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1 Introduction 
Load duration effects with respect to long tenn decrease of strength are very important for stmctural 
timber. This report describes how the load duration effect can be determined on basis of simulation 
of realizations of the time varying load processes. Wind, snow and imposed loads are considered 
and the stochastic models are formulated in accordance with the load models in the Danish struc­
tural codes, DS 409, [3] and DS 410, [4]. Three damage accumulation models are considered, 
namely Gerhards model, [5], Barret & Foschi's model, [7] and Foschi & Yao's model [10]. The pa­
rameters in these models are fitted using data relevant for Danish structural timber, Hoffmeyer, [6]. 

Load duration factors, kmoct are calibrated using a probabilistic method requiring that the lifetime 

reliability for representative limit states are the same for situations where load duration is taken into 
account and situations where short term strength models are used. 
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2 Load models 

2.1 Snow load 

X, X,+T, t 

Figure 1. Snow load model. Left: rectangular snow load. Right: triangular snow load. 

I 

The annual maximum snow load on a structure is detennined from 

Ps = CPsa (1) 

where 

PsG is the annual maximum snow load on the ground 

C is a shape factor 

The snow model for the snow load on the ground is illustrated in figure 1. The following assump­
tions are made: 

1. the occurrence of snow packages at times Xp X 2 , ••. is mode led by a Poisson process. The dura­

tion between snow packages is therefore exponential distributed with expected value 1 I 'A , 
where 'A is the expected number of snow packages per year. 

2. the magnitude of the maximum snow load Pm in one snow package is assumed to be Gumbel 

distributed with expected value J.l P and standard deviation cr P • 

3. the length of a snow package T is equal to X rPm , i.e. proportional to the maximum snow load 

ofthe snow package. Xr is assumed to be Exponential distributed with expected value llx . 
T 

4. the time variation of a snow package is assumed to be rectangular or triangular, see figure 1. 

2.2 Wind load 
The annual maximum wind pressure on a structure is determined from 

Pw max = CPw 

where 

Pw is the annual maximum wind pressure 

C is a shape factor 

-2-
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Pw(t) 
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Figure 2. Wind load model. Time variations in each 1 0-minutes period are not shown. 

The wind model is illustrated in figure 2. The following assumptions are made: 

1. the occurrence of storms at times X~> X 2 , ... is mode led by a Poisson process. The duration be:. 
tween stonns thus becomes exponential distributed with expected value 1 I A. , where A. is the 
expected number of storms per year. 

2. the magnitude of the maximum wind pressure P,, in one storm is assumed Gumbel distributed 

with expected value Jl P and standard deviation cr P • 

3. the length of one storm T (in sequences of 10 minutes periods) is equal to X rPm. Xr IS as­

sumed to be Exponential distributed with expected value Jl X • 
T 

4. the magnitude of the wind pressure P, in a 1 0-minutes period in a given storm is modeled as 

P, = P,, -X P (Pm - P,h) where P,h is a lower threshold on wind pressures measured (e.g. propor­

tional to (13 m/s)2
). X P is assumed to be Beta distributed with expected value Jl x and stan-

p 

dard deviation cr x . The wind pressures in one storm are limited to be between a lower thresh-
p 

old measured (e.g. proportional to (average wind velocity= 13 rnlsi) and the maximum value 
for the storm, implying that 0 ~X P ~ 1 . It is assumed that the sequence of the 1 0-minutes peri­

ods is unimportant. 

5. the time history of the wind pressure P(t) during each 10 minute period is modeled using the 

wind spectrum and wind action model in DS41 0 [ 4]. 

2.3 Imposed load 
Imposed load is modeled in accordance with the JCSS load model, see [8] and CIB W81, [9], and 
consists of sustained loads and intermittent loads. The following assumptions are made: 

I. the sustained load changes at times Xp X 2 , ... are mode led by a Poisson process. The duration 

between changes is exponential distributed with expected value A. sus. 

2. the magnitude of the sustained load P sus is assumed Gamma distributed with expected value 

2 2 Ao 
Jl sus and standard deviation cr sus = cr" + cr u,sus AK with parameters defined in table 1. 

3. the intermittent loads occurring at times XpX2 , . .. are also modeled by a Poisson process. The 

duration between the intermittent loads is thus exponential distributed with expected value \nt . 

-3-
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. 
4. the magnitude of the intennittent loads ~m is assumed Gamma distributed with expected value 

2 Ao 
1-tint and standard deviation cr int = cr u int -K with parameters defmed in table 1. The time . A 

length of the intennittent loads is tint· 

Sustained load Intermittent load 

Ao 1-l sus (Jl' cr u,sus A sus 1-tint (J u,int "Aint tint 

[m2] [kN/m2] [kN/m2] [kN/m2] [year] [kN/m2] [kN/m2] [year] [days] 
Office 2 0.5 0.3 0.6 5 0.2 0.4 0.3 1-3 
Residence 2 0.3 0.15 0.3 7 0.3 0.4 1.0 1-3 

Table 1. Parameters for imposed load, see [8]. A= 5 m2 and K = 1. 778. 

-4-
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3 Strength model 

3.1 Short term strength 
The initial (short tenn) bending strength is assumed to be LogNonnal distributed with coefficient of 
variation equal to 15% or 20%, which are the basic COY's used in Denmark for laminated and 
structural timber, respectively. 

