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Abstract—We study the problem of interference alignment in probabilistic framework, DA introduces controlled randwess
the multiple-input multiple-output interference channel. Aiming  of the solution (quantified by Shannon entropy), which is

at minimizing the interference leakage power relative to tie re-  g.5qy31ly reduced. DA was shown to be successful in avoiding
ceiver noise level, we use the deterministic annealing appach to | | mini d initializati . ; timizati
solve the optimization problem. In the corresponding probdilis- poor local minima and initialization ISSUES Inoptimizatio

tic formulation, the precoders and the orthonormal bases otthe Problems, such as clustering, classification, regressiuh a
desired signal subspaces are variables distributed on themplex others [11], [12]. Note that DA differs from the stochastic

Stiefel manifold. To enable analytically tractable compuations, optimization method of simulated annealing. Although both
we resort to the variational mean field approximation and thus have the same underlying principle, the latter algorithfiese

obtain a novel iterative algorithm for interference alignment. tiall lina th luti t d tand t
We also show that the iterative leakage minimization algothm on sequentially sampling the solution space at random,

by Gomadam et al. and the alternating minimization algorithm  decision to accept a new possible solution is randomly taken
by Peters and Heath, Jr. are instances of our method. Finally based on the cost reduction relative to the current solution

we assess the performance of the proposed algorithm through this sampling procedure makes it slower than deterministic
computer simulations. techniques. In contrast, DA analytically estimates exgect
values of the system variables.

To enable analytical computations, we use DA in combina-

Interference alignment (I1A), which was introduced in [1j fotion with the variational mean field method [13] and obtain
the MIMO interference channel, has received a lot of atbenti a distributed iterative algorithm that has the algorithig [
in recent years since it is a key ingredient in achieving thke f [8] as special cases. The proposed algorithm is numerically
degrees-of-freedom of the channel. It consists in makimg swevaluated in terms of convergence and achieved sum rate.
that the interference received from multiple interferaligns Notation: Boldface lowercase and uppercase letters are used
at each receiver in a linear subspace of limited dimensia; represent vectors and matrices, respectively; 1the n
the remaining dimensions can be used for interference-fidentity matrix is written asl,,; superscripts(-)" and ()"
communication. denote transposition and Hermitian transposition, respay.

The existence of an IA solution given the channel dimerthe trace of a matrix is denoted hy(-); the scalar-valued
sions and the rank of the transmitted signals has been dtudignction of matrix argumengtr(-) stands forexp(tr(-)). The
in [2], and more recently in [3], [4]. The number of suctexpectation of a random variables is denoted-hyWe denote
solutions has been studied in [5], for the single-streane.caby CVy. ,,, k¥ < n, the complex Stiefel manifold represented
Despite its deceptively simple mathematical formulatioa, by the setCVy, ,, = {X € Cnxk | XHX = Ik}.
general closed-form solution to the IA equations is avail-
able (although it exists for certain dimensions, see e.]). [6
Numerical algorithms based on alternating optimizatiomeve We consider the communication over tié-user MIMO
introduced in [7], [8]. A distributed version based on megsa interference channel using linear precoding at the tratterai
passing over a graph is proposed in [9]. In [10], the authofsansmitteri, with i € K = {1,..., K}, is equipped with
introduce a distributed algorithm which achieves a smoofd; antennas and uses the precoding ma¥fixe CVg, 1, t0
trade-off between the interference-limited regime (whigke encodel; data streams. The data symbolsine C% are i.i.d.
is optimal) and the noise-limited regime (where a selfistero mean circularly symmetric complex Gaussian random
approach based on the direct channel only is preferable). variables, with(x;x!') = p; I,,, wherep; is the transmit power

