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Stochastic Optimization of Wind Turbine Power
Factor Using Stochastic Model of Wind Power

Peiyuan Chen, Member, IEEE, Pierluigi Siano, Birgitte Bak-Jensen, Member, IEEE, and Zhe Chen,
Senior Member, IEEE

Abstract-- This paper proposes a stochastic optimization
algorithm that aims to minimize the expectation of the system
power losses by controlling wind turbine (WT) power factors.
This objective of the optimization is subject to the probability
constraints of bus voltage and line current requirements. The
optimization algorithm utilizes the stochastic models of wind
power generation (WPG) and load demand to take into account
their stochastic variation. The stochastic model of WPG is
developed on the basis of a limited autoregressive integrated
moving average (LARIMA) model by introducing a cross-
correlation structure to the LARIMA model.

The proposed stochastic optimization is carried out on a 69-
bus distribution system. Simulation results confirm that, under
various combinations of WPG and load demand, the system
power losses are considerably reduced with the optimal setting of
WT power factor as compared to the case with unity power
factor. Furthermore, an economic evaluation is carried out to
quantify the value of power loss reduction. It is demonstrated
that not only network operators but also WT owners can benefit
from the optimal power factor setting, as WT owners can pay a
much lower energy transfer fee to the network operators.

Index Terms--Correlation, Monte Carlo, power factor,
stochastic optimization, time series, wind power generation.

I. INTRODUCTION

IND power generation (WPG) has been the focus in

developing modern electrical generation technologies
[1]. In the European Union in 2008, WPG accounted for 36%
of all new electricity generating capacity, exceeding all other
generation technologies [2]. In order to fully utilize potential
benefits and to minimize adverse impacts of WPG, many
research efforts have been devoted to exploring the technical
and economic contribution of wind power in power systems
[3]. These studies include system planning, daily operation
and electricity market of wind power [3].

Due to their dispersed locations in distribution systems,
wind turbines (WTs) can be used to provide local reactive
power consumption. This decreases reactive power flow from
the main grid and thus increases active power transfer capacity
of substation transformers. The reduced reactive power flow
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also brings down active and reactive power losses in
distribution systems. The reduction of active power losses cuts
down the network operating costs without extra investment.
Furthermore, the increase in transformer power transfer
capacity may defer network expansion. All these benefits can
be obtained by network operators if they have access to the
power factor setting of WTs. However, this is usually not the
case if network operators are not the owner of the WTs. On
the other hand, the power factor setting of WTs are accessible
to WT owners, although they may not be willing to change the
setting unless there is an economic incentive to do so. In other
words, WT owners may be motivated to change the power
factor setting upon the request of network operators, if the
network operators share the obtained economic benefits with
WT owners. Thus, for the sake of mutual benefits, it is
necessary to estimate the power losses in advance that may be
reduced by WT power factor setting and to quantify
corresponding economic benefits in the long run.

In order to evaluate such economic benefits, the capability
of WTs to provide reactive power generation should be
evaluated first. In other words, the power factors of WTs
should be set at certain optimal values instead of unity value
in order to minimize power losses. Nevertheless, this optimal
setting is strongly affected by the system WPG and load
demand, both of which vary stochastically. This indicates that
the optimal power factor setting needs to take into account the
stochastic processes of WPG and load demand. Thus, a
stochastic optimization algorithm based on stochastic
programming can be used to find the optimal power factor
setting that adapts to the stochastic behavior of system power
flow [4]-[6]. Such a stochastic optimization entails stochastic
modeling of WPG and load demand.

As discussed in [7], the hourly load demand usually has a
Gaussian distribution. Thus, the load demand can be modeled
by a multivariate Gaussian distribution or a standard
autoregressive moving-average (ARMA) process [7]. In
contrast, WPG is a non-Gaussian and non-stationary
stochastic process, which makes it more challenging to apply
standard multivariate probability distributions or ARMA
models.

In the literature, stochastic models of WPG are developed
on the basis of an ARMA process [8]-[11] or a discrete
Markov process [12]-[14]. These models capture the
chronological characteristics of WPG adequately. However,
these stochastic wind power models are developed for
simulating WPG from a single wind farm. The same



techniques cannot be directly applied to the modeling of WPG
from several wind farms as WPGs from different wind farms
may be correlated with each other due to similar wind
conditions.

Nevertheless, the modeling of such a cross-correlation
among WPGs from these wind farms is of great importance as
it significantly affects the probability distribution of the total
WPG in a power system [15]. In the literature, the cross-
correlation model of multiple WPG process is implemented
through a trial-and-error approach [16], [17], or a Gaussian
copula [18]. Both approaches model the cross-correlation of
wind speed at adjacent areas where wind farms are located.
Then, the correlated wind speed is transformed through a
wind farm power curve to obtain correlated WPG.

