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DRAUGHT RISK FROM COLD VERTICAL SURFACES 

Per Heiselberg 

Aalborg University, Denmark 

ABSTRACT 

Glazed facades and atria have had a boom in the 1980's as an architectural feature in 
building design. Natural convective flows from these cold surfaces are in winter time, 
however, often the cause of thermal discomfort and there is a need for research to improve 
the design methods. 

The objective of the research is to develop expressions for the airflow beyond the floor 
area, which influences the thermal comfort in the occupied zone. 

Measurements of velocities and temperatures are carried out in a two-dimensional test case. 
They show that the characteristics of the flow in the near floor region are very similar to 
the characteristics of stratified flows. Expressions have been developed for the rate of 
decrement of the maximum velocity with distance from the surface and for the maximum 
temperature difference between the cold airflow along the floor and the rest of the 
occupied zone. 

INTRODUCTION 

Cold surfaces often generates thermal discomfort in rooms, due to cold radiation effects 
and down draught problems caused by the cold natural convective flows from these 
surfaces. As we design preventive actions we should note that the surfaces may also cause 
an unnecessary increase in energy consumption. There is a need for research in order to 
improve design methods for natural convective boundary layer flows, and under which 
circumstances there will be thermal comfort problems in the occupied zone, and how to 
solve them considering also the energy consumption? 

The development of natural convective boundary layer flows along a vertical plane surface, 
and the velocity distribution and temperature gradients of such flows, have been thoroughly 
investigated theoretically and experimentally by several researchers (1,2,3,4). 
The interest of the research has, however, ceased at the bottom edge of the surface and 
only a few researchers (5,6) have investigated what happens to the boundary layer flow as 
it hits a surface normal to it, here the floor, and continues into the occupied zone. 

The objective of the research is to contribute to improved design methods for natural 
convective flows along cold, vertical and plane surfaces, and especially continue the 
experimental work (5,6) to develop expressions for the velocities and temperatures in the 
airflow into the occupied floor area, which influence the thermal comfort in the occupied 
zone. 
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EXPERIMENTAL ARRANGEMENT 

The experiments mentioned in this paper were performed in a full-scale test room located 
in a laboratory hall. The dimensions of the room were 7 m x 6 m x 3 m (length x width x 
height). 18 cooled panel radiators (18 m2

) covered one of the end walls. There were no 
mechanical ventilation or heat sources in the room. 

The radiators were cooled by water and the surface temperature could be held within ± 5% 
of the average surface temperature. The measurements took place under steady-state 
conditions. The average surface temperature did not alter more than 0.3 oc during the 
measurements, and the temperature difference between the cooled surface and the occupied 
zone did not deviate more than ± 4% from the average value. The reference temperature in 
the occupied zone was measured 1.1 m above the floor in the middle of the room. 

Various temperature differences between the cooled surface and the occupied zone were 
studied. The velocities and temperatures in the two-dimensional airflow along the floor 
were measured at different heights (y = 0.01 - 0.5 m) above the floor and at different 
distances from the cooled surface (x = 0.2- 6.0 m). The velocities were measured by hot­
spheres (DISA low velocity anemometer type 54R10) as a mean velocity for an integration 
period of 5 minutes. The temperatures were measured at one minute intervals with 
thermocouples. 

THE MECHANICS OF COLD DRAUGHT 

If a vertical plane wall is cooled to a temperature lower than the surroundings, the layer of 
air adjacent to the wall is cooled by conduction. In this way, buoyant forces are generated 
which cause this layer to flow in a downward direction. This layer of air adjacent to the 
wall, to which the vertical motion is confined, is called the natural convection boundary 
layer. The boundary layer begins with zero thickness at the top of the vertical wall and 
increases in thickness in the downward direction. If the wall is placed in calm 
surroundings, the boundary layer flow at the top of the wall will be laminae and at a 
certain · distance from the top it will become turbulent. 

Solution of the boundary layer equations in the turbulent case, (1), gives the following 
relation for the maximum velocity, Umax, at the base of the cold vertical surface: 

umax = k .,fii7SC (m/ s) ( 1 ) 

where h is the height in metres of the vertical surface and l1 t is the temperature 
difference between the cooled surface and the reference in the occupied zone. The value of k 
obtained in previous experiments (1,5,6) varies between 0.052 and 0.10. 

The important issue in relation to thermal discomfort is, however, not the maximum 
velocity at the foot of the surface, but the maximum velocity in the occupied zone after the 
boundary layer flow has reached the floor, the rate of decrement of the maximum velocity 
with di~ance from the surface and the maximum temperature difference between the cold 
air flow along the floor and the rest of the occupied zone. 



3 

MEASUREMENT RESULTS 

Fi~e 1 shows th~ measured maximum velocity in the occupied zone, Umax, oc• as a 
funct10n of the hetght of the cold surface and the temperature difference between the 
surface and the reference in the occupied zone. It is seen that the maximum velocity can 
be expressed by equation (1) and that these experiments suggest the value of k to be 
0.055. 

umax, oc (m/ s) 

0.40 .--------------. 
umax, oc = 0. 055 {Ii7:ft 

0.30 
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Fig. 1. Maximum velocity in the occupied 
zone as a function of height of the surface 
and temperature difference between surface 
and room. 
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Fig. 2. Temperature difference ("tr - 1f.mm) as 
a function of the temperature difference Lit. 

