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ASSESSMENT OF THE RELIABILITY OF CONCRETE SLAB
BRIDGES

P.Thoft-Christensen*, F.M.Jensen**. C.R.Middleton*** & A.Blackmore***
*Aalborg University, Aalborg, Denmark, **CSRconsult, Aalborg, Denmark,
***Cambridge University, Cambridge, UK

1. Introduction

This paper is based on research performed for the Highways Agency,
London, UK under the project DPU/9/44 "Revision of Bridge Assessmeni Rules
Based on Whole Life Performance: Concrete Bridges". It contains details of a
methodology which can be used to generate Whole Life (WL) reliability profiles.

2. Limit States

Two limit states are selected for the reliability analysis:
e an ultimate limit state (ULS): collapse limit state (using yield line analysis)
e a serviceability limit state (SLS): crack width limit state (using linear elastic
analysis)

2.1 Collapse (yield line) limit state
The following safety margin is used

Z=VEp - Wp (1)

where V is a model uncertainty variable, E,, is the energy dissipated in yield lines,
and W, is the work done by the applied loads.

The plastic collapse analysis and estimation of the load are performed using
the COBRAS program, see [1]. The reliability analysis (element and system) is done
using programs RELIABO1 and RELIABO2, see [2,3]. The RELIAB and COBRAS
programs have been interfaced and include an optimisation algorithm to determine
the optimal yield line pattern for each iteration of the reliability analysis. In [4] it is
shown that using a fixed deterministic yield line pattern in the reliability analysis may
lead to erroneous results. The estimation of the deterioration of the steel
reinforcement is based on the program CORROSION, see [5].

The basic variables used in the yield line ULS are: thickness of slab, cube
strength of concrete, density of concrete, depth of reinforcement, yield strength of
reinforcement, and two load parameters. ‘
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2.2 Crack width limit state
Cracking shall be limited to a level that will not impair the proper functioning of
the structure or cause its appearance to be unacceptable. In the absence of specific
requirements (e.g. water tightness), it may be assumed that limitation of the
maximum design crack width to about 0.3 will generally be satisfactory for reinforced
concrete members with respect to appearance and durability.
_The design crack width may be obtained from (see [6])

Wy = BS,uE )

m = sm

where w, is the design crack width, s, is the average final spacing, ¢, is the mean
strain allowing, under the relevant combination of loads, for the effects of tension
stiffening, shrinkage, etc., and Bis a coefficient relating the average crack width to
the design value. For load induced cracking B = 1.7. The value of ¢, may bé
calculated from the relation

(o)

= (1= BB, () (3)
where o, is the stress in the reinforcement calculated on the basis of a cracked
section, o,, is the stress in the reinforcement calculated on the basis of a cracked
section under the loading conditions causing first cracking.

B, is a coefficient which takes account of the bond properties of the bars. It is
= 1.0 for high bond bars, and = 0.5 for plain bars. B, is a coefficient which takes
account of the duration of the loading or of repeated loading. It is = 1.0 for single,
short term loading, and = 1.5 for a sustained load or for many cycles of repeated
loading.

The average final crack spacing (in mm) for members subjected dominantly to
flexure or tension can be calculated from the equation

5, =50+0.25k k, / p, (4)

where ¢ is the bar size in use (or the average bar size). p, is the effective
reinforcement ratio, 4,/ 4, ,,, where A is the area of reinforcement contained within

the effective tension area, 4, . k is a coefficient which takes account of the bond

properties of the bar. It is = 0.8 for high bond bars and = 1.6 for plain bond bars. %, is
a coefficient which takes account of the strain distribution. It is = 0.5 for bending and
= 1.0 for pure tension.

The crack width limit state can then be formulated by

8() = Wy = Z:W, ()

where z, is a model uncertainty stochastic variable.

