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BRIDGE MANAGEMENT SYSTEMS. PRESENT AND FUTURE 

P. Thoft -Christensen 

Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

Summary . 

In this paper bridge management systems are discussed with special 
emphasis on management systems for reinforced concrete bridges. 
Management systems for prestressed concrete bridges, steel bridges, or 
composite bridges can be developed in a similar way. 

1 Present bridge management systems are in most cases based on a 
deterministic approach and the assessment of the reliability or the safety is 
therefore in general based on subjective statements. In future bridge 
management systems we will see a change to stochastically based systems 
with rational assessment procedures. Future management systems will be 
computerized and different types of knowledge based systems will be .used. 
Further, recent developments in optimization techniques will make it possible 
to produce a much better decision tool regarding inspection and repair. 

lt is beyond the scope of this paper to give a complete presentation of 
existing bridge management systems. Most existing management systems 
are presented in detail in the literature. In this paper a number of changes 
which are expected in future management systems will be discussed. 

The format of future bridge management systems is illustrated by the 
EU supported management systems BRIDGE1 and BRIDGE2. 

1. INTRODUCTION 

For many years it has been accepted that steel bridges must be maintained 
due to the risk of corrosion of steel girders etc. The situation is a little different 
for reinforced concrete bridges. Reinforced concrete bridges built in Europe 
in the past seventy years were designed on the basis of a general belief 
among engineers that the durability of the composite material could be taken 
for granted. Although a vast majority of reinforced concrete bridges have 
performed satisfactorily during their service life, numerous instances of 
distress and deterioration have been observed in such structures in recent 
years. The causes of deterioration of reinforced concrete bridges are often 
related to durability problems of the composite material. One of the most 
important deterioration processes which may occur in reinforced concrete 
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bridges is reinforcement corrosion, caused by chlorides present in de-icing 
salts and/or carbonation of the concrete cover zone. 

Future bridge management systems will probably be based on simple 
models for predicting the residual strength of structural elements. Improved 
stochastic modelling of the deterioration is needed to be able to formulate 
optimal strategies for inspection and maintenance. However, such strategies 
will only be useful if they are also combined with expert knowledge. lt is not 
possible to formulate all expert experience in mathematical terms. Therefore, 
it is believed that future management systems will be expert systems or at 
least knowledge-based systems. 

This paper is mainly based on references [1] - [3] 

2. FUTURE BRIDGE MANAGEMENT SYSTEMS 

2.1 Optimal Strategies for Inspection and Maintenance of Bridges 

Diagnostic methods 

IJiagnosis of bridges showing signs of functional or structural deterioration is 
the first step that has to be taken before making any decisions regarding 
maintenance or repair. lt is necessary to define clearly what are the damage 
problems. The reasons for concern usually point out a direction for 
investigation. lt is, however, very time and money consuming to start 
diagnosis without knowing which information one wants to gather. 

When the diagnostic method (or methods) is selected, it is necessary 
to gather the know-how, equipment, manpower and facilities needed. The 
method procedure needs to be known accurately and the information needed 
has to be written down in order to avoid many visits to the site. Diagnostic 
work is usually disruptive for the normal functioning of the bridge and must be 
limited as much as possible in time and space. 

Correlations between defects and diagnostic methods 

A correlation matrix between the diagnosis methods and the defects can be 
established so that each line represents a defect and each column a 
diagnostic method. At the intersection of each line and column a number 
representing the correlation between defect and diagnostic method can then 
be introduced. Such a matrix may help the inspector in choosing the best 
inspection method, as a function of the detected defect. 

Fundamental parameters 

In practice, certain parameters are considered to be of fundamental 
importance in assessing the performance of structural materials, and, 
therefore, they dictate the investigation strategy and its implementation. A 
brief description of some of these parameters, and the errors commonly 
associated with their measurements must be analysed. 

2 



2.2 Development of Optimal Strategies 

Inspection strategies 

Methods and computer programs for determining rational inspection and 
maintenance strategies for bridges must be developed. The optimal decision 
should be based on the expected benefits and total cost of inspection, repair, 
maintenance and complete or partial failure of the bridge. Further, the 
reliability has to be acceptable during the expected lifetime. Inspections of 
bridges are usually divided into three types: 

• Current inspections which are performed at a fixed time interval, e.g. 
15 months. The inspection is mainly a visual inspection. 

• Detailed inspections are also periodical at a fixed time interval which 
is a multiple of the current inspection time interval, e.g. 5 years 
(replacing the current inspection when it occurs). The detailed 
inspections are also visual inspections. The inspections can also 
include non-destructive in situ tests. 

• Structural assessments are only performed when a current or detailed 
1 inspection shows some serious defects which require a more detailed 

investigation. Thus, structural assessments are not periodical. The 
structural assessment can include laboratorial tests, in situ tests with 
non-portable equipment, static and dynamic load tests. The tests are 
usually very costly compared with the other two inspection types. A 
structural assessment will also be performed when changes in the use 
of the bridge are being planned. 

Maintenance and repair decision systems 

lt is convenient to divide that part of the decision system which is used to 
assist in maintenance and repair planning into two subsystems: 

The maintenance subsystem deals with maintenance repair 
techniques and small repair, i.e. repair of unimportant structural defects 
(either because such repair does not involve great sums of money or 
because no expert advice is needed to repair them). Generally this 
subsystem is always used after a current or detailed inspection. 

The repair subsystem helps choosing the best option of structural 
repair when an important deficiency that impairs the functionality of the bridge 
is detected. lt is basically an economic decision (based obviously on 
structural and traffic engineering data) in which the costs are quantified. 
Generally this subsystem is used after a structural assessment. 

2.3 Application of Expert Systems 

General comments 

Expert systems technology is nowadays being considered as a powerful 
mechanism for helping human experts in their everyday decision tasks. Being 
able to represent in the computer system the knowledge structures and 
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reasoning strategies that the human expert follows when approaching a 
problem, enables other users to share this knowledge and the expert system 
thus constructed establishes a common decision criterion for the prospective 
users of the system. 

