Aalborg Universitet AALBORG

UNIVERSITY

Compression-based geometric pattern discovery in music

Meredith, David

Published in:
4th International Workshop on Cognitive Information Processing, CIP 2014

DOl (link to publication from Publisher):
10.1109/CIP.2014.6844503

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Meredith, D. (2014). Compression-based geometric pattern discovery in music. In 4th International Workshop on
Cognitive Information Processing, CIP 2014 IEEE Press. https://doi.org/10.1109/CIP.2014.6844503

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://doi.org/10.1109/CIP.2014.6844503
https://vbn.aau.dk/en/publications/ef8dcc2c-8bc6-47ce-985a-11daf97cc9df
https://doi.org/10.1109/CIP.2014.6844503

4TH INTERNATIONAL WORKSHOP ON COGNITIVE INFORMATION PROCESSING, MAY 26-28, 2014, COPENHAGEN, DENMARK

COMPRESSION-BASED GEOMETRIC PATTERN DISCOVERY IN MUSIC

David Meredith

Aalborg University
Department of Architecture, Design and Media Technology
Sofiendalsvej 11, 9200 Aalborg SV, Denmark
dave@create.aau.dk

ABSTRACT

The purpose of musical analysis is to find the best possible ex-
planations for musical objects, where such objects may range
from single chords or phrases to entire musical corpora. Kol-
mogorov complexity theory suggests that the best possible ex-
planation for an object is represented by the shortest possible
description of it. Two compression algorithms, COSIATEC
and STATECCOMPRESS, are described that take point-set
representations of musical objects as input and generate com-
pressed encodings of these point sets as output. The algo-
rithms were evaluated on a task in which 360 folk songs were
classified into tune families using normalized compression
distance, a 1-nn classifier and leave-one-out cross-validation.
COSIATEC achieved a success rate of 84% on this task,
compared with a success rate of 13% for a general-purpose
compressor. Variants of the algorithms incorporating modi-
fications that have been suggested in the literature were also
run on the task and the results were compared.

Index Terms— Pattern discovery, Compression, Music
information retrieval, Music analysis, Machine learning

1. INTRODUCTION

A musical analysis represents a particular way of understand-
ing a musical object, where such an object could be any quan-
tity of music, ranging from a single chord to an entire corpus.
In music theory, analyses have traditionally been evaluated
subjectively, in terms of how satisfactorily an analysis is per-
ceived to account for the structure of the musical object in
question. However, whether or not an analysis improves one’s
understanding of a musical object can also be determined by
whether it allows for certain objectively evaluable tasks to be
performed more successfully. For example, a good analysis
of a piece might be expected to help with tasks such as er-
ror detection, authorship identification or memorisation of a
piece. One analysis of a musical object could therefore be
considered “better” than another if it allows such tasks to be
performed more successfully. It thus makes sense to propose

978-1-4799-1180-6/14/$31.00 (©2014 IEEE

that the goal of music analysis is to find the best possible ways
of understanding musical objects.

The problem addressed here is that of designing an algo-
rithm that automatically generates high-quality analyses of
musical objects from in extenso descriptions of these objects.
The analyses produced by such an algorithm could be used
in various practical, entertaining, educational, musicological
and/or scientific applications such as, for example, indexing
a database of music encodings for a content-based music
search engine, composing new examples of music in an exist-
ing style, identifying the composers of unattributed works or
developing engaging and educational musical games. Such
an analysis algorithm could also provide a computational
model of the processes that underlie certain aspects of human
music perception and cognition.

The work presented here is based on the assumption that
a musical analysis can be conceived of as an encoding in the
form of a program that, when executed, generates as its output
an in extenso description of a musical object. An in extenso
description is one in which the properties of each atomic com-
ponent of an object (e.g., a MIDI event, a note in a score or
a sample in a PCM audio file) are explicitly specified, with-
out encoding any structural groupings of these components
into higher-level constituents, and without encoding any re-
lationships between atomic components. For example, in an
in extenso description of a score, one might simply list the
notes, giving the pitch, duration, onset time, etc. of each one.
In contrast, while a musical analysis is itself a description of a
musical object, it is not usually in extenso, because it typically
represents groupings of atomic components (such as notes or
audio samples) into larger-scale constituents (such as motives,
phrases, chords, voices, sections, etc.), along with relation-
ships between these components or constituents (e.g., repeti-
tion, transposition, truncation, inversion, diminution, etc.). If
such an analysis is represented by a program that outputs an in
extenso description of a musical object, then such a program
embodies an explanation for certain aspects of the structure
of a musical object.

