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Interference Alignment Using Variational
Mean Field Annealing

Mihai-Alin Badiu∗, Maxime Guillaud† and Bernard Henri Fleury∗
∗ Aalborg University, Denmark

† Vienna University of Technology, Austria

Abstract—We study the problem of interference alignment in
the multiple-input multiple-output interference channel. Aiming
at minimizing the interference leakage power relative to the re-
ceiver noise level, we use the deterministic annealing approach to
solve the optimization problem. In the corresponding probabilis-
tic formulation, the precoders and the orthonormal bases ofthe
desired signal subspaces are variables distributed on the complex
Stiefel manifold. To enable analytically tractable computations,
we resort to the variational mean field approximation and thus
obtain a novel iterative algorithm for interference alignment.
We also show that the iterative leakage minimization algorithm
by Gomadam et al. and the alternating minimization algorithm
by Peters and Heath, Jr. are instances of our method. Finally,
we assess the performance of the proposed algorithm through
computer simulations.

I. I NTRODUCTION

Interference alignment (IA), which was introduced in [1] for
the MIMO interference channel, has received a lot of attention
in recent years since it is a key ingredient in achieving the full
degrees-of-freedom of the channel. It consists in making sure
that the interference received from multiple interferersaligns
at each receiver in a linear subspace of limited dimension;
the remaining dimensions can be used for interference-free
communication.

The existence of an IA solution given the channel dimen-
sions and the rank of the transmitted signals has been studied
in [2], and more recently in [3], [4]. The number of such
solutions has been studied in [5], for the single-stream case.
Despite its deceptively simple mathematical formulation,no
general closed-form solution to the IA equations is avail-
able (although it exists for certain dimensions, see e.g. [6]).
Numerical algorithms based on alternating optimization were
introduced in [7], [8]. A distributed version based on message-
passing over a graph is proposed in [9]. In [10], the authors
introduce a distributed algorithm which achieves a smooth
trade-off between the interference-limited regime (whereIA
is optimal) and the noise-limited regime (where a selfish
approach based on the direct channel only is preferable).

In this paper, we formulate the IA problem as an opti-
mization problem whose cost function is the totalweighted
interference leakage and employ the deterministic annealing
(DA) approach. DA is an optimization heuristic inspired by
the annealing process (hence its name) in physical chemistry
which aims at driving a physical system (e.g., a glass or metal)
in its lowest energy state by keeping it at thermal equilibrium
while slowly decreasing the temperature. Constructed within a

probabilistic framework, DA introduces controlled randomness
of the solution (quantified by Shannon entropy), which is
gradually reduced. DA was shown to be successful in avoiding
poor local minima and initialization issues in optimization
problems, such as clustering, classification, regression and
others [11], [12]. Note that DA differs from the stochastic
optimization method of simulated annealing. Although both
have the same underlying principle, the latter algorithm relies
on sequentially sampling the solution space at random, and the
decision to accept a new possible solution is randomly taken
based on the cost reduction relative to the current solution;
this sampling procedure makes it slower than deterministic
techniques. In contrast, DA analytically estimates expected
values of the system variables.

To enable analytical computations, we use DA in combina-
tion with the variational mean field method [13] and obtain
a distributed iterative algorithm that has the algorithms [7],
[8] as special cases. The proposed algorithm is numerically
evaluated in terms of convergence and achieved sum rate.

Notation: Boldface lowercase and uppercase letters are used
to represent vectors and matrices, respectively; then × n
identity matrix is written asIn; superscripts(·)T and (·)H

denote transposition and Hermitian transposition, respectively.
The trace of a matrix is denoted bytr(·); the scalar-valued
function of matrix argumentetr(·) stands forexp(tr(·)). The
expectation of a random variables is denoted by〈·〉. We denote
by CVk,n, k ≤ n, the complex Stiefel manifold represented
by the setCVk,n =

{

X ∈ Cn×k | XHX = Ik
}

.