The objective of using expert system technology in bridge management 
is to produce a software tool to assist bridge inspectors as well as 
engineering experts in their tasks of assessing and improving the reliability of 
concrete bridges. 

Architecture 

The first step is to identify the various software subsystems and the relations 
between them i.e. the software architecture that will set the basis for the 
development of the expert systems. lt is natural in bridge management to 
develop two different modules aimed at different goals. The first should 
provide technical support to the inspector during the inspection process at the 
bridge site. The second should assist the engineer in the analysis of the 
safety of bridges as well as in the selection of maintenance and repair 
methods. 

I 

Software modules 

A number of software modules will interact with the expert systems through 
specifically designed data files: 

• Updating analysis: Based on inspection information and other new 
information the reliability estimates and the data in the databases must 
be updated. 

• Reliability analysis: The reliability of the bridge must be evaluated as a 
function of time. 

• Structural analysis: The system should be open so that the user is 
able to use his own finite element software. 

• Inspection program: Based on the data in the databases and the 
reliability estimates the optimal time for the next inspection is 
calculated using the updating module. 

Representation schemes and inference mechanisms 

The next step is to identify the representation schemes and inference 
mechanisms best suited for the implementation of the expert systems, as well 
as the evaluation and selection of the most promising expert system shells 
available that would guarantee that the representation and inference 
requirements identified are fulfilled. The functional interrelations between the 
expert modules and the analysis programs must be defined. 

Implementation of the expert system 

As mentioned earlier in bridge management it is convenient to have at least 
two systems, namely one to be used in the inspection phase and one to be 
used during maintenance and for repair decisions. 
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In such a case the first system will be highly based on "correlation 
matrices". Correlation matrices must be defined for: defects/diagnostic 
methods, defects/causes and defects/repair methods. A pseudo-quantitative 
classification of the type no correlation, low and high correlation is useful. 
Correlation between defects as well as diagnostic and repair methods is also 
needed. Each matrix must e.g. be organised so that each line represents a 
defect and each column a possible diagnosis method, cause or repair 
method. At the intersection of each line and column a number representing 
the correlation between defect and possible element of reference is to be 
introduced. 

lt is important for the applicability of the expert system that it gives all the 
information needed during and after inspections. Such information could be: 
general information about the bridge, related diagnostic methods, probable 
causes, associated defects and provisional defect report. 

Data bases 

A crucial task in the development of expert systems is the definition of the 
databases. An exhaustive study of the data collected for concrete bridges, 
both at the design stage and after it has been constructed must be provided. 
At relevant moments of the bridge's service life (usually after construction 
and after important rehabilitation work is performed), its real situation must be 
thoroughly described so that future inspections have something to relate to. 
When the database definition is completed then the set of parameters 
required for the reliability estimation, the cost optimization, additional bridge 
parameters dealing with the bridge repair cost and corrosion descriptive 
parameters are added. 

Most existing bridge management databases are insufficient for e.g. 
reliability assessment and for implementing modern decision making tools. 

Expert modules 

A number of expert modules is needed to define the architecture of the 
expert system: database module, inspection module and a decision module. 

The decision module will in general be divided into a number of sub­
modules such as: a maintenance/small repair submodule, an inspection 
strategy submodule and a repair/upgrading/replacement submodule. 

Expert strategies 

In the expert systems a number of strategies must be implemented, such as: 
.. Should technical knowledge regarding the need to perform a structural 

assessment be incorporated into the system and should it also be 
used to double check when the reliability index estimates that the 
condition of the bridge is good ? 

• When defects are detected during an inspection, what should be the 
strategy to consider them either as maintenance or as repair? When is 
the most appropriate time for repairing the defect?. 
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The inspector's functionalities 

The inspector must be able to perform activities like: 
• Review all the information contained in the database of the bridges. 

Different types of data are recorded for each bridge: identification and 
bridge site information, design information, budget information, traffic 
information, strength information, load information, deterioration 
information, factors that model the costs and data for the cross­
sections defined for the bridge. 

• Define new cross-sections. 
• Receive technical support regarding the most appropriate diagnostic 

methods to be used in order to conclude about the existence of a 
defect. 

• Receive technical support regarding the possible causes responsible 
for a defect. 

• Record the results of the inspection . 

The inspection engineer's functionalities 

The inspection engineer must at his office be able to: 
• 1 View the inspection results recorded at any previous inspection 

performed in any of the bridges of the database. 
• Enter the data of a bridge in the bridge's database. 
• View the data of a bridge and edit it. 
• Define new critical cross-sections for any of the bridges in the 

database. 
• Get a relation of the set of bridges contained in the database with the 

next inspection dates for each of the bridges. 
• Complete the data of the defects detected at the inspection by 

describing the defect in greater detail and by entering the results of 
the tests performed on the concrete. 

• Update data for the cross-sections and inspection results after repair. 

·3. BRIDGE MANAGEMENT SYSTEMS FOR CONCRETE BRIDGES 

In this section some important issues related to advanced bridge 
management systems are discussed namely 
• deterioration of bridges 
• stochastic modelling of failure modes 
• stochastic modelling of repair 
• updating techniques 
• reliability analysis. 

Deterioration of bridges 
An important reason for producing bridge management systems is the 

deterioration of bridges due to corrosion. Corrosion is one of the most 
important deterioration mechanisms for steel as well as reinforced concrete 
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bridges. In this section a stochastic model for corrosion of reinforcement in 
reinforced concrete bridges is shown. 

The rate of chloride penetration into concrete is often modelled by 
Fick's law of diffusion 

8c(x, t) _ D 8 2c(x, t) 
8t - C 8x2 

( 1) 

where De is the chloride diffusion coefficient , x is the distance from the 
surface and t is time. The solution of equation (1) is 

C(x, t) = Co {I - erf( 
2
/nc-t)} (2) 

where C{x, t) is the chloride content at the distance x from the surface and at 
the time t. t 0 is the initial chloride content. 