In this paper, we formulate the IA problem as an optier stream. The signai; € C" acquired by theV; antennas
mization problem whose cost function is the totadighted Of the ith receiver reads
interference leakage and employ the deterministic anmgali _
(DA) approach. DA is an optimization heuristic inspired by yi = HiVixi + Z _Hi-jv-jxj +zi (3)
the annealing process (hence its hame) in physical chegmistr jeKd
which aims at driving a physical system (e.g., a glass or inetén (1), H;; € CNi*Mi js the matrix corresponding to the
in its lowest energy state by keeping it at thermal equilibri static, flat-fading channel between transmitfeand receiver
while slowly decreasing the temperature. Constructedimih i, while the noise vector; € C»i is zero mean complex

I. INTRODUCTION

Il. PROBLEM STATEMENT
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Gaussian with covariance;z!!) = 'y;lINl., where~; is the We aim at finding the configuratiof?,. that minimizes (3):
precision (inverse variance). _ .

Our goal is to design the precoding matric¥s, i € K, = argugh E() )
so that interference alignment is achieved. That is, foh€ac Being a power,E(Q) > 0; when E(£2,) = 0, the obtained

the interfering signals at receiveshould lie in a subspace of pracoders satisfy thée conditions (2), meaning that IA is
C¥: whose dimension is at mosY; — d;, such that theli-  feasible. Note that the solution to (4) is not unique.

dimensional orthogonal complement is interference-fide
conditions for interference alignment can be written as IV. PROPOSEDMETHOD
In this section, we use the deterministic annealing apfroac

rank ([{Hy;V;}jzi]) < Ni —di,  Vie K, @) o solve the optimization problem (4). To obtain tractable
where theN;-by-Y" ., d; matrix [{H;;V;};.] is obtained computations, we employ the variational mean field method
through horizontal concatenation. and thus obtain a distributed, iterative algorithm for com-
puting IA solutions. We also show how the iterative leakage

[11. DESIGNOBJECTIVE minimization algorithm [7] and the alternating minimizzi

Similar to [7], [8], our general design principle is todlgorithm [8] can be instantiated from our approach.
minimize the power of the interference leaking in the debires Principles of Deterministic Annealing
signal subspace at each receiver. Unlike those works, in the]\n

: , . DA, the admissible (candidate) solutions are governed by
cost function that we define the interference leakage at each ! . .
L ) . : . a pdfp(Q2) of the configurations. Noting thd(2) represents
receiver is weighted by the receiver noise precision. . . .
. . the cost of operating over the interference channel with the
Let us define the matriW,; € CVq, v, Whose columns

form an orthonormal basis for the subspace where recei\?erFCOderS and bases 2, we define the expected cost

i expects its desired signal to lie. Note tHaf, W is the U(p) = (E(2)),
projector onto the desired signal subspace. Based on @),

leaked interference signal at receiveis I[the expected cost is minimized with respectp@?) sub-

ject to a constraint on the level of randomness of the
1iéwiwﬁ Z H;;V;x;. admissible solutions, quantified by the Shannon entropy

jER\ S(p) = —(logp(82)),. Therefore, the original optimization
roblem (4) is restated as that of minimizing the extended
jective function

F(p)=U(p) =T S(p), (5)

in which entropy acts as a penalty and the positive parameter
T controls the tradeoff between minimizing the expected cost
and entropy maximization. Wheéh is very large, we basically
whereV .; represents all precoders other thdn The power maximize the entropy, while a¥' approaches zero we fall

of the noise that lies in the signal subspace at receiver back to solving the original problem (4) to obtain a hard

Using the statistical assumptions about the data symbadas,
obtain the average power of the leaked interference

Li(VNi7 Wl) = <tI‘ (111?»

= > pitr (VIHIW,WI'H,; V)
jeK\i

(tr (W, WhzzBW,WH)) = ¢, (deterministic) solutiort. For a fixed value ofl’, minimizing
We define the cost function depending on the configuratidn with respect top gives the pdf

Q 2 {Vy,..., Vg, W, ..., Wg} as the totalweighted 1 E(Q)

interference leakage pe(§2) = - exp | ——5— (6)

where Z is the normalizing constant.
An analogy to statistical physics is in order. QUK matrix
=1 variables, namely the precodeks; and orthonormal bases
= ki Y pite (VEHIW,WIH;;V,). (3) W,, i € K, characterize a physical system in st&te The
ek jeK\i internal energy of the system is our expected ddstwhile
In (3), the normalized weights;, i € K, are proportional to itS €ntropy is given bys. The objective function (5) is merely
the precisions of the noise lying in the desired signal sabsp the Helmholtz free energy and the paraméies therefore the