II. PROBLEM STATEMENT

We consider the communication over theK-user MIMO
interference channel using linear precoding at the transmitters.
Transmitteri, with i ∈ K = {1, . . . ,K}, is equipped with
Mi antennas and uses the precoding matrixVi ∈ CVdi,Mi

to
encodedi data streams. The data symbols inxi ∈ Cdi are i.i.d.
zero mean circularly symmetric complex Gaussian random
variables, with〈xix

H
i 〉 = ρi Idi

, whereρi is the transmit power
per stream. The signalyi ∈ CNi acquired by theNi antennas
of the ith receiver reads

yi = HiiVixi +
∑

j∈K\i

HijVjxj + zi. (1)

In (1), Hij ∈ CNi×Mj is the matrix corresponding to the
static, flat-fading channel between transmitterj and receiver
i, while the noise vectorzi ∈ CNi is zero mean complex
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Gaussian with covariance〈zizHi 〉 = γ−1
i INi

, whereγi is the
precision (inverse variance).

Our goal is to design the precoding matricesVi, i ∈ K,
so that interference alignment is achieved. That is, for each i,
the interfering signals at receiveri should lie in a subspace of
CNi whose dimension is at mostNi − di, such that thedi-
dimensional orthogonal complement is interference-free.The
conditions for interference alignment can be written as

rank ([{HijVj}j 6=i]) ≤ Ni − di, ∀i ∈ K, (2)

where theNi-by-
∑

j 6=i dj matrix [{HijVj}j 6=i] is obtained
through horizontal concatenation.

III. D ESIGN OBJECTIVE

Similar to [7], [8], our general design principle is to
minimize the power of the interference leaking in the desired
signal subspace at each receiver. Unlike those works, in the
cost function that we define the interference leakage at each
receiver is weighted by the receiver noise precision.

Let us define the matrixWi ∈ CVdi,Ni
whose columns

form an orthonormal basis for the subspace where receiver
i expects its desired signal to lie. Note thatWiW

H
i is the

projector onto the desired signal subspace. Based on (1), the
leaked interference signal at receiveri is

li , WiW
H
i

∑

j∈K\i

HijVjxj .

Using the statistical assumptions about the data symbols, we
obtain the average power of the leaked interference

Li(V∼i,Wi) = 〈tr
(

lil
H
i

)

〉

=
∑

j∈K\i

ρj tr
(

VH
j H

H
ijWiW

H
i HijVj

)

whereV∼i represents all precoders other thanVi. The power
of the noise that lies in the signal subspace at receiveri is
〈tr

(

WiW
H
i ziz

H
i WiW

H
i

)

〉 = diγ
−1
i .

We define the cost function depending on the configuration
Ω , {V1, . . . ,VK ,W1, . . . ,WK} as the totalweighted
interference leakage

E(Ω) =
K
∑

i=1

κi Li(V∼i,Wi)

=
∑

i∈K

κi

∑

j∈K\i

ρj tr
(

VH
j H

H
ijWiW

H
i HijVj

)

. (3)

In (3), the normalized weightsκi, i ∈ K, are proportional to
the precisions of the noise lying in the desired signal subspaces
at the corresponding receivers, i.e.,

κi =
γi/di

∑

j∈K γj/dj
.

The motivation behind employing such weighting is to capture
in the cost function (3) the fact that interference leakagesof
the same magnitude at receivers with different noise powers
have different impacts on their individual performance.

We aim at finding the configurationΩ∗ that minimizes (3):

Ω∗ = argmin
Ω

E(Ω) (4)

Being a power,E(Ω) ≥ 0; whenE(Ω∗) = 0, the obtained
precoders satisfy theK conditions (2), meaning that IA is
feasible. Note that the solution to (4) is not unique.

IV. PROPOSEDMETHOD

In this section, we use the deterministic annealing approach
to solve the optimization problem (4). To obtain tractable
computations, we employ the variational mean field method
and thus obtain a distributed, iterative algorithm for com-
puting IA solutions. We also show how the iterative leakage
minimization algorithm [7] and the alternating minimization
algorithm [8] can be instantiated from our approach.