The corrosion initiation period 

2 
TJ = (di -DI 12) (err-I(Ccr -Co))-2 (3) 

4Dc Ci -C0 

where Ci is the initial chloride concentration, Ccr is the critical chloride 
concentration , and d1 - D 1 I 2 is the concrete cover. 

The diameter D1 (t) of the reinforcement bars at the time t after 
initiation of corrosion can the be modelled by 

D1 (t) = D1 (0)- Ccorricorr(t) (4) 

where D1 (0) is the initial diameter, Ccorr is a corrosion coefficient, and icorr 
is the rate of corrosion. 

The area of a reinforcement bar is then e.g. modelled using the 
following formulation 

l
nDl (0)2 -} fort~ T1 

A(t) = n(D1 (t)) 2 -} for T1 ~ t ~ T1 + Di (t) I (0.0203 · icorr) 

0 fort> T1 + Di (t) I (0.0203 · icorr) 

(5) 

With this modelling the initiation time of corrosion is determined based 
on values of C 0 ,C;,Dc,xd,Ccr· Often the corrosion initiation time from a 
bridge management point of view can be considered equal to the lifetime of 
the structure since repair before corrosion has taken place is favourable . 
After the deterioration has started the corrosion rate is modelled by the rate 
of corrosion icorr only. 

Based on a survey the following modelling for chloride penetration is 
proposed for areas with lot of rain (the initial chloride is assumed to be zero): 

Model 0: Diffusion coefficient D c : 

Chloride cone., surface C
0 

: 

Corrosion density icorr : 

7 

N(30.0, 5.0) [mm2/year] 
N(0.65, 0.075 (%] 

Uniform[1.0, 3.0] [ IJ. Alcm2] 



Reirtorcemert area as fi.J"ICtion of time 
1.1 .---~-~--~-~---....-~ 

0.9 

0 
<{10.8 

~ 
~ 0 7 
<{ 

0 .6 [ Model o I 

0 4oL_-~20--4~0--6~0 -~80--1~00-------'1 20 
Time [years) 

Figure 1. Reinforcement area as a function of time. Corrosion model 0. 
(Cover on reinforcement x d: N(40.0, 4.0) [mm]). 

Based on the deterioration model 0 three levels of deterioration are 
proposed: low deterioration, medium deterioration and high deterioration. 

Low: Diffusion coefficient De : N(25.0, 2.5) [mm2/year] 
Chloride cone. , surface C

0 
: N(0.575, 0.038) [%] 

Corrosion density icar : Uniform[1.0, 2.0] [ ~ A/cm2] 
Medium: Diffusion coefficient De : N(30.0, 2.5) 

Chloride cone., surface C
0 

: N(0.650, 0.038) 

Corrosion density icorr : Uniform[1 .5,2.5] 

High: Diffusion coefficient De : N(35.0,2.5) 
Chloride cone. , surface C

0 
: N(0.725, 0.038) 

Corrosion density icorr: Uniform[2.0,3.0] 

Reirtorcemert area as function of time 

i::rr=[Hgh[ .____; -! -: ....J~ 1 
0 ·4o'------2-'-0---4-'-0---G-'-0---80-'------1-'-00-----'120 

f::["··~1 "'~~ em ~ ~ , 
0.4 '-------'-----'------'--- ---'--------'------' 

0 W 40 GO 80 100 120 

20 40 GO 
Time [years) 

80 100 120 

Figure 2. Normalised reinforcement area A I A as a function of time for low 
0 1 

medium, and high deterioration. 



Stochastic modelling of failure modes 

A number of failure modes for structural elements must be modelled. In this 
section is shown as illustration modelling of an ultimate limit state (ULS) and 
a serviceability limit state for a concrete slab bridge namely ( see Thoft­
Christensen et al. [2]) : 
• an ultimate limit state (ULS): collapse limit state (using yield line analysis) 
• a serviceability limit state (SLS): crack width limit state (using linear elastic 

analysis) 
The following safety margin can be used for the collapse limit state: 

Z = YEn - W0 (6) 

where V is a model uncertainty variable, E 0 is the energy dissipated in yield 
lines, and W 0 is the work done by the applied loads. 

The_ basic variables used in the yield line ULS are: thickness of slab, 
cube strength of concrete, density of concrete, depth of reinforcement, yield 
strength of reinforcement, and two load parameters. 

Cracking shall be limited to a level that will not impair the proper 
functioning of the structure or cause its appearance to be unacceptable. In 
the absence of specific requirements (e.g. water tightness), it may be 
assumed that limitation of the maximum design crack width to about 0.3 mm 
will generally be satisfactory for reinforced concrete members with respect to 
appearance and durability. 

The design crack width may be obtained from (see [2]) 

(7) 

where wk is the design crack width, srm is the average final spacing, E:sm is the 
mean strain allowing, under the relevant combination of loads, for the effects 
of tension stiffening, shrinkage, etc., and pis a coefficient relating the 
average crack width to the design value. For load induced cracking f3 = 1.7. 
The value of E:sm may be calculated from the relation 

(8) 

where cr s is the stress in the reinforcement calculated on the basis of a 
cracked section, cr sr is the stress in the reinforcement calculated on the basis 
of a cracked section under the loading conditions causing first cracking. 

P1 is a coefficient which takes account of the bond properties of the 
bars. lt is = 1.0 for high bond bars, and = 0.5 for plain bars. f3 2 is a coefficient 
which takes account of the duration of the loading or of repeated loading. lt is 
= 1.0 for single, short-term loading, and = 1.5 for a sustained load or for 
many cycles of repeated loading. 

The average final crack spacing (in mm) for members subjected 
mainly to flexure or tension can be calculated from the equation 

(9) 
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where <1> is the actualbar size (or the average bar size). Pr is the effective 
reinforcement ratio, As I Ac,eff, where As is the area of reinforcement 

contained within the effective tension area, Ac eff . le,. is a coefficient which 
' 

takes account of the bond properties of the bar. lt is equal to 0.8 for high 
bond bars and 1.6 for plain bond bars. k2 is a coefficient which takes account 
of the strain distribution. lt is equal to 0.5 for bending and 1.0 for pure 
tension. 

