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Assessment of the reliability

profiles for concrete bridges
Palle Thoft-Christensen

Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

In this paper calculation of reliability profiles is discussed. ULS as
well as SLS limit states are formulated. Corrosion due to chloride
penetration is the considered deterioration mechanism. Three
models for corrosion are formulated. A definition of service lifetime
for concrete bridges is presented and discussed. The proposed
method of calculating reliability profiles is illustrated on an existing
U.K. bridge. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is based on research performed for the High-
ways Agency, London, U.K. under the project DPU/9/44
“Revision of Bridge Assessment Rules Based on Whole
Life Performance: Concrete Bridges”. It contains details of
a methodology which can be used to generate Whole Life
(WL) reliability profiles. These WL reliability profiles may
be used to establish revised rules for Concrete Bridges. The
paper is based on Thoft-Christensen et «al.'* and Thoft-
Christensen® .

2. Limit states

Four limit states are selected for the reliability analysis:

e two ultimate limit state (ULS): collapse limit states
(using yield line analysis) and shear failure limit state,

e two serviceability limit states (SLS): crack width limit
state and deflection limit state.

2.1. Collapse (vield line) limit state
The following safety margin is used

Mig\(-)=ZE, — W, (1)
where Z, is a model uncertainty variable, Ey, is the energy
dissipated in yield lines, and W), is the work done by the
applied loads.

The plastic collapse analysis and estimation of the load
are performed using the COBRAS program®. The reliability
analysis (element and system) is done using RELIABO1”
and RELIAB02". The RELIAB and COBRAS programs
have been interfaced and an optimisation algorithm has
been included to determine the optimal yield line pattern
for each iteration of the reliability analysis, see also Thoft-
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Christensen’. The estimation of the deterioration of the steel
reinforcement is based on the program CORROSION'.
Cobras supports 16 different types of failure mode, 7 are
used in this bridge slab analysis (see Figure 1). The basic
variables used in the yield line ULS are: thickness of slab,
cube strength of concrete, density of concrete, depth of
reinforcement, yield strength of reinforcement, and two
load parameters.

2.2. Shear failure limit state
Shear failure is modelled using a model applicable to

reinforced concrete beams'', which may be written as

V.

Mi: go(-) = szi.un - (2)
where V; is the shear force from external loads, Z, is a
model uncertainty variable, V,,, is the ultimate shear
strength, v, is the design shear stress, and & is the depth
factor defined as, where b is the width of the beam and d
is the depth of the beam

) ( )rm

The stochastic variables used in the shear limit state are:
thickness of slab, cover on reinforcement, concrete cube
strength, yield stress of reinforcement, initial area of the
reinforcement, density of concrete, static load factor,
dynamic load factor, model uncertainty variable, and vari-
ables related to the chloride induced corrosion.
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g = (30

d

100A
V,=&vbd, v. = 0.24( >
. bd

(3)

2.3. Crack width limit state

Cracking shall be limited to a level that will not impair the
proper functioning of the structure or cause its appearance
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hogging yield line
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sagging yield line
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1: Full width failure
S: Partial box failure
6: Partial wedge failure
11: Partial edge wedge failure

Figure 1 Failure modes for simple supported slab bridges

to be unacceptable. The design crack width may be
obtained from'?

Wy = Bsrmesm (4)

where w, is the design crack width, s,,, is the average final
spacing, €, is the mean strain allowing, under the relevant
combination of loads, for the effects of tension stiffening,
shrinkage, etc., and B is a coefficient relating the average
crack width to the design value. The value of €, may be
calculated Ifrom

[08

o, (a .
E\'m_Eh Bl ()'\ (‘)

where o, is the stress in the reinforcement calculated on
the basis of a cracked section. o is the stress in the
reinforcement calculated on the basis of a cracked section
under the loading conditions causing first cracking. B, is a
coefficient which takes account of the bond properties of
the bars.

The average final crack spacing (in mm) for members
subjected dominantly to flexure or tension can be calculated
from the equation

Sem = 50 + 025/&,/‘2([)/1)‘ (6)

where ¢ is the bar size in use (or the average bar size). p,
is the effective reinforcement ratio, A./A, ., where A, is the
area of reinforcement contained within the effective tension
area, A, . k, is a coefficient which takes account of the
bond properties of the bar. k, is a coefficient which takes
account of the strain distribution.