K
E(Q) = ki Li(Vi, Wi)

at the corresponding receivers, i.e., system temperature controlling the level of randomness. Ac
cording to the fundamental principle of minimal free energy
_ i/ di ) the system achieves the minimumigfat thermal equilibrium,
' Z_jelc 5/ d; at which point it is governed by the Gibbs pglf in (6).

The motivation behind employing such weighting is to captur _Tr:‘e (|3|bbs ?df (6) |shper11ramz:cerlzed by t?ﬁ ;empl)eratu_re.
in the cost function (3) the fact that interference leakagfes High values ofT' smooth the pdf — at very high values it
the same magnitude at receivers with different noise powersy jeeq, whenr — 0, direct minimization ofU/(p) gives the Diracs
have different impacts on their individual performance. function 6(© — Q) with Q. in (4).



approaches the uniform pdf, in which case any configuratiovhere T; = —7 Z#i ijiijHg and ¢(T;) is the nor-
Q is equally good. Ag" is lowered, more and more “structure’malizing constant.
(complexity) of E(€2) is revealed. WhefT" approaches zero, Observe that (9) and (10) are pdfs of a distribution on the
the pdf becomes highly peaked about the solufibn complex Stiefel manifold. The form of the pdfs resembles
For a given temperature, the main idea of DA is to anhat of the matrix Bingham distribution on the real Stiefel
alytically approximate the expectations of the optimiaati manifold [14]. However, to the best of our knowledge, we
variables at thermal equilibrium. Starting at high tempene, are not aware of any work that extends the matrix Bingham
DA tracks the evolution of the expectations by graduallgistribution to the complex Stiefel manifold. Thereforee w
reducing the temperature. However, in most cases it is mefer to the distribution as the complex matrix Bingham
possible to analytically compute expectations with respec distribution and compute the normalizing constant and iséco
the Gibbs pdfps. To enable analytical computations, thanoment of its pdf in the Appendix.
extended objective function (5) is minimized over a resédc  According to our results in the Appendix, the normalizing
class of pdfs (one that allows for tractable computations). constant (15) of the complex matrix Bingham pdf is deter-
mined by the eigenvalues of its matrix parameter, while its
. o . second order moment (19) is given by both the eigenvalues and
We employ the mean field approximation to obtain angne eigenvectors of the parameter. Thus, the second moments
Iyuca_lly tractabl_e_cqmputatlons. Tha}t is, for a givéh we Q, and R; are computed based on the eigenvalues and
consider the m|n|m|zat_|on of the objective function (5) DV€gigenvectors of the matrix paramet&sandT;, respectively.
the class of fully-factorized pdfs of the form Algorithm 1 outlines the main steps of the proposed deter-
K K ministic annealing algorithm. The total number of iteraas
q(Q) = HQ(WZ') H q(V;) (7) the number of times the inner loop is executed. The annealing
i=1 j=1 loop can be stopped whéndrops below a minimum value or
where each factor—called the belief of the respectivéhen a specific number of iterations is reached. The inngr loo
variable—is defined on the corresponding complex Stiefi§l repeated until the relative reduction of the average ttost
manifold. It can be shown that minimizing the free energgne iteration to the next becomes smaller than a threshold.
over the restricted class is equivalent to finding that mempdote that at the end of the iterative process the pd¥é;)
of the class with minimum Kullback-Leibler divergence fronndq(W;) will be highly peaked about their mode (practically
the Gibbs pdfye. The minimization is performed with respecthey are Dirac delta functions).
to each belief in turn while keeping the other beliefs fixed.