The crack width limit state can then be formulated by 

g(·)= w -z w max c k (1 0) 

where zc is a model uncertainty stochastic variable. 
The stochastic variables used in the crack width SLS are: concrete 

cover, distance between reinforcement bars, diameter of reinforcement bars, 
thickness of slab, elastic modulus of reinforcement bars, tensile strength of 
concrete, external bending moment, and one model uncertainty variable. 

Stochastic modelling of the inspection 

Two types of uncertainty in the models for inspections must be considered. 
The first type of uncertainty is related to the uncertainty (reliability) of an 
inspection method, i.e., how good is an inspection technique to detect a 
defect if a defect is present and what is the risk that the inspection method 
indicates a defect when there is no defect (false alarm). The second type of 
uncertainty is related to the measurement uncertainty when a detected defect 
is being quantified. Stochastic models must be derived for the most important 
inspection methods. 

Stochastic modelling of repair 

Repair implies that new and/or modified values of parameters are needed to 
model the behaviour of the bridge after the repair. In relation to stochastic 
modelling of repair the quantities can be divided into the following groups: 

• Quantities (deterministic or stochastic) which are the same before and 
after repair. 

• Quantities which can be modelled by deterministic variables. The 
values for these quantities are known rather precisely after the repair. 

• Quantities which can be considered new outcomes of the old 
stochastic variables used before the repair. A variable of this type is 
modelled by introducing a new stochastic variable with the same 
distribution function but statistically independent of the old stochastic 
variable. 

• Quantities modelled by new stochastic variables correlated or not 
correlated with the old stochastic variables. 
In addition to the above models it can be relevant to update the 

distribution functions of the stochastic variables when observations are 
obtained in connection with the repair. The following important structural 
repair types must be modelled: concrete patching (with deteriorated concrete 
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removal), concrete patching (with reinforcement cleaning), concrete patching 
(with reinforcement splicing/replacement) and concrete encasing (with 
reinforcement splicing/replacement). 

Updating techniques 

When new information becomes available the estimates of the probability of 
failure (and the reliability) of structures can be updated. New information can 
be divided in three types: 

• Sample information on basic variables 
• General information on stochastic variables 
• Linguistic information. 

When new information is available as samples of one or more 
stochastic basic variables Bayesian statistical methods are used to obtain 
updated (predictive) distribution functions of the stochastic variables. 

In so-me cases the information obtained by measurements is not 
directly related to a basic stochastic variable. The information is generally 
modelled by using a stochastic variable which is a function of the basic 
stochastic variables. The event margin is a stochastic variable and it is 
there~ore possible to estimate the probability that the event occurs. Further, 
this type of information can be used to update the probability of failure of a 
structural element. 

Basic variable updating is performed within the framework of Bayesian 
statistical theory (Lindley [5], Aitchison & Dunsmore [4]). The updating 
based on general information is mainly based on the Bayesian methods 
suggested by Madsen [6] and Rackwitz & Schrupp [7]. 

Let the density function of a stochastic variable X be given by fx(x,E>), 
where e are parameters defining the distribution of X The parameters e 
are treated as uncertain parameters (stochastic variables). fx(x,e) is 
therefore a conditional density function fx(xiE>) . The initial (or prior) density 

function for e is called g~(8) . 
-· When an inspection is performed n realizations x = (xp ... ,xJ of the 

stochastic variable X are obtained. The inspection results are assumed to 
be independent. An updated density function e taking into account the 
inspection results is then defined by 

. 

1

_. Jcx·ie)g~(e) 
g8 (8x )= f . , (11) 

J,(x IS)g8 (8)aB 

where fx(xlx·) = 0~=1 /x(x;IS). 
The updated density function of X taking into account the realizations 

x is then obtained by 

fxCxlx·) = f JxCxie)g~(elx· )d(S) (12) 

In the expert systems the functions g~(8) , g~(8) , and fx(xlx*) are 

implemented for several distributions. 
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Reliability analysis 

The reliability of the bridge is measured using the reliability index ~ for a 
single failure element or for the structural system (the bridge) (Thoft­
Christensen & Baker [5], Thoft-Christensen & Murotsu [6]). The reliability is 
assumed to decrease with time due to the deterioration. The failure modes 
can e.g. be stability failure of columns, yielding or shear failure in a number of 
critical cross-sections of the bridge. If a system modelling is used then it is 
assumed that the structure fails if any one of these failure modes fails, i.e. a 
series system modelling is used. 

lt is assumed that uncertain quantities like loading, strength and 
inspection results can be modelled by N stochastic variables X= ( X 1 , •.. , X N). · 
At present the stochastic variables shown in table 1 are used. Further, the 
structure is modelled by m potential failure modes Fi , i = 1, 2 ... m. Failure 
mode i is described by a safety margin . 

MFi=MFj(X,t) (13) 

The element reliability index ~i (t) at the time t for failure mode Fi 

is connected to the probability of failure PF. (t) by (see Thoft-Christensen & 
I I 

Baker [8]) 

~i(t) = -<D-1(PR (t)) (14) 
I 

where <D is the standard normal distribution function. The probability of failure 
PR (t) in the time interval [0, t] is determined from 

I 

PFi =P(MFi :s;O) {15) 

In a time-invariant reliability analysis the estimate of the probability of 
failure can approximately be obtained by considering the extreme load in the 
lifetime I;_ and the strength at time i. The calculation time of a time-variant 
reliability index calculation is much higher than the calculation time of a time­
invariant reliability index calculation. Therefore, a time-variant reliability 
analysis should only be performed if it is absolutely necessary. 