3.2 Damage models 

3.2.1 Gerhards model 
The strength of wood depends on the duration of the applied load. The following damage model 
proposed by Gerhards [5] is used: 

da ( cr ) -=exp -A+B-
dt - R0 

(3) 

where 

a is the accumulated damage. Failure occurs when a ;::: 1 

cr is the applied stress 

R0 
1 is the initial (short term) strength 

A , B are constants 

The solution of the differential equation (3) assuming constant load cr and setting a = 1 give 

cr A lnlO 
-=----logt=a-blogt (4) 
R0 B B 

where 

A 
a=-+s 

B 

and 

b = lnlO 
B 

(5) 

s models the model uncertainty. s is assumed to be Normal distributed with expected value 

equal to 0 and standard deviation cr £ 

Based on test results from a test program carried out on structural timber (Nordic spruce) in 4 point 
bending, see Hoffmeyer [6], the parameters in table l are estimated using the Maximum Likelihood 
technique. Simultaneously the standard deviations modeling statistical uncertainties are estimated, 
see table 2. The corresponding correlation coefficients are: 
p(a,b) =0.90, p(a,cr J =0.08 and p(b,cr J=0.02. 

Figure 3 shows the data and the fit obtained using the parameters in table 2. 

a b cr£ 

Estimate 0.90 0.0495 0.0206 
Standard deviation 0.0055 0.0016 0.0021 

Table 2. MaXJmum Ltkehhood estimates and standard deviation of parameters in Gerhards model. 
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Figure 3. Fit of data to Gerhards model. x-axis: log(t), t in hours and y-axis: S =crI R0 in %. x: 
data; full line: fit. 

The solution of the differential equation (3) using constant load cr IS 

a = t exp[- A+ B ;J + C (6) 

where C js a constant. If R is considered as the residual strength corresponding to the damage a , 

then using that a = 0 and 1 for !_ = 1 and 0: 
Ro 

R 1 ] - = -[1 + (1-a XexpB -1) 
R0 B 

3.2.2 Barret and Foschis model 

The damage model suggested by Barret & Foschis [7] is written: 

da [ cr )B cr -=A--11 +Ca ;-R>ll 
dt R0 0 

da =O 
dt 

where 

A, B, C constants, 

cr 
0 -<l] 
'Ro-

o threshold ratio (typically equal to 0.5) 

Ll stress 

R0 initial (short tenn) strength. 

Solution of the differential equation (8) using constant load cr and setting a= 1 give: 
I 

~ = (~(exp(C · t )-1))Ji +l] = a(exp(exp(b )· t )-1)" 
R0 C 

where 

- 6-
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b=lnC 
1 

C =--
B 

(10) 

and 

c: models the model uncertainty. c: is assumed to be Normal distributed with expected value 

equal to 0 and standard deviation cr , 

Based on test results in Hoffmeyer [6], the parameters in table 3 are estimated using the Maximum 
Likelihood technique. Simultaneously the standard deviations modeling statistical uncertainties are 
estimated, see table 3. The corresponding correlation coefficients are: 
p(a,b)=0.82, p(a,c)=0.65 , p(b,c)=0.64, p(a,cr.)=-0.09, p(b,cr , )=-0.16and p(c,cr c)= -0.11. 

Figure 4 shows the data and the fit obtained using the parameters in table 3. 

a b c cr , 

Estimate 0.221 -9.14 -0.063 0.075 
Standard deviation 0.0033 0.079 0.002 0.006 

Table 3. Maximum Likelihood estimates and standard deviations of parameters in Barret & Foschi's 
model. 

I 
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Figure 4. Fit of data to Barret & Foschi's model. x-axis: log(t), t in hours and y-axis: S =crI R0 in 
%. x: data; full line: fit. 

The solution of the differential equation (8) using constant load cr IS 

a = A[~ -YJ)n (exp(Ct )-1)+ D 
C R0 

(11) 

where D is a constant. If R is considered as the residual strength corresponding to the damage a , 

then using that a = 0 and I for .!!:_ = 1 and YJ : 
Ro 

(12) 
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3.2.3 Foschi an Yao's model (Canadian model) 

The damage model suggested by Foschi & Yao [10] is written: 

da =A[~-YJ)B +C[~-YJ)n a ; Rcr >YJ 
dt R0 R0 0 

da =O 
dt 

where 

A, B, C, D constants, 

() 
. -<YJ 
'Ro-

D threshold ratio (typically equal to 0.5) 

D stress 

R0 initial (short term) strength. 

(13) 

Solution of the differential equation with short term ramp load ( cr = kt) until failure with initial 
strength R0 gives (assuming rate of loading is large and C small), see Kohl er & Svensson [ 11] 

A= k(B+I) (14) 
Ro(l +YJ)(B+l) 

The time until failure t 1 can then be determined from, see Kohler & Svensson [11]: 

t -~+ 1 In[~) 1
- k ~~ -~r a, +A 

(15) 

where 

[ 

0" ]B+l --YJ 
Ro 

Go= 1-YJ (16) 

and 

(17) 

Equation ( 15) can also be written 

(18) 

where 

8 models the model uncertainty. 8 is assumed to be Normal distributed with expected value 

equal to 0 and standard deviation cr E 

- 8-
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Based on the test results in Hoffmeyer [6], the parameters in table 4 are estimated using the Maxi­
mum Likelihood technique. Simultaneously the standard deviations modeling statistical uncertain­
ties are estimated, see table 4. The corresponding correlation coefficients are: 
p(B,C)=0.38, p(B,D)=0.12, p(C,D)=0.98, p(B,cr,)= 0.00, p(C,cr,)= 0.01 and p(D,cr")= 
0.00. 

Figure 5 shows the data and the fit obtained using the parameters in table 4. 