Suppose X and Y are two constituents of a musical ob-
ject (e.g., two entries of the subject in a fugue) and that the

transformation, 7', maps X onto Y (e.g., T' could be “shift in
time by x crotchets and transpose by y semitones”). If T' can
be described more parsimoniously than Y, then the part of
the musical surface consisting of X and Y (i.e, X UY, or the
union of the atomic components in X and Y) can be described
more parsimoniously by giving an in extenso description of X
together with a description of 7', than it can by giving in ex-
tenso descriptions of both X and Y. In this way, by identify-
ing structural relationships between constituents of a musical
object, a musical analysis typically conveys (at least) as much
information about that object as an in extenso description on
the same level of detail, but does so more parsimoniously.
In other words, a musical analysis is typically a compact de-
scription or compressed encoding of a musical object.

Kolmogorov complexity theory [1] suggests that the
length of a program, whose output is an in extenso description
of an object, can be used as a measure of the complexity of
its corresponding explanation for the structure of that object:
if we have two programs in the same programming language
that generate the same output, then the shorter of the two will
(usually) represent the simpler explanation for that output.
The level of structural detail on which an analysis (encoded
as a program) explains the structure of a musical object is
determined by the granularity of the in extenso description
that it generates. Typically, much of the detailed structure of
an object will not be encoded in the program’s output and will
therefore go unexplained. The music analyst’s goal to find the
best possible explanations for the structures of musical ob-
jects therefore translates into the goal of finding the shortest
possible “programs” (i.e., encodings) that generate the most
detailed representations of as much music as possible. Or, to
put it another way, the analyst’s goal is to compress as much
information as possible about as much music as possible into
as short an encoding as possible.

With this goal in mind, the purpose of this paper is to
present and evaluate two compression algorithms, COSI-
ATEC and STATECCOMPRESS, that take in extenso descrip-
tions of musical objects as input and generate losslessly com-
pressed encodings of these descriptions as output. The en-
codings generated by COSIATEC and SIATECCOMPRESS
can themselves be understood to be compact “programs” that
generate the in extenso descriptions given as input to these
compression algorithms. Both algorithms achieve compres-
sion by identifying sets of occurrences of maximal repeated
patterns in the data and encoding these sets of occurrences by
encoding one occurrence explicitly along with the transfor-
mations that map that occurrence onto its other occurrences.
COSIATEC and SIATECCOMPRESS use different greedy
strategies to search for the set of maximal repeated patterns
that allow for the most compact encoding of the input data.

COSTIATEC strictly partitions the input dataset into oc-
currence sets of maximal repeated patterns. However, the
occurrences used by SIATECCOMPRESS in its encodings
may overlap and share datapoints, resulting in less compact

encodings of the input data. On the other hand, SIATEC-
COMPRESS has a better worst-case running time than COSI-
ATEC and can therefore be significantly faster than it on
larger datasets.

COSIATEC and SIATECCOMPRESS are pattern discov-
ery algorithms: their purpose is to compute as short a descrip-
tion as possible of a set of points in terms of a set of patterns
and these patterns’ occurrences. They aim to discover the
patterns in a dataset that allow it to be described as parsimo-
niously as possible. If one equates brevity of description with
quality of explanation, then one might say that the algorithms
attempt to find the most “explanatory” patterns in a dataset.

In the next section, some fundamental concepts will be
reviewed relating to the use of point sets to represent music.
Previous work on the development of point-set pattern discov-
ery algorithms for music will then be briefly reviewed. The
COSIATEC and STATECCOMPRESS algorithms will then
be described. The results obtained when the algorithms were
used to carry out a classification task will then be presented
and discussed.