Example 
The following example taken from Thoft-Christensen et al. [2] is used 

to illustrate the reliability assessment of a concrete bridge taking into 
consideration corrosion of the reinforcement. The example is based on an 
existing UK bridge, but some limitations and simplifications are made. The 
bridge was built in 1975. 

---------
(ss) 

(free) (free) 

A 
(ss) 

---------
1 

13.71 m 

9.75 m 

I 
A 

A-A 

i- R12- 200 o/c -f·J 550 mm 

R40 -125 c/c 

Mesh A393 

Design loading: HA + 45 units HB 
Concrete: feu= 30 N/mm2 (nominal) 
Reinforcement: fy= 250 N/mm2 (nominal) 

Figure 3. Concrete bridge used in the example. 
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The bridge was designed for 45 units HB load, see [15]. The bridge 
has a span of 9.755 m, the width is 2x 13.71 m, and the slab thickness is 550 
mm. 

The general traffic highway load model in the Eurocode 1, Part 3 (ENV 
1991-3: 1995) for lane and axle load is applied. The load effects produced by 
the Eurocode model (lane and axle load) are multiplied by a static load factor 
(extreme type 1) and a dynamic load factor (normal). Several load cases 
must be considered. However, in this paper only the load case with packed 
lanes of 3 m width is included. 

The plastic collapse analysis and estimation of the load are performed 
using the COBRAS program, see [16]. The reliability analysis (element and 
system) is done using the programs RELIAB01 and RELIAB02, see [17,18]. 
The RELIAB and COBRAS programs have been interfaced and include an 
optimization algorithm to determine the optimal yield line pattern for each 
iteration of the reliability analysis. The estimation of the deterioration of the 
steel reinforcement is based on the program CORROSION, see [19]. 

The normalized reliability profile for the yield line and the 
corresponding probability of failure profile are shown in figure 4. The reliability 
index at the time t=O is f3 0 =10.7. Due to the size of the concrete cover (mean 
value 60 mm) the deterioration does not have any effect until year 70. 

[Yield lire limt state: Normalised Reliability hdex] 

I I I I I 
I I I I I 

0 1~ ------r------,------,-------r------r------
"'1 I 

~ 1~----~----·~----~~ 
.!Y 
Q) 

m 0.9 

20 40 60 BD 
Years 
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100 

I I I I I 

4 ------+------4------~-------~-~----~-----
1 I I I I 

120 

I I I I I 
_3 ------r------,------,-------r------r------
(1.12 --- ___ !----- -1----- -~- ------~--- ---~---- -

I I I I I 
I I I I I 

1 ------r------,------,-------r------r---
1 I I I 

0oL---~2~0-----4~0----~6~0----~B~0-----100~--~120 

Years 

Figure 4: Reliability profiles using a yield line limit state. 

The results from the sensitivity analysis with regard to the mean values 
are shown for t=O years and t=120 years in figure 5. The most important 
variables are, as expected, the thickness of the slab, the yield strength of the 
reinforcement, and the model uncertainty .. Observe that the magnitude of 
sensitivity with regard to the cover changes from negative at the time t=O to 
positive at time t=120 due to the corrosion. 
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Figure 5 : Sensitivity analysis for yield line limit state at t = 0 years and at 
t = 120 years. 

The normalized reliability profile for the crack SLS and the 
corresponding probability of failure profile are shown in figure 6. The reliability 
index at the time t=O is ~0 =7.3. Due to the size of the concrete cover (mean 
value 60 mm) the deterioration does not have any effect until year 90. 

[Crack width limit state : Normalised Reliability h:lex) 
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Figure 6 : Reliability profiles using a crack width limit state. 

The results from the sensitivity analysis with regard to the mean values are 
shown for t=O years and t=120 years in figure 7. The most important 
variables are as expected the concrete cover, the diameter of the 
reinforcement, the thickness of the slab, and Young's modulus . Observe that 
the magnitude of the sensitivity with regard to the cover is decreasing from 
the time t=O to the time t=120 due to the corrosion. 
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Figure 7 : Sensitivity analysis for yield line limit state at t = 0 years and at 
t = 120 years. 

4. BRIDGE1 & BRIDGE2 BRIDGE MANAGEMENT SYSTEMS 

Introduction 

Results from the research project "Assessment of Performance and Optimal 
Strategies for Inspection and Maintenance of Concrete Structures using 
Reliability Based Expert Systems", supported by CEC within the 
BRITE/EURAM research programme, is presented in this chapter. 

The main objective of the project was to optimise strategies for inspection, 
maintenance and repair of reinforced concrete bridges by developing improved 
methods for modelling the deterioration of existing as well as future structures 
using reliability based methods and expert systems. 

Reliability assessment 

In this bridge management system the probability of failure is estimated using 
the reliability program RELIAB®. The stochastic variables used in the 
reliability assessment are defined in table 1. 

The system reliability index j3'(t) is connected to the probability of 
failure PR (t) of the series system in the time interval [0, t] by 

I 

(14) 

where the probability of failure PF(t) is determined by the approximation (see 
Thoft-Christensen & Murotsu [6]) 

(15) 

where ~=(~]> · ·· ,~m ) and p(t) is a matrix whose elements are the correlation 
coefficients between the linearised failure margins of the elements in the 
series system. <I> m is the m -dimensional normal distribution function_ 
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Stochastic variable Distribution type 

XI Concrete cover Normal 

x2 Depth of beam Normal 

x, Height of deck Normal 

x. Initial diameter of reinforcement Normal 

X, Width of column Normal 

X, Depth of column Normal 

X, Compression yield stress, concrete Normal 

X, Yield stress of reinforcement Normal 

x. Uniformly distributed dead load Normal 

XIO Uniformly distributed traffic load Gumbel 

XII Point traffic load Gumbel 

xl2 Chloride concentration on concrete surface Normal 

xu Chloride diffusion coefficient Log normal 

Xu Coefficient rate of carbonation Normal 

Xu Rate of corrosion Normal 

XI, Measurement uncertainties Normal 

Table t. Definition of stochastic variables 

Failure probability updating 

In the bridge management systems BRIDGE1 and BRIDGE2 the updating of 
~tochastic variables etc. is performed using the techniques described in 
section 3. 