A. Principles of Deterministic Annealing

In DA, the admissible (candidate) solutions are governed by
a pdfp(Ω) of the configurations. Noting thatE(Ω) represents
the cost of operating over the interference channel with the
precoders and bases inΩ, we define the expected cost

U(p) = 〈E(Ω)〉p

The expected cost is minimized with respect top(Ω) sub-
ject to a constraint on the level of randomness of the
admissible solutions, quantified by the Shannon entropy
S(p) = −〈log p(Ω)〉p. Therefore, the original optimization
problem (4) is restated as that of minimizing the extended
objective function

F (p) = U(p)− T S(p), (5)

in which entropy acts as a penalty and the positive parameter
T controls the tradeoff between minimizing the expected cost
and entropy maximization. WhenT is very large, we basically
maximize the entropy, while asT approaches zero we fall
back to solving the original problem (4) to obtain a hard
(deterministic) solution.1 For a fixed value ofT , minimizing
F with respect top gives the pdf

pG(Ω) =
1

Z
exp

(

−
E(Ω)

T

)

(6)

whereZ is the normalizing constant.
An analogy to statistical physics is in order. Our2K matrix

variables, namely the precodersVi and orthonormal bases
Wi, i ∈ K, characterize a physical system in stateΩ. The
internal energy of the system is our expected costU , while
its entropy is given byS. The objective function (5) is merely
the Helmholtz free energy and the parameterT is therefore the
system temperature controlling the level of randomness. Ac-
cording to the fundamental principle of minimal free energy,
the system achieves the minimum ofF at thermal equilibrium,
at which point it is governed by the Gibbs pdfpG in (6).

The Gibbs pdf (6) is parameterized by the temperature.
High values ofT smooth the pdf – at very high values it

1Indeed, whenT = 0, direct minimization ofU(p) gives the Diracδ
function δ(Ω −Ω∗) with Ω∗ in (4).



approaches the uniform pdf, in which case any configuration
Ω is equally good. AsT is lowered, more and more “structure”
(complexity) ofE(Ω) is revealed. WhenT approaches zero,
the pdf becomes highly peaked about the solutionΩ∗.

For a given temperature, the main idea of DA is to an-
alytically approximate the expectations of the optimization
variables at thermal equilibrium. Starting at high temperature,
DA tracks the evolution of the expectations by gradually
reducing the temperature. However, in most cases it is not
possible to analytically compute expectations with respect to
the Gibbs pdfpG. To enable analytical computations, the
extended objective function (5) is minimized over a restricted
class of pdfs (one that allows for tractable computations).

B. Distributed Iterative Algorithm for Interference Alignment

We employ the mean field approximation to obtain ana-
lytically tractable computations. That is, for a givenT , we
consider the minimization of the objective function (5) over
the class of fully-factorized pdfs of the form

q(Ω) =

K
∏

i=1

q(Wi)

K
∏

j=1

q(Vj) (7)

where each factor—called the belief of the respective
variable—is defined on the corresponding complex Stiefel
manifold. It can be shown that minimizing the free energy
over the restricted class is equivalent to finding that member
of the class with minimum Kullback-Leibler divergence from
the Gibbs pdfpG. The minimization is performed with respect
to each belief in turn while keeping the other beliefs fixed.
The optimal belief of a certain variablev ∈ Ω is [13]

q(v) ∝ exp

(

−
1

T
〈E(Ω)〉q(∼v)

)

(8)

where 〈·〉q(∼v) denotes the expectation with respect to the
product of the beliefs of all variables inΩ other thanv. The
beliefs are updated sequentially and the resulting iterations are
guaranteed to converge. Note that such iterative computations
are performed for each temperature value. In this way, the
annealing process becomes the outer loop of the overall
optimization algorithm.

In the following we compute the expressions of the beliefs
of the precoders and orthonormal bases. To fix some nota-
tions, we denote the second moments of these matrices by
Qj = 〈VjV

H
j 〉q(Vj) and Ri , 〈WiW

H
i 〉q(Wi), i, j ∈ K.