The stochastic variables used in the crack SLS are: concrete cover, distance
between reinforcement bars, diameter of reinforcement bars, thickness of slab,
elastic modulus of reinforcement bars, tensile strength of concrete, external bending
moment, and one model uncertainty variable.
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3. Deterioration modelling

Several models can be used to model the deterioration of reinforcement steel
in concrete slabs. However, there is a general agreement that the model presented
below is acceptable in most cases.

Corrosion initiation period refers to the time during which the passivation of
steel is destroyed and the reinforcement starts to corrode actively. Practical
experience of bridges in wetter countries like UK shows that chloride ingress is far
bigger a problem that carbonation.

The rate of chloride penetration into concrete, as a function of depth from the
concrete surface and time, can be represented by Fick's law of diffusion as follows:

oc 8%

5 e ©
where c is the chloride ion concentration, as % of the weight of cement, at distance
x cm from the concrete surface after ¢ seconds of exposure to the chloride source.
D. is the chloride diffusion coefficient expressed in cm?/sec. The solution of the
differential equation (6) is

B _ ¥
‘ C(x,t)= Co{l erf(—z\/l—);)} (7)

where C, is the equilibrium chloride concentration on the concrete surface, as % of
the weight of cement, x is the distance from the concrete surface in cm, ¢ is the time
in sec, erf is the error function, D, is the diffusion coefficient in cm?/sec and C(x,¢) is
the chloride concentration at any position x at time ¢ . In a real structure, if C(x,?) is
assumed to be the chloride corrosion threshold and x is the thickness of concrete
cover, then the corrosion initiation period, T;, can be calculated based on a
knowledge of the parameters C, and D,. For bridge decks under de-icing conditions
C,=1.6, as % of cement weight, is often used.
The time 7, to initiation of reinforcement corrosion is

.__(dl_Dl/z)z -1 Ccr—CO -2
T= g e e (8)

where C, is the initial chloride concentration, C,, is the critical chloride concentration
at which corrosion starts, and d, — D, / 2 is the concrete cover. For plain concrete of
moderate strength ( £,, ~30 N/mm®) reported values of D, are in the range between
1-10® and 5-10"° cm?/sec.

When corrosion has started then the diameter D, (#) of the reinforcement bars
at time t is modelled by

DI (t) = Dl - Corricorrt (9)
where D, is the initial diameter, C,,. is a corrosion coefficient, and i_,, is the rate of

corrosion. The area of a reinforcement bar is then modelled using the following
formulation
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I‘l.Di2 % fort< TI
A(t) = n(D(t))2 % for TI <t< TI + Di /(0.0203- icorr)

0 for t> Ty + D; /(00203 i qp )
(10)
Xd2
Ti= — , D(t) =D; —0.0203(t —T}) -igorr
4DC(erf"1(C°r(xd’t) Co»z
C;-Cyp

A(t) is the area of reinforcement bars [mm?] at the time t years, n is the number of

reinforcement bars, D; is the diameter of a single bar [mm?] and Tj is the corrosion
initiation time in years. The value "0.0203" in the estimation of D(t) will vary
depending on the circumstances.

The initiation time of corrosion is determined based on values of
C,,C;,D¢,x,,C,, . After the deterioration is started the corrosion rate is modelled by

the corrosion current i__ only.

The model for A(t) (and the value of i, used) relates to an average
deterioration of the reinforcement in the concrete. An important aspect of corrosion in
addition to the average corrosion is the maximum penetration (pitting of
reinforcement). Pitting of reinforcement may have more influence on the reliability
than the average deterioration due to localised much higher weakening of the
reinforcement. The ratio R between the maximum penetration PC_, and the
average penetration PC_, has been estimated by a number of authors to be between
4-10, see e.g. [7]. Pitting corrosion is not included in this investigation.

The stochastic variables used in the deterioration modelling are: initial
chloride concentration on surface, initial chloride concentration in concrete, diffusion
coefficient for the concrete, cover to reinforcement, critical chloride concentration,
and rate of corrosion.

4. Example

This following example is used to illustrate the proposed methodology. The
example is based on an existing UK bridge, but some limitations and simplifications
are made. The bridge was built in 1975.