Functionalities of BRIDGE1 and BRIDGE2 

The expert system is divided into two expert system modules BRIDGE1 and 
BRIDGE2 which are used in two different situations, namely by the inspector 
of the bridge during the inspection at the site and after the inspector has 
returned to his office. 

During the inspection the expert system will supply information on: the 
causes of observed defects, appropriate diagnostic methods, and related 
defects. Further, the inspector will be asked to record the inspection results so 
that they can be used later for e.g. assessment of the reliability of the bridge 
and in the decision whether a detailed structural assessment is needed. 

A detailed analysis of the state of the bridge after an inspection is 
performed when the inspector has returned to his office, and after testing in 
the laboratory has been performed. The output of the analysis includes an 
updated estimation of the reliability of the bridge, decision whether a structural 
assessment should be made, decision whether to repair or not, relevant repair 
procedures, and the time for repair. Expert knowledge is used to improve the 
quality of the decisions. 

Application of BRIDGE1 and BRIDGE2 

The general inspection, maintenance, and repair model from inspection no. i 
at time t; to inspection no. i+1 at the time ti+I = t; +At is indicated in figure 8 
, where also the application of the modules BRIDGE1 and BRIDGE2 is 
shown. 
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Figure 8. The inspection, maintenance, and repair model. 

The symbols used in figure 1 are: 
C: Current inspections are performed at a fixed time interval,e.g. 15 months. 
D: Detailed inspections are also periodical at a fixed time interval which is a 

multiple of the current inspection time intervals, e.g. 5 years. 
A: Structural assessments are only performed when a current or detailed inspection 

shows some serious defects which require a more detailed investigation. 
M: Maintenance and repair of minor defects. 

1 R: Structural repair. 
81 :Application of BRIDGE1 during the inspections. 
82(M): The maintenance subsystem in BRIDGE2 assists in the selection of 

maintenance work and repair of minor structural defects to be 
performed. 

82(1): The inspection module in BRIDGE2 assists in selecting the next 
type of inspection. 

82(R): The repair subsystem in BRIDGE2 assists in selecting the best 
repair technique . The selection is based on economic 
considerations and expert knowledge. 

After a current or a detailed inspection BRIDGE2 is used to rate the 
maintenance and minor repair work needed and to decide if a structural 
assessment has to be performed. The decision is based partly on estimates 
of the reliability of the bridge and partly on expert knowledge. The decision 
does not include economic considerations. 

After a structural assessment BRIDGE2 is used to decide if a repair 
has to be performed and also to give the optimal point of time for the repair. 
Expert knowledge as well as numerical algorithms are used. The decisions 
are partly based on a cost-based optimization where different repair 
possibilities (selected by expert knowledge) and no repair are compared. 

Decision model with regard to structural assessment 

Let t; be the time of a periodic inspection and let the updated reliability index at 
the time t be J3(t,t;). The general decision model with regard to the structural 
assessment can then be formulated as: 
• If J3(ti+Pt;) > J3min then the inspection at the time t i+I should be a current or 

detailed inspection unless the damage is so serious that a structural 
assessment is needed. This decision is based on expert knowledge. J3min 
is the minimum acceptable reliabil ity index (e.g. 3.72). 
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• If ~(t;+] ' t;) ~ ~min then a structural assessment should be performed before 
the next periodic inspection. 

Modelling of repair 

After a structural assessment it must be decided whether the bridge should 
be repaired and if so, how the repair is to be performed. Solution of this 
problem requires that all future inspections and repairs are taken into 
account. 

In order to decide which repair type is optimal after a structural 
assessment, the following optimization problem is considered for each repair 
technique: 

(16) 

(17) 

where the optimization variables are the expected number of repair NR in the 
remaining lifetime and the time TR of the first repair. W is the total expected 
benefits minus costs in the remaining lifetime of the bridge. B is the benefit. CR 
is the repair cost capitalised to the time t=O in the remaining lifetime of the 
tlridge. CF is the expected failure costs capitalised to the time t=O in the 
remaining lifetime of the bridge. I;_ is the expected lifetime of the bridge. ~u is 
the updated reliability index. ~min is the minimum reliability index for the bridge 
( related to a critical element or to the total system). 

The repair decision is then based on the results of solving this 
optimization problem but also on expert knowledge. 

BRIDGE1 

As mentioned earlier, the expert system module BRIDGE1 is used at the 
bridge site during an inspection. This expert system module contains useful 
information concerning the bridge inspected and the defects observed. The 
information includes: general information about the bridge, appropriate 
diagnostic methods for each defect, probable causes for each defect, and 
other defects related to a defect. lt is also possible to create a provisional 
defect report. 

The general information about the bridge stored in the database for 
the selected bridge can be reviewed. The database contains information 
about: bridge site, design, budget, traffic, strength, load, deterioration, 
factors that model the costs, and the cross-sections entered for the bridge. 

New cross-sections can be entered for the selected bridge. The 
information stored in the database for each cross-section contains: cross­
section identification, geometry of cross-section (detailed description of the 
reinforcement layers for cross-sections in the deck), failure mode, and load 
data. Technical support can be provided for a defect, see figure 9. 
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BREU Pl091 •· lti0Cf1 •• lridge Inspection Aid on Site l·Aut·9l 1Z:Z6Q. ~.00 

r- BR IDCE IIISPECTIOII ------------------'-------. 

Choose a defect detected on the bridge 

A COl lust stain 
A-C07 Oel•ination 1 spall i"9 
A-C13 Crack DWf" I U"def" a bar 
A-001 Exposed bar 
A-004 Corroded bar 
A-DOS lar with reduced cross-section 
A-006 lroken bar 
A-EOZ Ob&truction 0.. to ruot in beari"9s 
A-E03 lraten retalner·bars 
A-E06 Corrosion in beari"9s 

- 1\oc"e l---------1 

Figure 9. List of defects included in the expert systems. 