B. Distributed Iterative Algorithm for Interference Alignment

The optimal belief of a certain variablee €2 is [13] Algorithm 1 Outline of the deterministic annealing algorithm
1 Set the initial temperaturé < 7y (e.g.,Tp = 100)
q(v) x exp (—?<E(Q)>q(w)> (8) Initialize Q; = I, for all j € K
repeat
where (-),(~.y denotes the expectation with respect to the  repeat
product of the beliefs of all variables € other tharmw. The ComputeT; andR;, for alli € K
beliefs are updated sequentially and the resulting i@matare ComputeS; andQj, for all j € K
guaranteed to converge. Note that such iterative computati until convergence

are performed for each temperature value. In this way, the T+ nT (e.g.,n=0.9)

annealing process becomes the outer loop of the overaluntil convergence

optimization algorithm. V; < the d; most dominant eigenvectors 8f,V;j € K
In the following we compute the expressions of the beliefs W; < the d; most dominant eigenvectors @f;, Vi ¢ K

of the precoders and orthonormal bases. To fix some nota=

tions, we denote the second moments of these matrices by

Q; = (V;Vilyv,) andR; & (WiWil),w,), i,.j € K. ¢ Special Instances

Plugging (3) in (8), we obtain

To obtain the iterative leakage minimization algorithm,[7]
in the following we keep the temperature fixed To = 1

0;
q(V;) o etr —%V;{Z”ng<Wz‘W?>q(Wi)Hijvj (i.e., no annealing) and constrain the beliefs in (7) to be
X 7 Dirac delta pdfs:g(V,) = 5(Vj —Vj) and §(W;) =
=Sy etr [V}'S, V] © s (Wi - Wi). Consequently, the second moments @re—
J

V,;Vil and R; = W; WL According to [15], the point
estimates\?j and W, are the maximizers of expressions (9)
and (10), respectively. This means that, for alE K, the
etr (WIT, W) (10) columns of V; are thed; least dominant eigenvectors of
the matrix )°, mnglwﬁHw Similarly, the columns

whereS; = —% Z#j riHG R H andc(S;) is the normal-

.

izing constant determined by;. Similarly, we obtain

q(W;) = C(r_lm
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Fig. 1. Convergence of the interference leakage for oneoranckalization Fig. 2. Empirical probability of. < 10~10 at a given iteration.

of the channel. The continuous lines correspond to the DArdlgn with
initial temperatureTp = 100 andn € {0.95,0.9,0.5,0.1}.

0.12
of W, are tpegli least dominant eigenvectors of the matrix g 01
> piHi Vi VITHL, for all i € K. Note that by setting the é
V\feightsm- =1, for all i € K, and iteratively updatin&j and g 0.08
W, we obtain the distributed algorithm [7]. 5 0.06
It can be shown in a similar way that the alternating %
minimization algorithm [8] is an instance of our algorithm. £ 0.04
For this, we have to re-parameterize the problem so Wat g
is anN; x (N; —d;) matrix whose columns are an orthonormal 0.02
basis for thenterference subspace of receiver At the same _
time, we need to set;, = pj = 1, for all Z,] e K. %_0 15 20 25 30 35 40

Sum rate (bits/s/Hz)

V. SIMULATION RESULTS
) ) Fig. 3. Empirical distribution of the sum rate at th@0th iteration based on
We use computer simulations to evaluate the proposemo channel realizations for the asymmetric scenario. For thealorithm,

deterministic annealing (DA) algorithm and compare it agai 70 = 100 andn = 0.9.
the iterative leakage minimization (ILM) algorithm [7].