The trial-and-error approach implemented in [16] and [17]
considers only the correlation coefficient at time-lag zero.
Correlation coefficients at higher time lags are not addressed
or properly modeled. Furthermore, the approach makes the
implementation of the model very difficult when three or more
WPG processes are involved. On the other hand, the Gaussian
copula approach proposed in [18] is suitable for modeling the
cross-correlation of multivariate stochastic  variables.
However, WPG is a stochastic process, of which the modeling
of autocorrelation is very important. Therefore, the Gaussian
copula approach is not appropriate as it is not able to model
the autocorrelation of WPG.

This paper develops a multivariate stochastic wind power
model that includes both the autocorrelation and cross-
correlation structure of WPG. The cross-correlation structure
considers not only the correlation coefficient at time-lag zero,
but also the ones at higher time lags. Then, the multivariate
stochastic wind power model is incorporated into a stochastic
optimization algorithm, which minimizes the expectation of
system power losses by setting the optimal power factor
values of WTs. In the end, an economic evaluation of power
loss reduction is provided to demonstrate the benefits obtained
by both network operators and WT owners.

The rest of the paper is organized as follows. Section II
develops the multivariate stochastic wind power model.
Section III presents the stochastic optimization algorithm for
WT power factor setting. Section IV describes the case-study
system based on a 69-bus distribution network. Section V
provides the optimization results of WT power factor setting
and evaluates corresponding economic benefits. Concluding
remarks and future works are stated in Section VI.

II. MULTIVARIATE STOCHASTIC WIND POWER MODEL

This section first discusses two types of correlation
modeling for WPGs from adjacent wind farms. Then, a
multivariate time series model is introduced and applied to the
modeling of two correlated WPGs. Finally, the multivariate
wind power model is validated against measurements.

A. Autocorrelation and Cross-Correlation

WPG from a wind farm is a stochastic process, which
possess a strong temporal correlation. Furthermore, WPGs
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from adjacent wind farms are cross-correlated due to similar
wind conditions. Thus, the correlation model of WPG should
comprise two parts: autocorrelation and cross-correlation.

The autocorrelation of WPG is the correlation of wind
power in time. The theoretical autocorrelation coefficient of a
random process is usually not known, but can be estimated

from an observed time series y(f) by the sample
autocorrelation coefficient. The sample autocorrelation
coefficient at time-lag & is calculated by [19]:

1 Nk 5
. N 2 D@k ] = m
py (k)= =l 5 ,fork=0,1,..N-1(1)

N

where m and s” are the sample mean and sample variance of
the observed time series y(z), respectively; N is the length of
the time series y(f).

On the other hand, the cross-correlation of WPG is the
correlation of wind power among multiple wind farms (or
WTSs) in space. Assume that there are n» wind farms and that
their observed wind power time series are denoted by the
vector y(t) = [y1(£), y2(0), ..., y«()]". Then, the sample cross-
covariance matrix at time-lag k can be calculated by [19]:

rulk) 71(k) 71a(K)
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where the sample cross-covariance of the wind power time
series between wind farm 7 and wind farm ; at time-lag £ is:

- !

1=1
where m; is the sample mean of time series y(%).
Consequently, the corresponding sample cross-correlation

7y (k m)(; (t+k)=m 3)

coefficient p;; is:
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For modeling WPG from a single wind farm, only
autocorrelation needs to be considered. For example, for
modeling the WPG of the Nysted offshore wind farm
(Denmark), autocorrelation is captured by the LARIMA
model adequately as shown in [11]. However, in the case of
multiple wind farms in a power system, both autocorrelation
and cross-correlation should be taken into account. This calls
for a multivariate time series model, which is introduced in the
following subsection.



B. Multivariate Time Series Model
In order to describe the relationship among several time
series variables, multivariate time series models can be
applied. Multivariate time series models are also referred to as
vector time series models [19]. The multivariate-
ARIMA(p, d, q) model of n nonstationary random processes,
Z\(), Z5(%), ..., and Z,(¢), is expressed as [19]:

(1-@,B)D(B)Z(r) = 0, +(1-0,B)a(r) (5)

where I is an n x n identity matrix; the autoregressive (AR)
coefficients ®, = {¢;}is a p x p matrix and p is the order of
AR processes; the moving average (MA) coefficients
O,=1{0;} is a gxq matrix and ¢ is the order of MA
processes; the differencing operator D(B) = diag[(1 — B)", ...,
(1 = B)™] is an n x n diagonal matrix and (d,, ..., d,) is a set of
nonnegative integers; the multivariate time series Z(¢) = [Z(),
Z(t), ..., Z,0)]" is an n x 1 vector; @ is referred to as the
deterministic trend term; the multivariate Gaussian white
process a(f) = [a\(?), ax(?), ..., a,(f)]" has zero mean and an
n X n covariance matrix X,.