————————— A-A
(ss) Mesh A393
R12 - 200 c/c %I 550 mm
(free) (free)| |9.75m * hd L i
R40 - 125 c/c

B (ss) ] Design loading: HA + 45 units HB
A A Concrete: f,= 30 N/mm2 (nominal)

e v Reinforcement: fy = 250 N/mm2 (nominal)

13.71m

Figure 1. Bridge data.

The bridge was designed for 45 units HB load, see [8]. The bridge has a span
of 9.755 m, the width is 2x 13.71 m, and the slab thickness is 550 mm (see figure 1).



reinforcement as a function of time can be calculated, see figure 2.

Expected reinforcement area

E[A()]/ E[A(0)]
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Figure 2. Reinforcement area A(t) as a function of time.

on the basis of the stochastic modelling shown in tables 1 and 2.

I
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Based on the corrosion data shown in table 1 the expected area of the

Reliability profiles for the two limit states discussed in section 2 are calculated

Stochastic variables: Yield line limit state

No | Type Par. 1 Par. 2 | Description
1 | Normal 550.0 10.0 Thickness of slab [mm]
2 | LogNormal 30.0 6.0 Cube strength of concrete [MPa]
3 | Normal 23.6 0.4 Density of concrete [kKN/m3]
4 | LogNormal 289.0 25.0 | Yield strength: longitudinal reinforcement [MPa]
5 | Normal 60.0 8.0 Cover on longitudinal reinforcement [mm
6 | LogNormal 289.0 25.0 Yield strength: transverse reinforcement [Mpa]
7 | Normal 86.0 8.0 Cover on transverse reinforcement [mm]
8 | Fixed 10053.0 - Longitudinal reinforcement area (initial) [mm2]
9 | Fixed 565.0 - Transverse reinforcement area (initial) [nm2]
10 | Gumbel 0.352 0.026 | Static load factor [-]
11 | Normal 1.27 0.20 Dynamic load factor [-]
12 | Normal 1.08 0.072 | Chloride concentration on surface [%]
13 | Fixed 0.0 - Initial chloride concentration [%)]
14 | Normal 35.0 2.5 Diffusion Coefficient [cm2/sec]
15 | Normal 0.4 0.05 | Critical Chloride concentration [%]
16 | Uniform 2.5 0.29 Corrosion parameter [-]
17 | Normal 1.0 0.05 Model uncertainty variable [-]

Table 1. Stochastic modelling used for the ULS.

Stochastic variables: Crack width limit state

No | Type Par. 1 Par. 2 | Description
1 | Normal 60.0 9.0 Concrete cover [mm]
2 | Normal 125.0 12.5 Distance between reinforcement bars [mm]
3 | Normal 40.0 1.2 Diameter of reinforcement bar [mm]
4 | Normal 550.0 27.0 | Thickness of slab [mm]
5 | Normal 200.0E3 6.0E3 | Young's modulus [N/mm2]
6 | Normal 34 0.68 | Tensile strength [N/mm2]
7 | Gumbel 1.0 0.10 Model uncertainty [-]
8 | Gumbel 0.352 0.026 | Static load factor [-]
9 | Normal 1.27 0.20 | Dynamic load factor [-]
10 | Normal 1.08 0.072 | Chloride concentration on surface [%)]
11 | Fixed 0.0 - Initial chloride concentration [%]
12 | Normal 35.0 2.5 Diffusion Coefficient [cm2/sec]
13 | Normal 0.4 0.05 Critical Chloride concentration [%]
14 | Uniform 2.5 0.29 Corrosion parameters [-]

Table 2. Stochastic modelling used for the SLS.

5
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The general traffic highway load model in the Eurocode 1, Part 3 (ENV 1991-
3:1995) for lane and axle load is applied. The load effects produced by the Eurocode
model (lane and axle load) are multiplied by a static load factor (extreme type 1) and
a dynamic load factor (normal). See e.g. stochastic variables 10 and 11 used for the
yield line limit state. Several load cases are considered in the project. In this paper
only the load case with 2 marked lanes loaded is included.