2. USING POINT SETS TO REPRESENT MUSIC

In COSIATEC and SIATECCOMPRESS, it is assumed that
the music to be analysed is represented as a multi-dimensional
point set called a dataset (as in [2]). Although these algo-
rithms work with datasets of any dimensionality, it will be
assumed here that each dataset is a set of two-dimensional
points, (t, p), where ¢ and p are integers, representing, respec-
tively, the onset time in tatums and the chromatic or diatonic
pitch [2] of a note or sequence of tied notes in a musical score.
Fig. 1 shows an example of such a dataset.

Y &

7
a0

Fig. 1. A two-dimensional dataset representing the fugue from J. S. Bach’s
Prelude and Fugue in C minor, BWV846. The horizontal axis represents
onset time in tatums; the vertical axis represents diatonic pitch. Each point
represents a note or a sequence of tied notes.

2.1. Maximal translatable patterns (MTPs)

If D is a dataset, then any subset of D may be called a pattern.
If P, P, C D, then Py, P,, are said to be translationally
equivalent, denoted by P, =t P, if and only if there exists a
vector v, such that P; translated by v is equal to P». That is,
Py=r P, < (Jv| P, =P +v), where P; + v denotes
the pattern that results when P is translated by the vector v.
For example, in each of the graphs in Fig. 2, the pattern of

circles is translationally equivalent to the pattern of crosses.
A pattern, P C D, is said to be translatable within a dataset,
D, if and only if there exists a vector, v, such that P 4+ v C
D. Given a vector, v, then the maximal translatable pattern
(MTP) for v in the dataset, D, is given by MTP(v, D) = {p |
p € DAp+v € D}, where p+u is the point that results when
p is translated by the vector v. In other words, the MTP for
a vector v in a dataset D is the set of points in D that can be
translated by v to give other points that are also in D. Fig. 2
shows some examples of maximal translatable patterns.

Fig. 2. Examples of maximal translatable patterns (MTPs). In each graph,
the pattern of circles is the maximal translatable pattern (MTP) for the vector
indicated by the arrow. The pattern of crosses in each graph is the pattern
onto which the pattern of circles is mapped by the vector indicated by the
arrow.

The development of COSIATEC and SIATECCoM-
PRESS was motivated by the hypothesis that the patterns
that allow for the best possible interpretations of a piece are
closely related to MTPs in the pitch-time point-set represen-
tation of the piece. Meredith ef al. [2,3] describe an algorithm
called STA (“Structure Induction Algorithm”) for discovering
all the MTPs in a dataset. For a dataset of n, k—dimensional
points, STA has a worst-case running time of O(kn?log, n)
and uses O(kn?) space. Fig. 3 describes the SIA algorithm.

2.2. Translational equivalence classes (TECs)

When analysing a piece of music, we typically want to find
all the occurrences of an interesting pattern, not just one oc-
currence. Thus, if we believe that MTPs are related in some
way to the patterns that listeners and analysts find interesting,
then we want to be able to find all the occurrences of each
MTP. Given a pattern, P, in a dataset, D, the translational
equivalence class (TEC) of P in D is given by TEC(P, D) =
{Q | Q=1 PANQ C D}. That s, the TEC of a pattern, P,
in a dataset contains all and only those patterns in the dataset
that are translationally equivalent to P. Note that P =1 P, so
P € TEC(P, D). Fig. 4 shows some examples of TECs.

‘We can also define the covered set of a TEC, T', denoted
by COV(T), to be the union of the patterns in 7. That is,
COV(T) = Upep P- Here, we will be particularly con-
cerned with MTP TECs—that is, the translational equivalence

classes of the maximal translatable patterns in a dataset.

A TEC, T = TEC(P, D), contains all the patterns in the
dataset, D, that are translationally equivalent to the pattern,
P. Suppose T' contains n translationally equivalent occur-
rences of the pattern, P, and that P contains m points. There

(a)

N b ¢ (C

~

Vector Datapoint
y <0=1) =
1 ¢ ¢ <D=l) -
0,2) —
0 <U=2) -
{1,-2) —
(1,-1) —
<17_1>_'
(b) 1,0 —

{1,0) —

e b e 4 e g g?; -
L1 (L3 @D (22 (23) (2 '
R S R e

T~]
NN
N~
=~

=
N
[Ty
s

8
===
v = S =|e=
oW »—‘Hw mHm”
& & D &gle

]
B
RN

Leililes]

P
—
N

=

=]
[y
—
]

) | 0.2)