In the first experiment, we analyze the convergence of the

algorithm for the following system parameters making |£xample, to a situation when the users experience different
feasible: K — 3 M — N — 4 d — 2. The entries of levels of uncoordinated interference. We notice in Fig. 3,

the channel matrices are independent and have a com jch shows the probability of occurrence of the sum rate,
that DA ensures significantly higher sum rates in this sdenar

Gaussian distribution with unit variance. The scenarig/ins his is al d by Fi hich displ h
metric, i.e., the transmitters and receivers have same nsow-g Is is also supported by Fig. 4 which displays the average

and noise levels, respectively. The total interferenckdga is sum rate and the individual average rates of the users with

I — Zi}; Li(Vi, W;). For a random channel realization,h'gheSt and lowest noise precisions. Due to the weighting in

Fig. 1 shows that, of DA converges faster than ILM andthe cost func_tion (3), DA tries to align the interference thos
that, to some extent, using lower values of the annealiﬁtﬁ userl, while ILM attempts to achieve |A at each user, as

factor n tends to speed up convergence. To further anaIyEeCan also be seen in Fig. 5.
convergence, we illustrate in Fig. 2 the empirical prolgbil
of L < 10~1° (basically, of achieving IA) at a given iteration
computed from1000 realizations of the channel. It can be We formulated the interference alignment as an optimiratio
noticed that DA with higher values @frequire more iterations problem whose cost function weights the interference lgaka
to converge, while fom; = 0.5 andn = 0.1 DA converges at the receivers according to their inverse noise power. By
faster than ILM. employing the deterministic annealing method in conjwonrcti

In the second experiment, we consider a system settingh the mean field approximation, we obtained a novel
for which IA is not feasible. In particular, we séf = 4, iterative algorithm that includes some existing methods as
M = N = 4, d = 2 and assume an asymmetric scenarigpecial instances. For some settings of the annealing sthem
i.e., the receiver noise precisions are different: = 100, the DA algorithm showed better convergence performange tha
vo = 40, v3 = 10, v4 = 5. This could correspond, for the ILM method. Moreover, in an asymmetric scenario where

VI. CONCLUSION



complex-variate case. The complex Stiefel manif@W, ,, is
DA, sum rate represented by the s€t;,,, = {X € C"** | XHX =1, }.

251

20l ~ - === - - R GRE T For k =1, CVy, is the complex sphere, while fdr = n it
= ILM, sum rate is the unitary grougd{(n). By analogy with the real matrix
I Bingham pdf, we consider that the complex matrix Bingham
2 distribution has the pdf
a DA, user 1
g FX:A) = - (L) otr (X"AX) (11)

with respect to the invariant measure®viy, ,,, where then x k

DA, user 4 matrix A is Hermitian and:(A) is the normalizing constant.
% 100 200 200 200 =00 In the following we determine the normalizing constant and
Iteration second-order moment of the pdf (11).

Fig. 4. Convergence of the rate averaged aM#0 channel realizations for A, The normalizing constant
the asymmetric scenario. o ) .
The normalizing constant is given by

g c(A) 2 / etr (X"AX) (X" dX) (12)
@ 10l DA, total CVin
2 DA, user 4 . . H . .
3 ‘L where the differential form(X" dX) is the unnormalized
o SN ovm—ee invariant measure oi€V;.,,. It is important to notice that
3] N .. ? . .
S ILM, total the normalizing constant (12) is actually determined only
s O LM, user 4 by the eigenvalues of the Hermitian matrix expressed as
Q i Nt U .
E gl LM, user 1 A = UAUY, whereU € U(n) andA = diag(A1, ... An) €
> R"™*", Indeed, sincéX!! dX) is invariant, we make the trans-
o _qol formationX — UX in (12) and obtain that(A) = c¢(A).
< DA, user 1 We start by evaluating the integral
-15
0 100 200 300 400 500
lteration I(A,B) = / etr (AZBZ") (Z" dZ) (13)
U(n)

Fig. 5. Convergence of the interference leakage averaged1600 channel . .
realizations for the asymmetric scenario. where B = diag(b1,...,bn), b € R foralli = 1,...,n.