The technical support includes a list of diagnostic methods that can be 
used to observe a selected defect. The list is divided into high and low 
correlated diagnostic methods for the selected defect, see figure 1 0. 

UEU P309t •• U.IDCE1 •• lddge Inspection Aid on she 3·Aug·9l 12:2~ '11'6.00 

r UIOC£ IIISPECTIOII ---------------------, 

** ULATEO OIA.CNOSIS IETII(l)S •• 

REFERENCE DEFECT: A_C01 lust stain 

(A) MICH CORRELATION 

1. M A01 I.Jnaided direct vioual observation (or usi"9 binoculars, canoera ...-
- vI de<> eq.J i p:oent ) 

2. M_t01 Phenolphtalein 

(I) LOo/ CORRELATION 

1. H A02 Using telescopes,binoculars,•icrometer, c~ra or video ~i~t 
2. M-A04 U&i"9 special • .,.,. of aerial accus 
l. M:101 surhce h-r-1"9 I chain dra~ni"9 

L--------------More 1-------------J 
Figure 10. List of diagnostic methods related to the defect "rust stain". 

i~EU P 5091 · · U I DCE 1 • · Br idqe Inspection A id on S 1 te l·A.U9·9l 12:26p. •o. •JO 

- ii!IDCE INSPECT ION ----------------------, 

PR06AIILE CAUSES 

~EfERENCE DEFECT A_COI Rust •tain 

(A) KICK CORRELATION 

1. c A14 Insufficient reinforc~tlprt~tressi"9 desivn cover 
2. C-A24 Drainage directly over concrete, joint, beari"9 or an anchorage 
3. C-109 Deficient concrete c~tlon I curi"9 
4. C-111 Inaccurate reinforce-entlprestressi"9 ~itioni"91detaili"9 
5. C-FOI ~ater (wet 1 dry cycles) 
6. C-F02 Natural carbon dioxide 
7. C-F03 Salt I salty water (chlori~) 
8. C-C01 ~ater (M&n•c.u&ed) 
9. c-coz Kan·cauced carbon dl011.ide 

10. c:G03 Kan-c-ed delcln; a.alu 

L---------------~· 1-------------J 

Figure 11. List of probable causes for the defect "rust stain". 
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The technical support also includes a list of probable causes of a 
selected defect. The list is divided into high and low correlated causes for the 
selected defect, see figure 11 . 

A list of defects associated with the selected defect is also 
included. This list is very useful since the defects which can be found 
with a high probability can be reviewed if the selected defect is observed. 
Measures for the correlations between the selected defect and the 
related defects are shown, see figure 12. 

iltEU Pl091 •• ll iD~1 •• lrfd94 ln&peetfon Afd on Site 3·Au;·9l 12:26p. v6.00 

r- UIDGf IICSPfCTION ------------------, 

OBSElVED DEFECT : A_COI l~t atein 

OTKER PROBABLE DEFECTS : 

1 • A Del4 Corroded bar 
2.. A-DOS lar with rod.Jc:ed crou·uction 
3. A-114 Oet~iorated ~be-
4. A-C07 Oel - fNtion I apo&lling 
5. A-Cil Cract ~ I ~r a bar 
6. A-001 Expo.ed bar 
7. A-E02 Obstruction 0.... to 1"\J&t in bearings 
8. A-E06 Corrosion in bNri~ 
9. A-E07 Deteriorated baae plate I pot 

10. A-FOS Obctruction 0.... to 1"\J&t In joint& 
11. A-f06 Corrosion In jointa 
12. A)oa Det~t/fall~re of ...-.chor boltalpi,.. 

Measure 
(KU. 7'il 

55 
55 
l7 
32 
30 
20 
17 
17 
17 
17 
17 
14 
14 13. A f07 Det~t I fall~re trl IW'tl:hor-- ~ 1-----------~ 

Figure 12. List of defects associated to the defect "rust stain". 

BRIDGE2 

The expert system module BRIDGE2 is used to make a detailed analysis of 
the bridge after an inspection when testing has been performed in the 
laboratory. New bridges and cross-sections can be entered into the 
database and existing bridges and cross-sections can be edited. For the 
bridges in the database the following options are available: review 
provisional defect reports, enter inspection results, estimate the reliability 
index, plan maintenance work and estimate costs, plan structural repair 
work and estimate costs, and review the agenda of inspection for one 
bridge or all bridges. Further, the database can be updated after repair. 

llEU ,3091 •• lliD~Z ~- lridge Analyafa laaed On Reliability 1·~·91 12:27~ 

r- BltiD~ ANALYSIS------------------...., 

STRENCTK IMFORKATION 

Maxi~ c~~sion atrain for the concrete (eel: 0.0035 

Kodulus of e l as ticity for !he reinforce-en! s teel CEs): 2.00000 NI~ 

Kean value of c~ession 
strength for the concrete 

Ke.n value of yield stress 
for the reinforcement steel 

30 

zzs 

30 

225 

Figure 13. Example of strength data. 
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New bridges can be entered and existing bridges can be edited. The 
general information about the bridges stored in the database contains 
information about: bridge site, design, budget, traffic, strength, load, 
deterioration, factors that model the costs, and the cross-sections entered 
for each bridge. In figures 13-15 examples of strength, load, and cost data 
are shown. 

BREU P3091 •• 8RIDCEZ •• &ridge Analysis lased On aeliability 3·Aug·93 12:27pM 

r- BRIOCE ANALTSI S ---.....;:'------------------, 

LOAD INFOIU\AT ION 

Mean value of uniformly distributed dead load <Cl: 49 N/~ 

Mean value of OS1ifonaly diHributed traffic lo~ (0): 30 N/-

Hean value of point traffic lo~ (P): 180000 N 

Figure 14. Example of load data. 