)| (1,0)(1,-2)

) | (LDAL-D) ©,1)

) | (L2) (1L,0) 4 (0,2)q (0.1)

) | @n-e-nd @ @01

~
S
e
£~
=
I
—=
==
=&

Fig. 3. The SIA algorithm. (a) A small dataset that could be provided
as input to the SIA or STATEC algorithms. (b) The vector table computed
by SIA for the dataset in (a). Each entry in the table gives the vector from
a point to a lexicographically later point. Each entry has a pointer back to
the origin point used to compute the vector. (c) The list of (vector, point)
pairs that results when the entries in the vector table in (b) are sorted into
lexicographical order. If this list is segmented at points at which the vector
changes (as indicated by the boxes surrounding entries in the column headed
“Datapoint”), then the set of points in the entries within a segment form the
MTP for the vector for that segment. This means that all the MTPs can be
obtained simply by scanning this list once (i.e., in O(n?) time, since the list
has length n(n — 1)/2).

are at least two ways in which one can specify 7'. First, one
can explicitly specify each of the n patterns in 7" by listing
all of the m points in each pattern. This requires one to write
down mn, k-dimensional points or kmn numbers. For ex-
ample, using this encoding method, the TEC in the left-hand
graph in Fig. 4 would be specified as

{{1,1),(2,2),(4,2)},{(2,6), (3,7), (5, 7)},{(3,5), (4,6),(6,6) } } -
Alternatively, one can explicitly list the m points in just one
of the patterns in 7" (e.g., P) and then give the n — 1 vectors
required to translate this pattern onto the other patterns in 7'.
This requires one to write down m, k-dimensional points and
n — 1, k-dimensional vectors—that is, k(m +n — 1) integers.
If n and m are both greater than one, then k(m + n — 1) is
less than kmn, implying that the second method of specify-
ing a TEC gives us a compressed encoding of the TEC. Thus,
if a dataset contains at least two occurrences of a pattern con-
taining at least two points, it will be possible to encode the
dataset in a compact manner by representing it as the union
of the covered sets of a set of TECs, where each TEC, T, is
encoded as an ordered pair, (P, V'), where P is one pattern in
T, and V is the set of vectors that translate P onto the other
patterns in 7. When a TEC, T' = (P, V'), is represented in this
way, we call V' the set of translators for the TEC and P the

Fig. 4. Examples of translational equivalence classes (TECs). In each
graph, the pattern of circles is translatable by the vectors indicated by the
arrows. The TEC of each pattern of circles is the set of patterns containing
the circle pattern itself along with the other patterns generated by translating
the circle pattern by the vectors indicated. The covered set of each TEC is
the set of points denoted by icons other than filled black dots.

TEC’s pattern. We also denote and define the compression
ratio of a TEC, T = (P, V') as follows:
|COV(T)|

In this paper, the pattern, P, of a TEC used to encode it as a
(P, V) pair will be assumed to be the lexicographically earli-
est occurring member of the TEC (i.e., the one that contains
the lexicographically least point). As an example, the TEC in
the left-hand graph in Fig. 4, would be encoded as

{(1,1),(2,2), (4,2)},{(1,5),(2,4)}) ,

giving a compression ratio of 9/5 for this TEC. Meredith ez al.
[2,3] describe an algorithm, called STATEC (“SIA+TECs”),
that uses STA to find all the MTPs and then goes on to find the
TEC of each of these MTPs (i.e., it finds all the translationally
equivalent occurrences of each MTP). For a k-dimensional
dataset containing n points, STATEC has a worst-case run-
ning time of O(kn?) and uses O(kn?) space.

2.3. Compactness

Meredith et al. [2, p. 340] observe that, although many im-
portant musical patterns relate to MTPs, many MTPs do not
obviously relate to important musical patterns. Moreover, a
typical short piece of classical music containing a few hun-
dred notes may contain tens of thousands of MTPs, whereas
an analyst would typically aim to explain such a piece in terms
of only a few tens of patterns at most. Meredith ez al. [2,4]
suggest a number of strategies for isolating what they call
“theme-like or motif-like” patterns in a piece of music. In
particular, they suggest that the extent to which a pattern will
be perceived to be “theme-like” may depend on its compact-
ness defined to be “the ratio of the number of points in the
pattern to the total number of points in the dataset that occur
within the region spanned by the pattern within a particular
representation” [4, p. 8]. Meredith ef al. [4] acknowledge that
‘the region spanned by a pattern’ can be defined in a number
of different ways, including, for example, the time segment
spanned by the pattern or the pattern’s bounding box or con-
vex hull in the pitch-time representation.