The differential form(Z* dZ) is the unnormalized invariant
measure ori/(n) [17]. The normalized invariant measure,
IAis not feasible, the proposed weighting enables signifiga i.e., the uniform probability measure d(n), is (dZ) =
higher sum rates than ILM. W(ZH dZ), where vol(U4(n)) is the volume of the
The paper opens several interesting directions. To furthgnitary group. The integral (13) evaluates to
improve convergence speed, it could be relevant to studsroth .
approximations than mean field (e.g., the Bethe approxima- =7 i x det ([ekibj]1<i7j<n)
tion). At the same time, it would be pertinent to extend the! (A, B) = volU(n)) .00 — ) I, — - (14)
. . i<j A = i) TTie; (05 — bi)
method to include channel uncertainty or to study other cost < /
functions that are more focused on sum rate optimization. where we used the Harish-Chandra-ltzykson-Zuber integral
formula [18].
On the other hand, Lemma 9.5.3 in [19] enables us to first
This work was supported in part by the EC FP7 Networitegrate in (13) over the last — k columns ofZ with the
of Excellence NEWCOM# (Grant agreement no. 318306). Mirst k& columns being fixed, and then to integrate over the

Guillaud also acknowledges the funding of the FP7 projefitst & columns. DefiningB; = diag(by,...,bx) andBy =
HIATUS (grant 265578) of the European Commission (EQ)iag(ka, ...,by), we obtain

and of the Austrian Science Fund (FWF) through grant NFN
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APPENDIX
H H H
The Bingham distribution of a random vector on the real * /Keu( h etr (A(GK)B2(GK)") (K" dK)(X" dX)

or complex unit sphere and that of a random matrix on the
real Stiefel manifold are well established [14], [16]. Insth whereG = G(X) is anyn x (n— k) matrix with orthonormal
appendix, we extend the matrix Bingham distribution to theolumns that are orthogonal to those . Specializing



I(A,B)forby =...=by=1andbyi1 =... =b,
get

0, we

I(A,B) |B,_1, = c(A)volU(n — k))

B.=0

for all i = 1,...,n. Thus, based on (16), the second-order
moment is
3 = Udiag (71, - - -

,¥n) UM (19)

with ~; given by (18).

Using now the result (14), we obtain

vol(U(n)) TT1=," 4! [1]

c(A) = a
vol(U(n — k)) Hi<j(/\j - Ai)
ib; 2]
y i det ([ek ’ hgi,jgn)
im -
" [T by = b) (3]

Employing [20, Th. 2.9] to evaluate the limit and using the
fact thatvol(U/(p)) = 2Px?” /CT,(p) [17], whereCT,(-) is
the complex multivariate gamma function, we finally obtain
the normalizing constant

[4]

k. _kn _1\k(k—n) 5
c(A) = 2k ><( 1) i det (M(A)) (15) [5]
Crk(k) Hi<j(/\j - )‘i)

where the matrixXM (A) is 6]
eM o AeM /\lf_le)‘1 1 X\ )\?_k_l
e’ Agel? Ml 1 ) Ap R

[7]
A Anet At 1, At

B. The second-order moment (8]

Given that the measurg ! dX) is invariant, we make the
transformationX — UX and obtain the second moment

> £ (XXM yx.a) = UTU"! (16)

wherec(A) = ¢(A) is given by (15) and” = (XX™) ;(x.a).

It can be shown thal'D = DT for any diagonal unitary 11

matrix D by using again the invariance ¢X' dX) under

X — DX. It follows thatT' = diag(y1, - - -, Vn)- [12]
Defining the diagonal matrixC = diag(ty,...,t,) with

t; € R, we compute the expected value of the expression

etr (X"TX) with respect tof (X; A) in two different ways.

First, direct evaluation gives

(etr (XUTX)) pxa) = [e(A)] ' e(T + A)

El

[10]

[14]

(17) s

Then, we use the Taylor series expansion of the exponential
function. Applying(-) sx;a) on both sides of 16

1
etr (X"TX) =1+ tr (X"TX) + o [T (XHTX)]*+... @y

we obtain

[18]
[¢c(A)] " e(T+A)=1+tr(TT) + ...

[19]
where the higher-order terms (not displayed) are homogeneo
polynomials int4,...,t, of degree higher than two. So, wel?0
take the derivative with respect to eathon both sides and

evaluate the result @ = ... =¢,, = 0. Doing so, we obtain
L -1 aC(T + A) . -1 aC(A)
= ) | ST 8
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