B c D (JE 

Estimate 27.3 9.78 5.44 0.35 
Standard deviation 0.92 7.57 0.46 0.03 
Table 4. Maxnnum Ltkehhood estimates and standard devtations of parameters in Barret & Foschi's 
model. 

110 
X 

100 

90 

s 80 

70 

60 

50 

-4 -2 

X 
X 

0 
log(t) 

2 4 6 

Figure 5. Fit of data to Barret & Foschi's model. x-axis: log(t) , t in hours and y-axis: S =crI R0 in 
%. x: data; full line: fit. 

If R is considered as the residual strength corresponding to the damage a, then: 

R - (1 X1 )1 /(l+B) --11+ -11 -a 
Ro 

(19) 

- 9-
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4 Calibration of load duration factor 
In this section it is described how a load duration factor can be calibrated using a probabilistic ap­
proach. Probabilistic methods modeling of the strength by stochastic models have been used in e.g. 
[5], [7] and [12], but in the following a full probabilistic approach is described where all uncertain­
ties related to strength, model and loads are included in a way consistent with the background for 
the partial safety factors in the Danish structural codes. 

Distribution Expected value Coefficient of 
variation 

Ro Lognonnal I VR =0.15 

VR =0.20 

XR Lognormal 1 0.05 

G Normal 1 0.1 

Q Gum bel I VQ=0.2/0.4 

ZR Lognonnal 1 Vz = 0.0 I 0.1 

A Normal Table 1, 2 or 3 Table 1, 2 or 3 
B Normal Table 1, 2 or 3 Table 1, 2 or 3 
c Nonnal Table 1, 2 or 3 Table 1, 2 or 3 
E Normal 0 Table 1, 2 or 3 

Table 5. Stochastlc model. 

The following short-term limit state function is considered: 

g=zR0 XR -((1-K)G+KQ) 

where 

z design parameter 

K coefficient, 0 ~ K ~ 1 

R0 short term strength 

X R model uncertainty for short tenn strength 

G pennanentload 

Q variable load 

The corresponding design equation is: 

zRk ( ) -- (1-K)y GGk +Ky QQk = 0 
Ym 

where 

Rk characteristic value for short term strength (5% quantile) 

Gk characteristic value for permanent load (mean value) 

Characteristic value 

0.77 
0.72 

1 

1 

J6 
I- VQ - [0.5772 + ln{-ln(0.98)}] 

n; 

1 

(20) 

(21) 

Qk characteristic value for variable load (98 % quantile in one year maximum distribution) 

y m partial safety factor for material parameter (=1.5/1.64 if coeff. of variation= 0.15/0.20) 

y G partial safety factor for pennanent load (=1.0) 

- I 0-
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partial safety factor for variable load (=1.5 for environmental load) 

The design variable z is determined from (21) and next, the reliability index 13 is calculated on the 

basis of (20) and the stochastic model in table 5. It is noted that in the Danish codes the reference 
one-year reliability index is 13 =4.8 and VQ =0.2 and 0.4 for imposed and environmental load, re-

spectively. 

The following long-term limit state equation is used: 

g = 1- Zna(R0 ,G,Q,A,B,C,SR(z),TJ,K,TL) 

where 

(22) 

Z R model uncertainty for long term strength with mean 1 and coefficient of variation V2 

a damage function. Gives the accumulated damage after TL =50 years with a time varying 

variable load Q = Q(t) 

TL design life time(= 50 years) 

A,B,Cparameters in damage accumulation model 

. (1-K)G+KQ 
SR •stress ratio= -'----'----=-

zR 

11 threshold value 

R0 short term strength 

G pennanent load 

Q = Q(t) variable load as function of time 

The design equation corresponding to the limit state function (22) is: 

zRk ( ) 
-kmod- (1-K)y GGk +Ky QQk = 0 
Ym 

(23) 

where 

kmod load duration duration factor 

In order to take into account in the short-term model the decrease with time of the strength due to 
accumulated damage the following alternative limit state equation is used: 

g=z.!!:_R0 XR -((1-K)G+KQ) 
Ro 

(24) 

where R is the residual strength corresponding to the damage a at time t . .!!:_ is determined from 
Ro 

(7), (12) or (19). A simple, conservative alternative is to use (1-a)R0 instead of R in (24): 

(25) 

- 11 -
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where a is the damage function obtained from (3), (1 0) or (13). In (25) the strength is reduced line-· 
arly by the damage. 

The limit state functions (24) and (25) are used with the design equation (23). 

The kmod factor is calibrated by the following steps: 

I. Calculate the short tenn reliability index 13to for a 50 year reference period using the limit state 

function (20) and the design equation (21 ). 13 to is calculated as function of y m by simulation 

( y G and y Q are fixed). The design parameter z is determined from (21) and a realization of the 

limit state function (20) is simulated, see sections 4.1, 4.2 and 4.3. The time to failure, TF s IS 

determined. The probability offailure is estimated by 

number of realisations where TF s ~ TL 
p = ' 

F,s total number of realisations 
(26) 

The corresponding reliability index is determined from 

13:0 = -<f>-l (PF ,S ) (27) 

where <I>( ) is the standard Normal distribution function. 
I 

2. Calculate the long term reliability index 13 fo for a 50 year reference period using the limit state 

function (22) and the design equation (23) and kmod =I. I3 5L0 is calculated as function of y m by 

simulation (y G and y Q are fixed). The design parameter z is determined from (23) and a reali­

zation of the limit state function (22) is simulated, see sections 4.1, 4.2 and 4.3. The time to fail­
ure, TF,L is determined. The probability of failure is estimated by 

p _ number of realisations where TF,L ~ TL 

F,L - total number of realisations 
(28) 