3. RELATED WORK

The COSIATEC algorithm was first sketched by Meredith
et al. [4]. They were also the first to suggest using the de-
gree of compression achievable by expressing a TEC as a
(pattern,vector set) pair as a heuristic for selecting theme-like
patterns. They obtained encouraging results when they used
their implementation of COSIATEC to analyse J. S. Bach’s
15 Tivo-Part Inventions (BWV 772-786), noting, in particu-
lar, that the subjects of the inventions tended to be discovered
on the early iterations of the algorithm.

Forth [5, 6] presented an algorithm, inspired by COSI-
ATEC, that resembles the SIATECCOMPRESS algorithm to
be described below. The first step in Forth’s algorithm is
to run STATEC on the input dataset to generate a sequence
of MTP TECs, T = (11,Ts,...T,). The algorithm then
post-processes the output of STATEC to compute a cover for
the input dataset. A weight, W;, is assigned to each TEC,
T;, to produce a corresponding sequence of weights, W =
(W1, Wao,...W,). W; is intended to be a measure of the
“structural salience” [6, p. 41] of the patterns in the TEC, T;,
and it is defined as W; = wy, ; - Wiop,y,; Where wy, ; and
Weompy,; are normalized values representing the compression
ratio and compactness of 7T;. Having computed the sequence
of weights, W, Forth’s algorithm then attempts to select a
subset of the covered sets of the TECs in T that covers the
input dataset and maximises the product of the coverage and
weight of each TEC used in the encoding generated.

Collins et al. [7] claim that previous algorithms based on
SIA are subject to what they call the ‘problem of isolated
membership’. This problem is defined to occur when “a mu-
sically important pattern is contained within an MTP, along
with other temporally isolated members that may or may not
be musically important” [7, p. 6]. Collins ef al. claim that
“the larger the dataset, the more likely it is that the prob-
lem will occur” and that it could prevent the STA-based al-
gorithms from “discovering some translational patterns that a
music analyst considers noticeable or important”. Collins et
al. [7, p. 6] propose that this problem can be solved by taking
each MTP computed by SIA (sorted into lexicographical or-
der) and ‘trawling’ inside this MTP “from beginning to end,
returning subsets that have a compactness greater than some
threshold a and that contain at least b points.” This method
is implemented in an algorithm that they call STACT, which
first runs STA on the dataset and then carries out ‘compact-
ness trawling’ (hence “SIACT”) on each of the MTPs found
by SIA.

Collins et al. [8] obtained empirical evidence for the hy-
pothesis proposed in earlier work that compactness and com-
pression ratio both play an important role in determining per-
ceived importance or salience of a musical pattern. In Collins
et al.’s study, twelve music theory undergraduates were asked
to rate the importance and/or noticeability of 90 repeated pat-
terns in Chopin’s Mazurkas (each student rated 30 of the 90

Start with
a dataset,
D

Make a copy of D and call it D’
Make an empty list called E

Add T to the end of
thelist, €

covered set of T
from D’

Fig. 5. The COSIATEC algorithm.

patterns). Twenty-nine quantifiable features were then calcu-
lated for each of the patterns. Some of these features were
novel while others had been proposed in earlier work. Collins
et al. found that they could explain over 70% of the variation
in the ratings obtained in their experiment using just three fea-
tures of the patterns, including pattern compactness and TEC
compression ratio (as defined in Eq. 1 above).

In an attempt to improve on the precision and running
time of SIA, Collins [9, pp. 282-283] defined a new, SIA-
based algorithm called STAR (“Structure induction algorithm
for r superdiagonals”). Instead of computing the whole re-
gion below the leading diagonal in the vector table for a
dataset (as in Fig. 3(b)), STAR only computes the first r sub-
diagonals of this table. This is approximately equivalent to
running STA with a sliding window of size r [9, p. 168].