BREU P3091 •• 8RIDCE2 ·· Bridqe Anatysu lued On hliabitity 5·Aug·93 12:27pll 

~ &R IDCE ANAlfSIS ---------------------1 

~ACTORS TKAT MOOEL TKE COSTS 

Factor used to .odel the benefits (~0): 3 ECU/vdl i cl e 

Factor used to MOdel the fOS1Ctional rep.ir costa (~1): 3 ECU/vdlicle 

Dire-ct failure costs (CFOl: 3000000 . ECU 

NUIIIIber of cUya netded for rrplac..eot of a failed brid9e (rv): 365 

Oiu.-.ce fr0111 the he~t1tn of the bdc:iCJ• owner (L8): 100 le• 

Figure 15. Example of cost data. 
IRfU ,J091 •• lltlPGEZ •• lrldQc An&lysla a...d On Ralleblllty 3·Aug·93 12:2&pa 

· - KID<O£ .UW.YSIS --------------------. 

lrldQc: 153·0002 
k<:tlon: 11 
Oriact: lt'--t auin 

Data of Inspection: 1Z·Oec·1992 

• lncufflclent relnforc-t/pt"Htresalng design cover 
• Oralnav• directly OWf" concrete, joint, t..arlng or an ..-.:hora9e 

..,. Oiavnosh M•thods u.ed to conch.dc thlf defect •• 

• Unaided direct visual observation <or using binoculars e.....,,.. or 
viO.O ~ip.ent) ' 

• Ph..-.olphtala in 
• Using tal~,binoculan,alcro-etar, c_,.a or video ~lp.ent 
• Using ~,peelal -- of'Hf"lal acena 

~. &.-----------~ 

Figure 16. Defect "rust stain". Causes and used diagnostic methods. 
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After an inspection the provisional defect reports recorded at previous 
inspections can be reviewed. A description of the detected defects and 
measurements of diagnostic methods can be entered. After a repair the 
databases can be updated. In figure 16 a description corresponding to the 
observed defect 'rust stain' is shown. 

The reliability index for the bridge can be estimated by the integrated 
FORTRAN program RELIAB ®. The reliability index when no inspection 
results are taken into account and the updated reliability index when all 
inspections performed for the bridge are both taken into account can be 
estimated. 

The following submodules are integrated in BRIDGE2: 
• BRIDGE2(M) is the maintenance/small repair submodule. This 

submodule assists in selecting the maintenance work and repair of 
minor structural defects to be performed and estimates the 
maintenance costs. The defects are rated based on the defect 
classification in terms of rehabilitation urgency, importance of the 
structure's stability, and affected traffic recorded during the inspection, 
see figure 17. 

BREU P3091 •• IRIOCEZ •• lridge Analysi~ lased On leli~ility l·~uq·9J 1Z:J9pA I 
- IRIOGE ANALYSIS -------...,....--------~ 

lridg<:: 153·0002 
Oau of inspe<:tion: 3·Aug·1993 

cross·section classification points 

•• Defects of ~iu. priority •• 

A_oos lar with reduced cross· section 1Z 

•• Oefecta of low priority •• 

A 004 Corroded bar 
A:co1 Rust stain 

1Z 
11 

1 A 3 

Z A 3 
Z I 3 

65 
50 

Figure 17. Rating of defects in the maintenance subsystem. 

• BRIDGE2(1) is the inspection strategy submodule. This assists in the 
decision whether a structural assessment is needed before the next 
periodic inspection. The decision made in BRIDGE2(1) is mainly based 
on the updated reliability index for the bridge calculated by RELIAB ® 
(see figure 18). If the value of the updated reliability index for the bridge 
is acceptable then each of the defects detected at the latest periodic 
inspection and the combination of defects are investigated. Based on 
expert knowledge it is investigated whether a defect or combinations 
of defects from a structural point of view require a structural 
assessment. 
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IIREU P3091 •• IRIDCEZ •• l rid9e I.Nlysls lue<S On Reliability 3·Aug ·93 12:211pa 

8RIOCE ANALYSIS ---------------------. 

I Bridge: 153 ·0002 

The reliability index is 2.38 calculated ~fore any onspection was 
perfontoed 

The value of the reliability inde< tati~ into acount the results of 
the inspections i" · 

BETA a Z.M 

••• STRUCTURAL ASSESSMENT IS TO BE PERFORMED BEFORE fHE NEXT CURRENT 
OR DETAILED INSPECTION ••• 

Figure 18. Decision tool related to structural assessment. 

BRIDGE2(R) is the repair submodule. This submodule is always used 
after a structural assessment. lt assists in selecting the optimal 
structural repair technique (including no repair) to be performed, when 
the repair should be performed, and the number of repairs in the 

, remaining lifetime of the bridge. Further, the expected benefits minus 
costs are estimated. The repair plan is optimised based on a cost­
benefit analysis by the FORTRAN program INSPEC ® (see figure 19). 

IU\/ ,3091 •• laiDCEZ •• l rld!re Alwlywla ._ On lellebillty l·Aut·9l 12:~ 

- RliDCE AAW.UIS -------------------.. 

lri~: 15l·OOOZ 
Date of l~tlon: 12·Dec·1992 
Section: 11 
Defect: A_C01 kust atain 

kep. I r tedv\1 que Tf-
------------·-·· 
l C02 Concrete Pat ching tm 
l :D02 Concre te Patching tm 
l_D01 Concr-ete ,Uchlng tm 

ll....t:>e<- •-tlu·cocta lepair Coat ................ . ............ 
26431713 5221! 
26303962 1459!8 
26111!570 366800 

Figure 19 Optimised repair plan for the defect "rust stain". 

The FORTRAN program RELIAB® can be used to estimate the 
reliability of a bridge. The FORTRAN program INSPEC ® can be used to 
estimate the optimal repair time and number of repairs for a given repair 
method. The estimation is based on a cost-benefit analysis for the bridge. 
The total expected benefits minus expected repair and failure costs in the 
remaining lifetime of the bridge is optimised. 
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