity versus distance from the air terminal device. The 
velocity u is the maximum velocity in the profile and it is located 1 - 4 cm above the 

X 

floor. The curve in figure 14 corresponds to equaiton 7. It is seen that the measurements 
are in agreement with equation 7 for x ~ 2.0 m, and measurements on other diffusers 
show also good agreement very close to the diffuser. Equation 7 will in any case give a 
velocity equal to or higher than the actual velocity, and therefore a value which is 
suitable for a design procedures. 

The velocity distribution from a low level diffuser depends on the Archimedes 
number. Figure 14 shows the initial acceleration of the air velocity resulting from 
buoyancy effect. A large temperature difference and a small velocity, corresponding to 
a large Archimedes number, will produce a large initial acceleration. Figure 15 shows this 
effect in the variation of Kdr for a given low level diffuser. (The characteristic 

temperature difference is in this case T - T when T is the temperature in the height 
oc 0 oc 

1.1. m and T is the supply temperature). More of the diffusers show the linear relation 
0 

between Kdr and ..jAi but it is not the case for all diffusers , especially not for the 

situation close to ..fAi - 0. 
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Figure 15. Kdr in equation 7 versus the Archimedes number. 

CONCLUSION 

Ventilation effectiveness is strongly dependent on the room air movement and the 
contaminant source location. Although the basic idea behind mixing ventilation is to 
obtain a complete mixing of the air, it can be shown that there exist gradients in 
contaminant distribution in the room and this will give rise to effectiveness different from 
1.0. 

The normalized concentration distribution is a function of the air change rate at 
a lower level of the flow, n < 3 h~1• Natural convection in a room seems to increase the 
mixing process in such a way that the normalized concentration distribution gets close to 
1.0 at all air change rates. 

It is shown that the location of the return openings is very important compared 
with the small influence this location has on the velocity distribution in the room. 

The air flow rates in a room are often at a level where low turbulent effect takes 
place. This is shown for the maximum velocity in the occupied zone in the small test 
room with side wall mounted diffuser. The ventilation effectiveness is also strongly 
influenced by this effect and this stresses the importance of developments in turbulence 
models that can handle the problem when computational fluid dynamics is used for the 
prediction of the room air movement. Experiments at high air flow rates show self­
semilar flow fields with constant values of the normalized maximum velocity in the 
occupied zone, and constant values of ventilation effectiveness and temperature 
effectiveness. 

The ideas behind displacement ventilation is to achieve a high ventilation 
effectiveness and this is also obtained in many practical situation. It is shown that the 
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temperature gradient and the temperature effectiveness are influenced by the type of heat 
source. A point source will give a high temperature effectiveness while_ sources with large 
areas located close to the floor will give smaller temperature effectiveness. Both 
stationary sources and persons in motion are used and the movement of persons has only 
a small influence on the effectiveness. 

Ventilation effectiveness and vertical concentration gradients are also studied in 
a room with both stationary source and movable source. The vertical gradient is also 
present when persons are in motion. It is further shown that a passive, isothermal, 
contaminant source released in the occupied zone outside an area with convective flow 
may give use to a high concentration level. 

The flow from a low level diffuser is supplied directly into the occupied zone in 
case of displacement flow. It is shown how the maximum velocity in this flow can be 
described as a function of flow rate and Archimedes' number for different diffuser 
designs. The description of the velocity distribution is suitable for a design procedure. 
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