4. COSIATEC

COSIATEC (see Fig. 5) is a greedy, point-set compres-
sion algorithm, based on SIATEC [4]. COSIATEC takes
a dataset, D, as input and computes a compressed encoding
of D in the form of an ordered set of MTP TECs, E, such
that D = (J;c; COV(T) and, for all T, T3 € E, Ty # To,
COV(Ty) N COV(Tz) = 0. That is, COSIATEC strictly
partitions a dataset D into the covered sets of a set of MTP
TECs, with each TEC represented as a (pattern, translator set)
pair, as described in section 2.2 above.

As shown in Fig. 5, COSIATEC begins by making a copy
of the input dataset which it stores in the variable D’. It also
initializes F to an empty list. It then carries out a number of
iterations of a loop. On each iteration, the algorithm finds the
“best” MTP TEC in D', stores this in 7" and adds 7" to the end
of E. It then removes the set of points covered by T from D’.
When D’ is empty, the algorithm terminates, returning the list
of MTP TECs, E.

Finding the best TEC on each iteration involves using
SIATEC to compute the MTP TECs in D’ and selecting the
TEC that has the best compression ratio. If more than one
TEC has the maximum compression ratio, then the one with
the highest compactness is chosen. If two or more TECs tie on
both compression ratio and compactness, then the TEC with
the highest coverage is chosen.

5. SIATECCOMPRESS

COSIATEC runs SIATEC on each iteration of its loop.
Since SIATEC has worst case running time O(n3) where n
is the number of points in the input dataset, running COSI-
ATEC on large datasets can be time-consuming. On the other
hand, because COSIATEC strictly partitions the dataset into
non-overlapping MTP TEC covered sets, it tends to achieve
relatively high compression ratios for many point-set repre-
sentations of musical pieces (typically from 2—4 for a Bach
keyboard fugue, for example).

Like COSIATEC, SIATECCOMPRESS is a greedy com-
pression algorithm based on SIATEC that computes an en-
coding of a dataset in the form of a union of TEC covered
sets. However, like Forth’s algorithm, STATECCOMPRESS
runs SIATEC only once to get a list of TECs in decreasing
order of quality. It then works its way down this list, select-
ing TECs to include in the encoding, until the input dataset
is covered. The points covered by each selected TEC are not
removed from the dataset after selection, thus SIATECCoM-
PRESS does not typically produce as compact an encoding as
COSIATEQC, since the TECs in its output may share points.
However, it is faster than COSIATEC and can therefore be
used in practice on much larger datasets. As in COSIATEC,
TEC A is considered better than TEC B if A has a higher
compression ratio than B, or if A and B have the same com-
pression ratio but A has more compact patterns, or if A and
B have the same compression ratio and compactness but A
covers more points than B.

6. EVALUATION

SIATECCoOMPRESS, COSIATEC, Forth’s algorithm and
variants of these algorithms incorporating Collins et al.’s
compactness trawler and STAR were compared on a classifi-
cation task. Each algorithm was used as a compressor to clas-
sify a corpus of 360 Dutch folksong melodies from the Neder-
landse Liederenbank! into “tune families” [10] using normal-
ized compression distance [1, p. 664], a 1-nearest-neighbour
classifier and leave-one-out cross-validation. The results are
shown in Table 1. Java implementations of the algorithms and
the code used to generated the results are available online.”

"http://www.liederenbank.nl
2http://chromamorph.googlecode.com

Algorithm SR CR on AC | CR on file pairs
COSIATEC 0.8389 1.5791 1.6670
COSIARTEC 0.8361 1.5726 1.6569
COSIARCTTEC 0.7917 1.4547 1.5135
COSIACTTEC 0.7694 1.4556 1.5138
Forth 0.6111 1.2645 1.2667
SIARCTTECCompress | 0.5750 1.3213 1.3389
SIATECCompress 0.5694 1.3360 1.3256
SIACTTECCompress 0.5250 1.3197 1.3381
SIARTECCompress 0.5222 1.3283 1.3216
BZIP2 0.1250 2.7678 3.5061

Table 1. Results of using compression algorithms to classify Dutch folk-
songs into families using NCD, 1-NN and leave-one-out cross-validation.
Algorithms with names containing “SIAR” employed the SIAR algorithm
in place of SIA. Algorithms with names containing “CT” used Collins et
al.’s [7] compactness trawler. The column headed SR gives the classification
success rate—i.e., the proportion of songs in the corpus correctly classified.
The third and fourth columns give the mean compression ratio achieved by
the algorithm over, respectively, the corpus and the file-pairs used to compute
the compression distances.