The crack width limit state can then be formulated by

M.‘:g( : ) = Wi — ZL'M’yk (7)

where Z. is a model uncertainty stochastic variable. The
stochastic variables used in the crack SLS are: concrete
cover, distance between reinforcement bars, diameter of
reinforcement bars, thickness of slab, elastic modulus of
reinforcement bars, tensile strength of concrete, external
bending moment, and one model uncertainty variable.

2.4. Deflection limit state
The following deflection limit state is used

M-lg() = dmu.\ - ledk (8)

13: Partial wedge failure 3 wedge fan
14: Partial wed?ae failure 6 wedge fan
15: Partial box

ilure 3 wedge fan

where d,,,,, is the maximum allowable deflection, d, is the
deflection estimated by linear elastic analysis, and Z; is a
model uncertainty variable.

3. Deterioration

Corrosion initiation period refers to the time during which
the passivation of steel is destroyed and the reinforcement
starts to corrode actively. Practical experience of bridges
in wetter countries shows that chloride ingress is far bigger
a problem that carbonation. The rate of chloride penetration
into concrete, as a function of depth from the concrete sur-
face and time, can be represented by Fick’s law of diffusion
as follows:

oC D 6°C 9)
& ¢ et

where C is the chloride ion concentration, as % of the
weight of cement, at distance x cm from the concrete sur-
face after 1 s of exposure to the chloride source. D is the
chloride diffusion coefficient expressed in cm?*/s. The sol-
ution of the differential equation (8) is

Clx,t)=Cyl — erf (10)

X
2Dt

where C,, is the equilibrium chloride concentration on the
concrete surface, as % of the weight of cement, x is the
distance from the concrete surface in c¢m, 7 is the time in
s, erf is the error function, D is the diffusion coefficient
in cm?/s and C(x,r) is the chloride concentration at any
position x at time ¢. In a real structure, if C.(x,1) is assumed
to be the chloride corrosion threshold and x is the thickness
of concrete cover, then the corrosion initiation period, T,
can be calculated based on a knowledge of the parameters
Cy and D¢. The time 7, to initiation of reinforcement cor-
rosion is

(dl _Dl/z)z( . (Ccr“ C() g
T, = ! 11
) 4D, .erf C-c, (rn)

where C, is the initial chloride concentration, C,, is the criti-
cal chloride concentration at which corrosion starts, and |
— D,/2 is the concrete cover. When corrosion has started
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then the diameter Dy(t) of the reinforcement bars at time ¢
1s modclled by

Dy(1) =D, — Ceonleond (12)
where D, is the initial diameter, C.,, is a corrosion coef-
ficient, and i, is the rate of corrosion.

Based on a survey, three models for chloride penetration
are proposed (the initial chloride concentration is assumed
to be zero): low deterioration, medium deterioration and
high deterioration. The deterioration parameters for these
three levels are (M(a,b) is a normal distribution with the
mean « and the standard deviation b, Uniform|a,b] is a
uniform distribution in the interval [a;bh]):

3.1. Low:

Diffusion coefficient D¢ N(25.0, 2.5) [mm?/ycar]
Chloride concentration, surface C,: N(0.575, 0.038)
%]

Corrosion density i.,,: Uniform[ 1.0, 2.0] [mA/cm?].

cores

3.2. Medium:

Diffusion cocfficient D N(30.0, 2.5) [ mm?/year]
Chloride concentration, surface C,: N(0.650, 0.038)
[%]

Corrosion density i.,,: Uniform| 1.5, 2.5] [mA/cm?].

3.3. High:

Diffusion coefficient D¢: N(35.0, 2.5) [mm?/year|
Chloride concentration, surface Cy: N(0.725, 0.038)
[ % )

Corrosion density i.,,: Uniform|2.0, 3.0] [mA/cm?).

Figure 2 shows sample realisations of the history ol the
reinforcement area for all tree deterioration models.
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4, Service life time

In Thoft-Christensen® the service life time is defined as the
initiation time T), see equation (11) for corrosion of the
reinforcement. This is a rational definition from a life-cycle
cost of view since repair of corroded reinforced elements
is 4 major contributor to the life-cycle cost. It is relatively
incxpensive 1o repair a structural element by replacing
some part of the concrete instead of waiting until corrosion
has taken place.