Figure 2 shows the difference between the reference temperature and the minimum 
temperature in the cold airflow along the floor, (t:..- 1f.mm), in the occupied zone as a 
function of the temperature difference 1::. t between the reference temperature and the 
average surface temperature. It is seen that the relation is linear and that the maximum 
temperature difference in the occupied zone is 33% of A t. 

The maximum velocities and minimum temperatures shown in the figures 1 and 2. are 
measured at distances less than 0.4 m from the cold surface and less than 0.03 m from the 
floor. But what happens when the airflow penetrates further into the occupied zone? This 
is shown by figures 3-6. 

The measurements along the floor show that the flow field induced by the cold boundary 
layer flow at the vertical surface can be divided into three different zones. 

A zone close to the vertical surface where the flow changes from vertical to horizontal 
direction and a dense current is established. A second zone where the flow is basically a 
buoyant jet. Profile measurements in this zone show that the flow in the vicinity of the 
floor can be characterized by a normalized velocity profile. In figure 3, the velocity profile 
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is compared with the profile used for the description of isothermal wall jet flow, (7), and it 
can be seen that the profiles do not have the same shape. The length scale o in the 
profiles is defined as the height from the floor where the velocity has decreased to half the 
maximum velocity. In figures 4 and 5 it is shown that the height of the flow region is 
increasing linearly from a virtual origin behind the vertical surface, (x,= 1.31 m). The 
maximum velocity is decreasing proprotionally to the distance from this origin and not 

ylo 
1.50 -.------.------r---.-----, 

0.00 +-~--+-~--+-~--~~~ 
0.00 0.25 0.50 0.75 1.00 

u I umax 

Fig. 3. Measured velocity profiles in the 
airflow along the floor compared with 
theoretical velocity profile for isothermal 
wall jet flow. 
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Fig. 5. Normalized maximum velocity in 
the airflow region close to floor versus 
distance from the virtual origin. 
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Fig. 4. Growth of thickness of the cold 
airflow region along the floor with distance 
from the cold vertical surface. 
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Fig. 6. Decay of temperature difference 
between the reference temperature and the 
minimum temperature in the airflow along 
the floor. 
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proportionally to the square root of the distance, as an isothermal wall jet. In the last zone 
the measurements show that both the height of the flow region and the velocities are rather 
constant with a constant maximum velocity of nearly half the level of the overall 
maximum velocity in the occupied zone. Figure 6 shows that the minimum temperature in 
the flow region close to the floor, except for the zone close to the vertical surface, 
increases linearly with the distance. 

DISCUSSION 

The experiments indicate that the characteristics of the flow in the near floor region are 
very similar to the characteristics of stratified flows as they are shown in hydraulics, (8,9), 
and lately also in displacement ventilation, (10). In the stratified flow theory, the flow is 
divided into subcritical and supercritical flow domains. In the supercritical flow domain the 
flow will entrain room air with a lower density in a similar way as a wall jet. The 
entrainment decreases due to increasing local Richardson number and, in a certain distance, 
the flow becomes subcritical with no or very little entrainment of room air. 

The results also show two flow domains. One domain with growth of thickness of the flow 
region, indicating entrainment of room air into the cold air flow, and one with both a 
constant thickness and a constant velocity indicating no or very little entrainment of room 
air as typical for stratified flow. Further analysis of the measurements is needed before any 
final conclusions can be drawn. 

The results give the following expressions for the maximum velocity and the minimum air 
temperature in the near floor region as a function of the distance from the cold vertical 
wall: 

umax (x) = 0. 094 y'Ii7f"E 
X + 1. 31 

0.4:::x:::2.0 ( 2) 

umax (x) = 0. 028 .;n7ft X> 2. 0 ( 3) 

tf (x) = tr- (0.3- 0.034x) llt ( 4) 

The expressions are found for Grashof numbers between 1.12- 3.85 1010
• The measuring 

results give a maximum velocity in the occupied zone of only half the value of the 
calculated maximum velocity at the cold vertical surface. A~ a distance of more than two 
metres from the cold surface the maximum velocity has decreased to 25 % of the 
maximum velocity at the cold surface. The expressions should be used with caution, 
because the room geometry might influence the flow development along the floor and the 
location of the transition between the two flow domains. 

The equations (2) - (4) make it possible to estimate the "Percentage of Dissatisfied", PD, 
as defined in (11) because of cold downdraught. The percentage of dissatisfied is shown in 
figure 7 as a function of the temperature difference between the occupied zone and 
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Figure 7. Percentage of dissatisfied, PD, in 
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the cold vertical surface and the 
distance from the surface. The 
percentage of dissatisfied occupants 
decreases rapidly within the first two 
metres from the surface because of the 
decrement of the maximum velocity. 
Then, it becomes nearly constant in the 
rest of the room, with a percentage of 
dissatisfied occupants below 20 % for a 
temperature difference between the 
occupied zone and the cold surface 
below 10 °C. 

Further research will concentrate on 
partly cold surfaces which give a three­
dimensional airflow along the floor area 
and on further analysis of the 
characteristics of stratified flow 
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