The corresponding reliability index is determined from 

13:0 = -<f>-l(pF,J (29) 

3. Estimate kmod from 

k y;;, (13) 
mod = Y ;, (l3) (30) 

for a reasonable range of values of the reliability index 13 corresponding to the 50 year refer­

ence period. y;;, (13) is the short tenn partial safety factor as function of 13 and y;, (13) is the 

long term partial safety factor as function of 13 

In order to evaluate the time-variant reliability the following three supplementary reliability indices 
are determined: 

13s~ = -<f>-l (PF,C ) (31) 

where the probabilitY of failure is estimated by 

- 12-
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number of realisations where TF,s ~ TL or TF,L ~ TL PF c = ___________ _:__::___.::....___.:~---=-
' total number of realisations 

13 ~~ = -<f> -I (PF,Rl) 

where the probability of failure is estimated by 

number of realisations where TF RI ~ TL p - ' 
F,RI - total number of realisations 

and the time to failure, TF,Rl is determined using the limit state function (24). 

13~2 =-<f>-I(pF,R2) 

where the probability of failure is estimated by 

number of realisations where TF Rz ~ TL 
PF RZ = ' 

' total number of realisations 

and the time to failure, TF nz is determined using the limit state function (25). 
I , 

4.1 Results for snow load 

(32) 

(33) 

(34) 

(35) 

(36) 

It is assumed that K =1, i.e. there is no pennanent load. Based on data from [I] the shape factor C 
is modeled as Gumbel distributed with expected value f.lc=I and standard deviation a c=0.35. 

Based on recorded Danish snow data over 32 years from five locations (Karup, Skrydstrup, Tir­
strup, Vrerl0se and Aalborg) the following data have been estimated: 

I. A, = 1.1 7 5 snow packages per year 

2. P," in one snow package: Gumbel distributed with f.lp =0.33 kN/m2 and a P =0.2I kN/m2
. 

3. duration of snow package factor: X T: Exponential distributed with f.l Xr =75 days/ (kN/m2
) . 

Therefore the annual maximum snow load Psa becomes Gumbel distributed with expected value 

f.l = 0.36 kN/m2 and standard deviation a= 0.21 kN/m2
• The 98% quantile in the annual maximum 

distribution becomes Ps0098 = 0.99 kN/m2
. 

The reliability indices (short and long term) are estimated by simulation. One realization during the 
design life time (50 years) is simulated as follows: 

I. simulate a realization of the model uncertainty C (incl. uncertainty on shape factors). 

2. simulate durations between snow packs. 

3. simulate magnitudes of maximum snow loads on ground P," in each snow package. 

4. simulate lengths of snow packages T . 

5. calculate the time history of the snow load as Q(t) = C · P(t) 

6. apply the snow load to a damage accumulation law. Calculate: 

- 13-
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• the first time where the load is larger than the short tenn strength (limit state function (20) s 
0): TF,S 

• the first time where the accumulated damage is larger than I (limit state function (22) ~ 0) : 

TF,L 

• the first time where the load is larger than the damage reduced short term strength (limit 
state function (24) ~ 0) : TF,R 1 

• the first time where the load is larger than the damage reduced short tenn strength (limit 
state function (25) ~ 0) : TF,R 2 

Figure 6 and 7 show the relative reliability indices ~ (y m )I ~ 0 as function of y m for rectangular and 

triangular snow packages and for the Gerhard and the Barret & Foschi damage models. Vn=O.I5, 

Vz=O and no statistical uncertainty is included. ~ 0 = ~(Ym =1.5) is the reliability index for the 

short term limit state with y m = 1.5. ~ 5~ = ~ 5L0 for all y m values, and is not shown. It is seen that 

• the long term reliability is smaller than the short term reliability. 

• ~ :01 ~ ~ fo indicating that damage reduced strength does not change the reliability compared 

to the long term reliability. 

• The conservative model in (25) gives reliability indices ~ 5~2 equal to (rectangular snow 

packages) and slightly less (triangular snow packages) than the reliability indices ~:01 based 

on the damage reduced strength model in (24). 

• Gerhards and Barret & Foschi's damage models give almost the same relative reliability 
levels. 
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Figure 6. Relative reliability index ~ I~ 0 with ~ 0 = ~ (y m = 1.5) as function of y m. BS = ~ 5~; BL 

= ~ 5£0 ; BRI = ~:01 ; BR2 = ~:02 • Damage model: Gerhard. 
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Figure 7. Relative reliability index ~ I~ 0 with ~ 0 = ~ (y m = 1.5) as function of y m. BS = ~ ffo; BL 

= ~ 5L0 ; BRl = ~:01 ; BR2 = ~ 5R;. Damage model: Barret & Foschi. 
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Figure 8 shows the probability of failure as function of time for Barret & Foschi's damage model, 
triangular snow packages, VR =0.20, V2 =0.1, y m =1.3 and no statistical uncertainty. It is seen that 

• The probability of failure is slightly nonlinear as function of time, indicating that the annual 
probability of failure decreases slightly with time. 

• The long term probability of failure (based on accumulated damage in (22)) is equal to the prob­
ability of failure based on the damage reduced strength in (24), whereas the short term probabil­
ity of failure (based on the initial strength in (20)) is smaller. 