The normalised reliability profile for the yield line ULS (full width failure) and
the corresponding probability of failure profile are shown in figure 3. The reliability
index at time t=0 is B,=11.5. Due to the size of the concrete cover (mean value 60
mm) the deterioration does not have any effect until year 70.

[Yield line limit state: Normalised Reliability index]

T T
[} 1
1 1
&, Tl [P s s N AR -
o1 ] 1
% 1 1
1 I
% 1 1 1
1 1
a I 1
09fF~-=-=-==~-~- Im—————— -
] 1 1
1 ] 1
0'8 1 1 1
0 20 40 60 80 100 120
| Years
x102° [Yield line limit state: Probability of failure]
3 T T T T
1 1 1 1
1 1 1 1
1 1 1 1
2 ———————— | - - —— - - A - ———— - +
1 1 1 1
* i 1 1 1
o | | 1 I
| SES e = Tommmmm- r
[} I I I
1 ] ] I
I ] I 1
0 1 1 1 1
0 20 40 60 80 100 120
Years

Figure 3 : Reliability profiles using a yield line limit state.

The results from the sensitivity analysis with regard to the mean values are
shown for t=0 years and t=120 years in figure 4. The most important variables are,
as expected, the thickness of the slab, the yield strength of the reinforcement, and
the model uncertainty. Observe that the magnitude of sensitivity with regard to the
cover changes from negative at time t=0 to positive at time t=120 due to the
corrosion.

Yield line limit state: Sens. analysis [mean) Yield line limit state: Sens. analysis [mean]
1t 1
08 T=0years 08 T=120years
06 06
04} 04
£ o2} H g o2 H
g ] O |
8 0 — 2 0 —
w = L] w ’_'I_J J
0.2 U -0.2 U LJ L']
04 04
06 06
08} 08
1 . " . i 4 sy R . i i
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Stochastic variable Stochastic variable

Figure 4 : Sensitivity analysis for yield line limit state at t = 0 years and at t = 120 years.
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The normalised reliability profile for the crack SLS and the corresponding
probability of failure profile are shown in figure 5. The reliability index at time t=0 is
B,=7.1. Due to the size of the concrete cover (mean value 60 mm) the deterioration
does not have any effect until year 90.
[Crack width limit state: Normalised Reliability Index]

T T T T T
1 I 1 ! I
1.1 ' i ' ' :
) e e s e e e N e e
°| 1 | —: 1 1
i 1 1 ' 1 1
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g 1 ; : : : ﬁ<¢:;::
© I I 1 I 1
LT T | SR HE— g L D L — L S——
! 1 1 1 1
1 1 1 I 1
O.B 1 1 i 1 1
0 20 40 60 80 100 120
Years
x10™" [Crack width limit state: Probability of failure]
2 T T T T |
I I I 1 1
1 1 1 1 1
1B =i Vi i s e A== e e
! I I 1 1
= 4l : | J i L
gl pRecenrn T T T Tttt T [ Tt 1 777
1 1 ] ! I
05 ====mn- - R qmm————- qmm———-- T == -
1 I I 1 1
1 1 [} 1
0 - T - 1
0 20 40 60 80 100 120
Years

Figure 5 : Reliability profiles using a crack width limit state

The results from the sensitivity analysis with regard to the mean values are shown
for t=0 years and t=120 years in figure 6. The most important variables are as
expected the concrete cover, the diameter of the reinforcement, the thickness of the
slab, and Young's modulus. Observe that the magnitude of the sensitivity with regard
to the cover is decreasing from time t=0 to time t=120 due to the corrosion.

Elasticity

Crack width limit state: Sens. analysis [mean]

T=0years

10

Stochastic variable

15

Crack width limit state: Sens. analysis [mean]

A N []
IO U (00 O O

5
Stochastic variable

10

15

Figure 6 : Sensitivity analysis for crack width limit state at t = 0 years and at t = 120 years.
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