Plugging (3) in (8), we obtain

q(Vj) ∝ etr



−
ρj
T
VH

j

∑

i6=j

κiH
H
ij〈WiW

H
i 〉q(Wi)HijVj





=
1

c(Sj)
etr

[

VH
j SjVj

]

(9)

whereSj = −
ρj

T

∑

i6=j κiH
H
ijRiHij andc(Sj) is the normal-

izing constant determined bySj . Similarly, we obtain

q(Wi) =
1

c(Ti)
etr

(

WH
i TiWi

)

(10)

whereTi = −κi

T

∑

j 6=i ρjHijQjH
H
ij and c(Ti) is the nor-

malizing constant.
Observe that (9) and (10) are pdfs of a distribution on the

complex Stiefel manifold. The form of the pdfs resembles
that of the matrix Bingham distribution on the real Stiefel
manifold [14]. However, to the best of our knowledge, we
are not aware of any work that extends the matrix Bingham
distribution to the complex Stiefel manifold. Therefore, we
refer to the distribution as the complex matrix Bingham
distribution and compute the normalizing constant and second
moment of its pdf in the Appendix.

According to our results in the Appendix, the normalizing
constant (15) of the complex matrix Bingham pdf is deter-
mined by the eigenvalues of its matrix parameter, while its
second order moment (19) is given by both the eigenvalues and
the eigenvectors of the parameter. Thus, the second moments
Qj and Ri are computed based on the eigenvalues and
eigenvectors of the matrix parametersSj andTi, respectively.

Algorithm 1 outlines the main steps of the proposed deter-
ministic annealing algorithm. The total number of iterations is
the number of times the inner loop is executed. The annealing
loop can be stopped whenT drops below a minimum value or
when a specific number of iterations is reached. The inner loop
is repeated until the relative reduction of the average costfrom
one iteration to the next becomes smaller than a threshold.
Note that at the end of the iterative process the pdfsq(Vj)
andq(Wi) will be highly peaked about their mode (practically
they are Dirac delta functions).

Algorithm 1 Outline of the deterministic annealing algorithm
Set the initial temperatureT ← T0 (e.g.,T0 = 100)
Initialize Qj = IM , for all j ∈ K
repeat

repeat
ComputeTi andRi, for all i ∈ K
ComputeSj andQj , for all j ∈ K

until convergence
T ← η T (e.g.,η = 0.9)

until convergence
Vj ← the dj most dominant eigenvectors ofSj , ∀j ∈ K
Wi ← the di most dominant eigenvectors ofTi, ∀i ∈ K

C. Special Instances

To obtain the iterative leakage minimization algorithm [7],
in the following we keep the temperature fixed toT = 1
(i.e., no annealing) and constrain the beliefs in (7) to be
Dirac delta pdfs:q̂(Vj) = δ

(

Vj − V̂j

)

and q̂(Wi) =

δ
(

Wi − Ŵi

)

. Consequently, the second moments areQj =

V̂jV̂
H
j and Ri = ŴiŴ

H
i . According to [15], the point

estimatesV̂j andŴi are the maximizers of expressions (9)
and (10), respectively. This means that, for allj ∈ K, the
columns of V̂j are thedj least dominant eigenvectors of
the matrix

∑

i6=j κiH
H
ijŴiŴ

H
i Hij . Similarly, the columns
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Fig. 1. Convergence of the interference leakage for one random realization
of the channel. The continuous lines correspond to the DA algorithm with
initial temperatureT0 = 100 andη ∈ {0.95, 0.9, 0.5, 0.1}.

of Ŵi are thedi least dominant eigenvectors of the matrix
∑

j 6=i ρjHijV̂jV̂
H
j H

H
ij , for all i ∈ K. Note that by setting the

weightsκi = 1, for all i ∈ K, and iteratively updatinĝVj and
Ŵi we obtain the distributed algorithm [7].

It can be shown in a similar way that the alternating
minimization algorithm [8] is an instance of our algorithm.
For this, we have to re-parameterize the problem so thatWi

is anNi×(Ni−di) matrix whose columns are an orthonormal
basis for theinterference subspace of receiveri. At the same
time, we need to setκi = ρj = 1, for all i, j ∈ K.

V. SIMULATION RESULTS

We use computer simulations to evaluate the proposed
deterministic annealing (DA) algorithm and compare it against
the iterative leakage minimization (ILM) algorithm [7].