7. CONCLUSIONS

Table 1 suggests that algorithms based on COSIATEC per-
formed markedly better on this song classification task than
those based on STATECCOMPRESS or Forth’s algorithm. Us-
ing STAR instead of STA and/or incorporating compactness
trawling reduced the performance of COSIATEC, however,
using both together, slightly improved the performance of
SIATECCOMPRESS. Forth’s algorithm performed slightly
better than STATECCOMPRESS, suggesting that it may be
worth incorporating Forth’s covering strategy into COSI-
ATEC. The results obtained using one of the best general-
purpose compressors (BZIP2) were much poorer than those
obtained using the SIA-based algorithms, suggesting that
general-purpose compressors fail to capture certain percep-
tually and analytically important musical structure. The
SIA-based algorithms that achieved better compression ratios
tended to perform better on this task. However, the best com-
pressor (BZIP2) produced the worst classifier. Compression
ratio alone was thus not a good indicator of classification ac-
curacy.

Acknowledgements

Peter van Kranenburg kindly supplied the data files for the annotated corpus
of the Nederlandse Liederenbank (http://www.liederenbank.nl).
The work was carried out within the “Learning to Create” project (Lrn2Cre8)
which acknowledges the financial support of the Future and Emerging Tech-
nologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET grant number 610859.

8. REFERENCES

[1] Ming Li and Paul Vitanyi, An Introduction to Kol-
mogorov Complexity and Its Applications, Springer,

(3]

(5]

(6]

[9]

[10]

Berlin, third edition, 2008.

David Meredith, Kjell Lemstrom, and Geraint A. Wig-
gins, “Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music,”
Journal of New Music Research, vol. 31, no. 4, pp. 321—
345, 2002.

David Meredith, Geraint A. Wiggins, and Kjell Lem-
strom, “Pattern induction and matching in polyphonic
music and other multi-dimensional datasets,” in Pro-
ceedings of the 5th World Multiconference on Systemics,
Cybernetics and Informatics (SCI2001), N. Callaos,
X. Zong, C. Verges, and J. R. Pelaez, Eds., 2001, vol. X,
pp. 61-66.

David Meredith, Kjell Lemstrom, and Geraint A. Wig-
gins, “Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music,”
in Cambridge Music Processing Colloquium, 2003.

Jamie Forth and Geraint A. Wiggins, “An approach for
identifying salient repetition in multidimensional repre-
sentations of polyphonic music,” in London Algorith-
mics 2008: Theory and Practice, J. Chan, J. W. Daykin,
and M. S. Rahman, Eds., pp. 44-58. College Publica-
tions, London, 2009.

James C. Forth, Cognitively-Motivated Geometric
Methods of Pattern Discovery and Models of Similar-
ity in Music, Ph.D. thesis, Department of Computing,
Goldsmiths, University of London, 2012.

Tom Collins, Jeremy Thurlow, Robin Laney, Alistair
Willis, and Paul H. Garthwaite, “A comparative evalua-
tion of algorithms for discovering translational patterns
in baroque keyboard works,” in Proceedings of the 11th
International Society for Music Information Retrieval
Conference (ISMIR 2010), Utrecht, The Netherlands, 9—
13 August 2010, 2010, pp. 3-8.

Tom Collins, Robin Laney, Alistair Willis, and Paul H.
Garthwaite, “Modeling pattern importance in Chopin’s
Mazurkas,” Music Perception, vol. 28, no. 4, pp. 387-
414, 2011.

Tom Collins, Improved methods for pattern discovery in
music, with applications in automated stylistic composi-
tion, Ph.D. thesis, Faculty of Mathematics, Computing
and Technology, The Open University, Milton Keynes,
2011.

Peter van Kranenburg, Anja Volk, and Frans Wier-
ing, “A comparison between global and local features
for computational classification of folk song melodies,”
Journal of New Music Research, vol. 42, no. 1, pp. 1-18,
2013.