0.05 

0.04 

0.03 BL BR! 
Pf 

0.02 -

0.01 -

0 10 20 30 40 50 
lime 

Figure 8. Probability of failure as function of time in years. BS, BL and BR1: limit state functions 
(20), (2~) and (24). 

without stat. unc. with stat. unc. 

Rectangular Triangular Rectangular Triangular 

Gerhards VR=O.l5 0.75 I 0.75 0.81 I 0.81 0.75 I 0.75 0.80 I 0.79 

VR=0.20 0.75 I 0.75 0.81 I 0.82 0.75 I 0.75 0.79 I 0.79 

Barret & VR=0.15 0.75 I 0.75 0.81 I 0.81 0.75 I 0.75 0.80 I 0.79 
Foschi 

VR=0.20 0.75 I 0.75 0.81 I 0.82 0.75 I 0.75 0.79 I 0.79 

Table 6. kmoct factors for Danish snow load. a I b : a is for V2 =0.0 and b is for V2 =0.1. 

without stat. unc. with stat. unc. 

Rectangular Triangular Rectangular Triangular 

Gerhards VR=0.20 0.75 0.81 0.75 0.79 

Barret & VR=0.20 0.75 0.81 0.75 0.79 
Foschi 

Foschi & VR=0.20 0.75 0.87 0.75 0.86 
Yao 

Table 7. kmoct factors for Danish snow load. V2 =0.0. 

kmoct factors are calculated using (30) . Table 6 and 7 shows the calculated kmoct factors. It is seen 

that: 

• triangular snow packages give kmoct =0.80 - 0.87 and rectangular snow packages give kmoct =0.75 

• the choice of damage model is not important for the Gerhard and the Barret & Foschi models 
whereas higher values are observed for the Foschi & Yao model for triangular load 
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• statistical uncertainty is not important 

• the uncertainty of the short term timber strength is not important 

• the model uncertainty is not important 

4.1.1 Snow load- effect of duration of snow packages 
In this section is investigated the effect of using a reduced duration of the snow packages. Table 8 
shows the calculated krnoct factors for different expected durations of the snow packages. Rectangu-

lar snow packages, no statistical uncertainty, V2 =0.0, Gerhards damage model and VR=0.15 are 
used. It is seen that the duration should be decreased to less than 25 % before a small effect is ob­
served. 

1-L xr I 75 days/ (kn/m2
) kmod 

1 0.75 

0.5 0.75 

0.25 0.76 

0.20 0.77 

0.15 I 0.78 

0.10 0.81 

0.05 0.82 

Table 8. krnoct factors for different expected durations of snow packages. 
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4.2 Results for wind load 
It is assumed that K =1, i.e. there is no permanent load. Based on data from [2] and [4] the shape 
factor C is modeled as Gumbel distributed with expected value llc=1 and standard deviation 

cr c =0.215 . Based on recorded Danish wind data over 16 years (Sprog0) the following data have 

been estimated: 

1. /.., = 9.4 storms per year. 

2. Pm in one storm: Gumbel distributed with coefficient of variation= 0.44. 

3. duration ofstorm factor Xr: Exponential distributed with llx, = 1.76 [10 min./MPa]. 

4. magnitude of the wind pressure factor X P: Beta distributed with ll x = 0.58 and cr x = 0.28. 
p p 

The annual maximum wind load Psa becomes Gumbel distributed with coefficient of variation = 

0.25. 

The reliability indices (short and long tenn) are estimated by simulation. One realization during the 
design life time (50 years) is simulated as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

simulate a realization of the model uncertainty C (incl. uncertainty on shape factors). 

simulate durations between stonns. 

simulate magnitudes of maximum wind pressures Pm in each storm. 

simulate lengths of stonns T . 

simulate magnitudes of ~ in all 1 0-minutes periods in storm. 

simulate the time history of the wind pressure P(t) during each 10 minute period using a 2 sec. 

discretization and the wind spectrum in DS 410 [4]. 

calculate the time history of the wind load as Q(t) = C · P(t) 

apply the wind load to a damage accumulation law. Calculate: 

• the first time where the load is larger than the short term strength (limit state function (20) ~ 

0): TF,S 

• the first time where the accumulated damage is larger than 1 (limit state function (22) ~ 0) : 

T F,L 

• the first time where the load is larger than the damage reduced short tenn strength (limit 
state function (24) ~ 0) : TF ,R 

It is assumed that the structure considered has a height of 10 m and is placed in terrain class II. Fur­
ther it is assumed that no dynamic effects influence the wind load. 

Figure 9 shows the relative reliability indices ~ (y m )I f3 0 as function of y m for the Gerhards and the 

Barret & Foschi damage models. VR =0.15, Vz =0 and no statistical uncertainty is included. 

~0 = ~ (y m = 1.5) is the reliability index for the short tenn limit state with y m = 1.5. ~5~ = f3fo for 

all y m values, and is not shown. It is seen that 

• The long term reliability is larger than the short term reliability. 
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• For Gerhards damage model ~~1 is slightly smaller than ~Jo and for Barret & Foschi's 

damage model ~ ~1 ~ ~ Jo. This indicates a time variant reliability effect such that kmoct 

should not be larger than 1. 

• The conservative model in (25) gives reliability indices ~ 5~
2 less than the reliability indices 

~~1 based on the damage reduced strength model in (24). 

• Gerhards and Barret & Foschi's damage models give almost the same relative reliability 
levels. 