In the first experiment, we analyze the convergence of the
algorithm for the following system parameters making IA
feasible:K = 3, M = N = 4, d = 2. The entries of
the channel matrices are independent and have a complex
Gaussian distribution with unit variance. The scenario is sym-
metric, i.e., the transmitters and receivers have same powers
and noise levels, respectively. The total interference leakage is
L =

∑K

i=1 Li(V∼i,Wi). For a random channel realization,
Fig. 1 shows thatL of DA converges faster than ILM and
that, to some extent, using lower values of the annealing
factor η tends to speed up convergence. To further analyze
convergence, we illustrate in Fig. 2 the empirical probability
of L < 10−10 (basically, of achieving IA) at a given iteration
computed from1000 realizations of the channel. It can be
noticed that DA with higher values ofη require more iterations
to converge, while forη = 0.5 and η = 0.1 DA converges
faster than ILM.

In the second experiment, we consider a system setting
for which IA is not feasible. In particular, we setK = 4,
M = N = 4, d = 2 and assume an asymmetric scenario,
i.e., the receiver noise precisions are different:γ1 = 100,
γ2 = 40, γ3 = 10, γ4 = 5. This could correspond, for
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Fig. 3. Empirical distribution of the sum rate at the500th iteration based on
1000 channel realizations for the asymmetric scenario. For the DA algorithm,
T0 = 100 andη = 0.9.

example, to a situation when the users experience different
levels of uncoordinated interference. We notice in Fig. 3,
which shows the probability of occurrence of the sum rate,
that DA ensures significantly higher sum rates in this scenario.
This is also supported by Fig. 4 which displays the average
sum rate and the individual average rates of the users with
highest and lowest noise precisions. Due to the weighting in
the cost function (3), DA tries to align the interference mostly
at user1, while ILM attempts to achieve IA at each user, as
it can also be seen in Fig. 5.

VI. CONCLUSION

We formulated the interference alignment as an optimization
problem whose cost function weights the interference leakages
at the receivers according to their inverse noise power. By
employing the deterministic annealing method in conjunction
with the mean field approximation, we obtained a novel
iterative algorithm that includes some existing methods as
special instances. For some settings of the annealing scheme,
the DA algorithm showed better convergence performance than
the ILM method. Moreover, in an asymmetric scenario where
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IA is not feasible, the proposed weighting enables significantly
higher sum rates than ILM.

The paper opens several interesting directions. To further
improve convergence speed, it could be relevant to study other
approximations than mean field (e.g., the Bethe approxima-
tion). At the same time, it would be pertinent to extend the
method to include channel uncertainty or to study other cost
functions that are more focused on sum rate optimization.
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APPENDIX

The Bingham distribution of a random vector on the real
or complex unit sphere and that of a random matrix on the
real Stiefel manifold are well established [14], [16]. In this
appendix, we extend the matrix Bingham distribution to the

complex-variate case. The complex Stiefel manifoldCVk,n is
represented by the setCVk,n =

{

X ∈ Cn×k | XHX = Ik
}

.
For k = 1, CVk,n is the complex sphere, while fork = n it
is the unitary groupU(n). By analogy with the real matrix
Bingham pdf, we consider that the complex matrix Bingham
distribution has the pdf

f(X;A) =
1

c(A)
etr

(

XHAX
)

(11)

with respect to the invariant measure onCVk,n, where then×k
matrix A is Hermitian andc(A) is the normalizing constant.
In the following we determine the normalizing constant and
second-order moment of the pdf (11).

A. The normalizing constant

The normalizing constant is given by

c(A) ,

∫

CVk,n

etr
(

XHAX
)

(XH dX) (12)

where the differential form(XH dX) is the unnormalized
invariant measure onCVk,n. It is important to notice that
the normalizing constant (12) is actually determined only
by the eigenvalues of the Hermitian matrixA expressed as
A = UΛUH, whereU ∈ U(n) andΛ = diag(λ1, . . . , λn) ∈
Rn×n. Indeed, since(XH dX) is invariant, we make the trans-
formationX→ UX in (12) and obtain thatc(A) = c(Λ).

We start by evaluating the integral

I(A,B) ,

∫

U(n)

etr
(

AZBZH
)

(ZH dZ) (13)

whereB = diag(b1, . . . , bn), bi ∈ R for all i = 1, . . . , n.
The differential form(ZH dZ) is the unnormalized invariant
measure onU(n) [17]. The normalized invariant measure,
i.e., the uniform probability measure onU(n), is (dZ) ,

1
vol(U(n))(Z

H dZ), where vol(U(n)) is the volume of the
unitary group. The integral (13) evaluates to

I(A,B) = vol(U(n))

∏n−1
i=1 i!× det

(

[

eλibj
]

1≤i,j≤n

)

∏n

i<j(λj − λi)
∏n

i<j(bj − bi)
(14)

where we used the Harish-Chandra-Itzykson-Zuber integral
formula [18].