On basis of equation (11) outcomes of the corrosion
initiation time T, has been performed on basis of the follow-
ing data by simple Monte Carlo simulation (1000

simulations) using the software program Corrosion'”:

Initial chloride concentration: 0%

Surface chloride concentration: Normal((.650;0.038)
Diffusion coefficient: Normal(30:5)

Critical concentration: Normal(0.3;0.05)

Cover: Normal(40:8)

Number of samples: 1000).

The simulated values are plotted on Weibull probability
paper in Figure 3. In the same figure is shown that a Weib-
ull distribution can be used to approximate the distribution
of the simulated data.

The straight line in Figure 3 corresponds to a Weibull
distribution W(x;p.k.€), where p = 63.67, k = 1.81 and €
=4.79. The corresponding histogram and the density func-
tion is shown in Figure 4.

5. Reliability profiles

This example is used to illustrate the proposéd method-
ology. The example is based on an existing U.K. bridge,
but some limitations and simplifications are made. The
bridge was built in 1975 and was designed for 45 units HB
load. The bridge has a span of 9.75 m, the width is 2 times
13.71 m, and the slab thickness is 550 mm (see Figure 5).
Based on the corrosion data shown in Tuble I the expected
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Figure 2 Normalised reinforcement area A/A, as a function of time for low, medium, and high deterioration
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Figure 5 Bridge data

area of the reinforcement as a function of time can be calcu-
lated (see Figure 6).

Reliability profiles for the yield line limit state (ULS)
are as an illustration calculated on the basis of the stochastic
modelling shown in Table 1.

The general traffic highway load model in the Eurocode
I. Part 3 (ENV 1991-3:1995) for lane and axle load is

applied. The load effects produced by the Eurocode model
(lane and axle load) are multiplied by a static load factor
(extreme type 1) and a dynamic load factor (normal).
The normalised reliability profile for the yield line ULS
(full width failure) and the corresponding probability of
failure profile are shown in Figure 7. The reliability index
at time 1 = 0 is B, = 11.5. Due to the size of the concrete
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Table 1 Stochastic modelling used for the ULS

Reliability profiles assessment: P. Thoft-Christensen

No. Type Par. 1 Par. 2 Description ’
1 Normal 550.0 Thickness of slab [mm]

2 LogNormal 30.0 Cube strength of concrete [MPa]

3 Normal 23.6 Density of concrete [kN/m?]

4 LogNormal 289.0 Yield strength: longitudinal reinforcement [MPa]
5 Normal 60.0 Cover on longitudinal reinforcement [mm]

6 LogNormal 283.0 Yield strength: transverse reinforcement [MPa]
7 Normal 86.0 Cover on transverse reinforcement [mm]

8 Fixed 10053.0 Longitudinal reinforcement area (initial) [mm?]
9 Fixed 565.0 Transverse reinforcement area (initial) [mm?]
10 Gumbel 0.352 0.026 Static load factor [—]

11 Normal 1.27 0.20 Dynamic load factor [—]

12 Normal 1.08 0.072 Chloride concentration on surface (%]

13 Fixed 0.0 Initial chloride concentration [%]

14 Normal 35.0 . Diffusion coefficient [cm?/s]

15 Normal 0.4 0.05 Critical chloride concentration [%]

16 Uniform 2.5 0.29 Corrosion parameter [—]

17 Normal 1.0 0.05 Model uncertainty variable [—]

Expected reinforcement area

1.1 y T T T T
1 R

— 0.9}
8 1
<
osf 1
<
ot

0.6f

0.5 : t v ’ -+

0 20 40 60 80 100 120
Years

Figure 6 Relative expected reinforcement area E[A(t)1/EIA(0)]
as a function of time

cover (mean value 60 mm) the deterioration does not have
any cffect until year 70.

The results from the sensitivity analysis with regard (o
the mean values are shown for r = 0 years and 1 = 120 years
in Figure 8. The sensitivity measure shown is the reliability
elasticity coefficient. The meaning of the elasticity coef-
ficient ¢, is the following. I a parameter p is changed 1%
then the reliability index is changed ¢,%. The most
important variables are, as expected. the thickness of the
slab, the yield strength of the reinforcement, and the model
uncertainty. Observe that the magnitude of sensitivity with
regard to the cover changes from negative at time 7 = 0 to
positive at time 1 = 120 due to the corrosion.
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Yield line limit state: Sens. analysis [mean]
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