1.50 !.50 

1.25 

1.00 

DL . _ _ =--=---=---=--= BS=BRI 
-~ --- - - B~ - - . - -

1.25 

1.00 

BIBO ~ -0.75 0.75 

0.50 0.50 

0.25 -+--~---.--~--.---.-- . I 
1.40 1.50 1.60 1.70 1.40 1.50 1.60 1.70 

gamma_m gammn_m 

Gerhards Barret & F oschi 

Figure 9. Relative reliability index ~ I ~ 0 with ~ 0 = ~ (y m = 1.5) as function of y m. BS = ~ Jo; BL 

= ~fo; BR1 = ~~1 ; BR2 = ~ 5~
2 • Damage models: Gerhards and Barret & Foschi. 

Figure 10 shows the probability of failure as function of time for Gerhards damage model, 
V R =0. 20, V2 =0 .1 , y m = 1. 4 and statisti ea! uncertainty. It is seen that 

• The probability of failure is slightly nonlinear as function of time, indicating that the annual 
probability of failure decreases with time. 

• The long tenn probability of failure (based on accumulated damage in (22)) is smaller than short 
tenn probability of failure (based on the initial strength in (20)) which again is smaller than the 
probability of failure based on the damage reduced strength in (24). 

0.10 
0.09 
0.08 BR! 

BS 
0.07 BL 
0.06 

Pf 0.05 
0.04 

0 10 20 30 40 50 
time 

Figure 10. Probability of failure as function of time in years. BS, BL and BRI: limit state functions 
(20), (22) and (24). 

kmod factors are calculated using (30). Tables 9 and 10 show the calculated kmod factors. It is seen 

that for the kmod factor: 

• kmod is approximately 1.05 (from 1.01 to 1.07) 

• The Barret & Foschi and Foschi & Yao damage models give slightly larger kmod factors than 

the Gerhard model 
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• statistical uncertainty has some importance, especially for the Barret & Foschi damage modef 

• the uncertainty of the short tenn timber strength is not important 

• the model uncertainty is not important 

without stat. unc. with stat. unc. 

V2 =0.0 V2 =0.1 V2 =0.0 V2 =0.1 

Gerhards VR=O.l5 1.03 1.03 1.01 1.02 

VR=0.20 1.03 1.03 1.01 1.02 

Barret & VR=0.15 1.05 1.07 1.02 1.03 
Foschi 

VR=0.20 1.04 1.06 1.02 1.03 

Table 9. kmod factors for Danish wind load. 

without stat. unc. with stat. unc. 

V2 =0.0 Vz =O.O 

Gerhards VR=0.20 1.03 1.01 
I 

Barret & VR=0.20 1.04 1.02 
Foschi 

Foschi & VR=0.20 1.04 1.04 
Yao 

Table 10. kmod factors for Danish wind load. 

4.3 Wind and snow load - combination load 
The following load model for wind load is used when snow (or imposed) load is the dominating 
(extreme) load. The companion wind load applied is therefore modeled on the basis of the instanta­
neous (daily) wind load. 

The instantaneous average 10 minutes pressure on a structure is determined from 

Pw = CPw,J = C 0.5 p a 11;~ (37) 

where 

C shape factor 

Pw,J instantaneous average 10 minutes wind pressure 

p a = 1.25 kg/m3
: air density 

11; 0 instantaneous average 10 minutes wind velocity 

The following assumptions are made: 
1. the magnitude of the instantaneous (daily) average 10 minutes velocity V10 is assumed Weibull 

distributed. 
2. the time history of the wind pressure P(t) during each 10 minute period is modeled using the 

wind spectrum in DS41 0 [ 4]. 
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Based on recorded Danish wind data the instantaneous (daily) average 10 minutes velocity v;o in 

height= 10 m is modeled as Weibull distributed with expected value= 5.9 m/sand standard devia­
tion = 3.3 rn/s, see European Wind Atlas [ 1 0]. 

The load consists of extreme snow load and companion wind load. The corresponding design equa­
tion is: 

zRk -((1-K)yGGk +K&QQS,k +\j!Qw,J=O 
Ym 

where 

(38) 

Qs,k characteristic value for snow load (98% quantile in one year maximum distribution) 

Q characteristic value for wind load (98 % quantile in one year maximum distribution) W,k 

\jl load combination factor for wind load (=0.5) 

Load duration factors kmod are calculated using (30) for Barret & Foschi's damage model, triangu­

lar and rectangular snow packages, Vn =0.15, V2 =0, K =0 and no statistical uncertainty. The result 
lS 

kmod =0.9~ - 0.94 for constant snow package 

kmod =0.94 - 0.97 for triangular snow package 

It is seen that the load duration factor is larger than those for extreme snow load alone (0.75 for 
constant and 0.80 for triangular snow packages), but a little smaller than the load duration factor for 
wind alone (1.0). It seems to be a reasonable approximation to use the kmod value of the fastest 

varying load when snow and wind loads are combined. 

- 20-



Calibration of load duration factor 

4.4 Results for imposed load 
It is assumed that K =1, i.e. there is no permanent load. Based on the data in table 1 the annual 
maximum imposed load has the characteristics shown in table 11. 

Expected value Standard deviation cov 98% quantile 
50 yearmax 50 yearmax 50 yearmax 1 year max 
[kN/m2

] [kN/m2
] . [kN/m2

] 

Office 3.05 0.88 0.29 2.97 
Residence 2.71 0.95 0.35 2.10 

Table 11. Parameters for imposed load. 

The reliability indices (short and long tenn) are estimated by simulation. One realization during the 
design life time (50 years) is simulated as follows: 

1. simulate durations between changes in sustained loads and occurrence of intennittent loads. 