On the other hand, Lemma 9.5.3 in [19] enables us to first
integrate in (13) over the lastn − k columns ofZ with the
first k columns being fixed, and then to integrate over the
first k columns. DefiningB1 = diag(b1, . . . , bk) andB2 =
diag(bk+1, . . . , bn), we obtain

I(A,B) =

∫

X∈CVk,n

etr
(

AXB1X
H
)

×

∫

K∈U(n−k)

etr
(

A(GK)B2(GK)H
)

(KH dK)(XH dX)

whereG = G(X) is anyn×(n−k) matrix with orthonormal
columns that are orthogonal to those ofX. Specializing



I(A,B) for b1 = . . . = bk = 1 andbk+1 = . . . = bn = 0, we
get

I(A,B)

∣

∣

∣

∣

B1=Ik
B2=0

= c(A) vol(U(n− k))

Using now the result (14), we obtain

c(A) =
vol(U(n))

∏n−1
i=1 i!

vol(U(n− k))
∏n

i<j(λj − λi)

× lim
b1,...,bk→1

bk+1,...,bn→0

det
(

[

eλibj
]

1≤i,j≤n

)

∏n
i<j(bj − bi)

Employing [20, Th. 2.9] to evaluate the limit and using the
fact that vol(U(p)) = 2pπp2

/CΓp(p) [17], whereCΓp(·) is
the complex multivariate gamma function, we finally obtain
the normalizing constant

c(Λ) =
2kπkn

CΓk(k)
×

(−1)k(k−n) det (M(Λ))
∏n

i<j(λj − λi)
(15)

where the matrixM(Λ) is










eλ1 λ1e
λ1 · · · λk−1

1 eλ1 1 λ1 · · · λn−k−1
1

eλ2 λ2e
λ2 · · · λk−1

2 eλ2 1 λ2 · · · λn−k−1
2

...
...

. . .
...

...
...

. . .
...

eλn λne
λn · · · λk−1

n eλn 1 λn · · · λn−k−1
n











B. The second-order moment

Given that the measure(XH dX) is invariant, we make the
transformationX→ UX and obtain the second moment

Σ , 〈XXH〉f(X;A) = UΓUH (16)

wherec(A) = c(Λ) is given by (15) andΓ = 〈XXH〉f(X;Λ).
It can be shown thatΓD = DΓ for any diagonal unitary
matrix D by using again the invariance of(XH dX) under
X→ DX. It follows thatΓ = diag(γ1, . . . , γn).

Defining the diagonal matrixT = diag(t1, . . . , tn) with
ti ∈ R, we compute the expected value of the expression
etr

(

XHTX
)

with respect tof(X;Λ) in two different ways.
First, direct evaluation gives

〈etr
(

XHTX
)

〉f(X;Λ) = [c(Λ)]
−1

c(T+Λ) (17)

Then, we use the Taylor series expansion of the exponential
function. Applying〈·〉f(X;Λ) on both sides of

etr
(

XHTX
)

= 1 + tr
(

XHTX
)

+
1

2!

[

tr
(

XHTX
)]2

+ . . .

we obtain

[c(Λ)]−1 c(T+Λ) = 1 + tr(TΓ) + . . .

where the higher-order terms (not displayed) are homogeneous
polynomials int1, . . . , tn of degree higher than two. So, we
take the derivative with respect to eachti on both sides and
evaluate the result att1 = . . . = tn = 0. Doing so, we obtain

γi = [c(Λ)]
−1 ∂c(T+Λ)

∂ti

∣

∣

∣

∣

T=0

= [c(Λ)]
−1 ∂c(Λ)

∂λi

(18)

for all i = 1, . . . , n. Thus, based on (16), the second-order
moment is

Σ = Udiag (γ1, . . . , γn)U
H (19)

with γi given by (18).
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