2. simulate magnitudes of sustained and intermittent loads. 

3. calculate the time history of the imposed load snow by summation of the sustained and intermit­
tent loads. 

4. apply the imposed load to a damage accumulation law. Calculate: 

• the first time where the load is larger than the short term strength (limit state function (20) ::; 

0): TF,S 

• the first time where the accumulated damage is larger than I (limit state function (22) ::; 0) : 

TF ,L 

• the first time where the load is larger than the damage reduced short tenn strength (limit 
state function (24) ::; 0) : TF R1 

• the first time where the load is larger than the damage reduced short term strength (li:rnit 
state function (25) ::; 0) : TF,Rz 

Figure 11 and 12 show the relative reliability indices ~(y m)! ~ 0 as function of y m for office and 

residence loads and for the Gerhards and the Barret & Foschi damage models. VR =0.15, Vz =0 and 

no statistical uncertainty is included. ~ 0 = ~ (y m = 1.3) is the reliability index for the short term 

limit state with y m = 1.3. ~ ~ = ~ fo for all y m values, and is not shown. It is seen that 

• the long term reliability is smaller than the short term reliability. 

• ~ :01 ~ ~ 5L0 indicating that damage reduced strength does not change the reliability compared 

to the long term reliability and therefore the load duration factor kmod does not change. 

• The conservative model in (25) gives reliability indices ~ :02 slightly less than the reliability 

indices ~:01 based on the damage reduced strength model in (24). 

• Gerhards and Barret & Foschi's damage models give almost the same relative reliability 
levels. 
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Figure 11. Relative reliability index p I p 0 with p 0 = p (y m = 1.3) as function of y m. BS = p %o ; 
BL = Pfo; BR1 = P~1 ; BR2 = P~2 • Damage model: Gerhards. 
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Figure 12. Relative reliability index p I P 0 with P 0 = P (y m = 1.3) as function of y"'. BS = P %o; 
BL = pfo; BR1 = P~1 ; BR2 = P~2 • Damage model: Barret & Foschi. 

Figure 13 shows the probability of failure as function of time for Gerhards damage model, office 
loads, VR =0.15, V2 =0, y m= 1.1 and no statistical uncertainty. It is seen that 

• The probability of failure is almost linear as function of time, indicating that the annual prob­
ability of failure is rectangular with time. 

• The short term probability of failure (based on the initial strength in (20)) is much smaller than 
the probability of failure based on the damage reduced strength in (24) and the long term prob­
ability of failure (based on accumulated damage in (22)). 

0.05 
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0.03 
Pf 

0.02 

0.01 

0.00 

0 10 
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Figure 13. Probability of failure as function of time in years. BS, BL and BR 1: limit state functions 
(20), (22) and (24). 

kmod factors are calculated using (30). Tables 12 and 13 show the calculated kmod factors. It is seen 

that: 
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• Gerhards and Foschi & Yao's damage model give kmact ~0.80 whereas the Foschi damage 

model gives kmod=0.75-0.80 

• kmod is almost the same for office and residence loads 

• statistical uncertainty is not important 

• the uncertainty ofthe short term timber strength is not important 

• the model uncertainty is not important 

without stat. unc. with stat. unc. 

Office Residence Office Residence 

Gerhards VR=O.l5 0.79 1 0.81 0.81 I 0.81 0.79 I 0.79 0.81 I 0.79 

VR=0.20 0.80 I 0.80 0.79 I 0.80 0.81 I 0.80 0.80 I 0.80 

Barret & VR=O.l5 0.77 I 0.77 0.80 I 0.80 0.78 I 0.75 0.79 I 0.80 

Foschi VR=0.20 0.76 I 0.78 0.80 I 0.80 0.77 I 0.78 0.80 I 0.80 

Table 12. kmod factors for imposed load. 

I 

without stat. unc. with stat. unc. 

Office Residence Office Residence 

Gerhards VR=0.20 0.79 0.80 

Barret & VR=0.20 0.80 0.80 

Foschi 

Foschi & VR=0.20 0.81 0.81 
Yao 

Table 13 . k mod factors for imposed load. 
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5 Summary 
It is shown how the load duration effect can be determined on basis of simulation of realizations of 
the time varying load processes. Stochastic models are presented for wind, snow and imposed loads 
in accordance with the load models in the Danish structural codes. 

Three damage accumulation models are considered, namely Gerhards model, Barret & Foschi's 
model and Foschi & Yao's model. The parameters in these models are fitted by the Maximum Like­
lihood Method using data relevant for Danish structural timber and the statistical uncertainty is 
quantified. 

The reliability is evaluated using representative short and long tenn limit states, and the load dura­
tion factor kmoct is estimated using the probabilistic model such that equivalent reliability levels are 

obtained using short and long tenn design equations. The results are: 

• Snow: kmoct =0. 75-0.80 

• Wind: 

• Imposed: 

kmod = 1.00-1.05 

kmod =0.80 

If wind and snow loads are combined with snow load as the extreme load then the simulation results 
indicate that it is reasonable to use the kmoct value of the fastest varying load. 

Time variant reliability aspect is considered using a simple, representative limit state with time 
variant strength and simulation of the whole life time load processes. The results indicate that inclu­
sion of the time-variant aspects is unimportant for snow and imposed load, but has some importance 
for wind load implying that kmoct = 1.00. The results are based on tests with constant load. However, 

the loads from the considered variable loads (snow, wind and imposed) have a time-varying behav­
ior. In order to obtain more realistic load duration factors, test should be performed with time­
varying load corresponding to typical variations of the real loads. Especially for wind loads with 
fast changes in the load level an influence on the load duration factor can be expected. 

6 Acknowledgements 
The work presented in this report is part of a programme financed by the Danish Forest Product 
Development Fund. The aim of the programme is to improve the basis for defining code parameters 
on timber structures in Denmark. The financial support is greatly acknowledged. 

7 References 
[1] Sanpaolesi, L.: Snow Loads. University ofPisa, Dept. ofStruct. Eng., 1999. 

[2] S0rensen, J.D., S.O. Hansen & T.A. Nielsen: Calibration of Partial Safety Factors and Tar­
get Reliability Level in Danish Structural Codes. IABSE Conf. 'Safety, Risk and Reliability 
-trends in Engineering', Malta, 2001, pp. 179-184. 

[3] DS 409. Code of Practice for the Safety of Structures. Danish Standard, 1998. 

[4] DS 410. Code ofPractice for Loads for the Design of Structures. Danish Standard, 1998. 

[5] Gerhards, C.C.: Time-related effects on wood strength: a linear cumulative damage model. 
Wood Science Vol. 11, No. 3, 1979, pp. 139-144. 

[6] Hoffmeyer, P.: Strength under Long-tenn loading. Chapter of textbook in Swedish Ph.D. 
course on Timber Engineering. To be published with Wiley. 

[7] Barret, J.D. & Foschi, R.O.: Duration of load and probability offai1ure in wood. Part 2: con­
stant, ramp and cyclic loadings. Canadian J. of Civil Eng., Vol. 5, No. 4, 1978, pp. 515-532. 

-24-



Calibration of load duration factor 

[8] JCSS: Probabilistic model code: Part 2.2 - Load models: Live load. JCSS 2001. 

[9] CIB W81 : Actions on structures - Live loads in buildings. CIB publication 116, 1989. 
[10] Troen, I., B. Petersen & E. Lundtag: European Wind Atlas, Ris0, Roskilde, 1989. 
[ 11] Kohl er, J. & S. Svensson: Probabilistic modelling of duration of load effects in timber struc­

tures . Proc. CIB W18 meeting in Kyoto, Japan, September 2002. 
[12] Stang, B.D., S. Svensson & J.D. S0rensen: Effect of load duration on timber structures in 

Denamrk. Report 'Nordic Wood' , By & Byg, Denmark, 2001. 

-25-





1 
~ 

I 
.J 

STRUCTURAL RELIABILITY THEORY SERIES 
Redcent papers 

PAPER NO. 222P·E: S0rensen, J.D. ; Stamg, Birgitte Dela; Svensson Staffan: Calibration 
of Load Duration Factor kmod· ISSN 1395-7953 R 0223 (25 pages). 

PAPER NO. 221 E: Thoft-Christensen, P. : Stochastic Modelling of the Diffusion 
Cooefficient for Concrete. ISSN 1395-7953 R0204. Presented at the IFIP Working. 
Conferce, Osaka, Japan, March 2002 (10 pages). 

PAPER NO. 220: S0rensen, J.D. ; Faber, M.H: Optimal Generic Planning of 
Maintenance and lnspectiofl for Steel Bridges. Submitted to IABMAS 2002, barcelona, 
July 2002 (8 pages). 

PAPER NO. 219: Faber, M.H.; S0rensen, J.D.: Condition Indicators for Inspection 
Planning of Concrete Structures. Submitted to IABMAS 2002, Barcelona, July 2002 (8 
pages). · 

PAPER NO. 218E: S0rensen, J.D., Faber, M. H.: Generic Inspection Planning for Steel 
Structures. 

PAPER NO. 217: S0rensen, J.D.; Faber, M.H.: Simplified , Generic Inspection Planning 
for Steel Structures. 

PAPER NO. 216: S0rensen, J.D. ; Faber, M.H.: Reliability-Based Optimal Planning of 
Maintenance and Inspection. 

PAPER NO. 215: S0rensen, J.D. ; Faber, M.H.: Codified Risk Based Inspection 
Planning. 

PAPER NO. 214E: S0rensen, J.D. ; Sterndorff, M.: Stochastic Model for Loads on 
Offshore Structures from Wave, Wind, Current and Water Elevation. 

PAPER NO. 213E: S0rensen, J.D.; Hansen, J.O.; Nielsen, T.A. : Calibration of Partial 
Safety Factors and Target Reliability Level in Danish Structural Codes. 

PAPER NO. 212: Sterndorff, M .. ; S0rensen, J.D.: A Rational Procedure for 
Determination of Directional Individual Design Wave Heights. 

PAPER NO. 21 1: Lassen, T.; S0rensen, J.D.: A Probabilistic Damage Tolerance Concept 
for Welded Joints, Part 2. 

PAPER NO. 210: Lassen, T. ; S0rensen, J.D.: A Probabilistic Damage Tolerance Concept 
for Welded Joints, Part 1. 

PAPER NO. 209: Faber, M.H.; S0rensen, J.D.: Bayesian Sampling Using Condition 
Indicators. 

PAPER NO. 208E: Faber, M.H.; S0rensen, J.D.: Indicators for Assessment and 
Inspection Planning. 

P = Paper version E = Electronic version, see address below 

A full list of papers can be seen from http://www.civil.auc.dk/i6/publ/srlist.html 



ISSN 1395-7953 R0223 

Dept. of Building Technology and Structural Engineering 

Aalborg University, December 2002 

Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

Phone: +45 9635 8080 Fax: +45 9814 8243 

www.civil.auc.dkli6 