C. Modeling of Correlated Wind Power Generation

Hourly wind power data are measured from the Nysted
offshore wind farm in Denmark from Jan. 1 to Dec. 31, 2005.
The wind farm has 72 fixed-speed wind turbines, each rated
2.3 MW. Thus, the total capacity of the wind farm is 165.6
MW. The measurements are obtained from two parts of the
wind farm. Each part has a total capacity of 82.8 MW. As a
result, the two hourly measured wind power time series of
one-year length are available for model development.

Following the same modeling procedures described in [11],
WPG from an individual part of the wind farm can be
modeled by a LARIMA(0,1,1) model. However, in order to
model the cross-correlation of the WPGs between the two
parts of the wind farm, the multivariate time series model
should be applied. Such a multivariate time series model can
be developed according to (5) with a model structure based on
the LARIMA(0,1,1) model. This leads to a bivariate-
LARIMA(0,1,1) model as shown in Fig. 1.
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Fig. 1. Block diagram of the bivariate-LARIMA(0,1,1) model.

The bivariate-LARIMA model is composed of integration,
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limiter, power transformation, autocorrelation and cross-
correlation. Such a bivariate-LARIMA model is more
sophisticated than the LARIMA model developed in [11] as
the bivariate-LARIMA model is able to simulate the cross-
correlation between two wind power time series. The cross-
correlation structure is composed of two parts: 1) a bivariate-
Gaussian white noise with the covariance matrix X,, and 2)
the cross-coupling of the white noise at time-lag one with
Weights of 012 and 921.

The mathematical formulation of the Dbivariate-
LARIMA(0,1,1) model is summarized from (6)-(10). The
corresponding model parameters are summarized in the

Appendix.
—Zl(t)_:_00,1i| {{1 0}{‘911 912}3}{511(0:‘ 6
z0)] o) o 1 e o)l ©
Z()]_ '10,1(t)_11(t_1)} -
1 Z,(2) | | Lop(0)-L(e-1) ]
max7 101( )>Imax
’ mm —IO 1( )Slmax H (8)
mm’ 10,1( )<Imin
max7 102( )>Imax
[ (t - [02 mm—[02( )Slmax3 (9)
mm’ 10,2( )<Imin
n(r)} I#(0) 1
= . 0
I:Yz(t) [122(1) (10)

where 6, is the mean of the stochastic process Z(¢) and 6, is
the mean of the stochastic process Z,(f). 6, is the weight for
the autocorrelation of Z;, and 6 is the weight for the
autocorrelation of Z,(¢). a,(?) and a,(¢) are the two correlated
Gaussian white noise with zero means and the covariance
matrix X,. ,(¢) and /,(¢) are the square-root of the simulated
wind power Yi(f) and Y,(f), respectively. I (¢) and Iy, () are
1,(?) and L,(¢) before the limiter operation, respectively.

D. Model Validation

In order to validate the bivariate-LARIMA(0,1,1) model,
the two simulated time series (Y;(f) and Y,(¢)) of ten-year
length (87600 data points) from the model are compared to the
corresponding measurements (y,(¢) and y,(¢)). The comparison
is carried out in terms of sample autocorrelation coefficient,
partial-autocorrelation coefficient, cross-correlation
coefficient, and probability distribution [19]. Partial-
autocorrelation coefficient describes the autocorrelation
between Y(¢) and Y(z+k) when the mutual linear dependency
of Y(t+1), Y(t+2), ..., Y(¢t+k-1) is removed [11].



Fig. 2 (a) shows the sample autocorrelation coefficients of
the sum of the simulated time series (Y1(¢) + Y»(¢)), as well as
the sum of the measured time series (y,(¢) + y»(¢)). Fig. 2 (b)
shows the corresponding sample partial-autocorrelation
coefficients. The results show a good fit in autocorrelation and
partial-autocorrelation between the bivariate-LARIMA model
and the measurements. The sample partial-autocorrelation
goes to zero for time lags larger than three.

Fig. 2 (c) compares the sample cross-correlation
coefficients of the simulated time series and the measured
time series. The match in cross-correlation coefficients
indicates that the proposed cross-correlation structure is
sufficient to model the interdependence of the two parts of the
wind farm. Furthermore, it is noted that the cross-correlation
between the two parts of the wind farm is as high as their
autocorrelation. It is worth pointing out that unlike
autocorrelation, the values of cross-correlation are usually not
symmetrical at the two sides of time-lag 0. Thus, both sides of
the cross-correlation should be evaluated. However, in this
case, the values of the cross-correlation at the two sides are
very close, which is reasonable as it is between two parts of a
wind farm. Thus, only one side of the cross-correlation is
shown in Fig. 2 (c).
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Fig. 2. Bivariate-LARIMA(0,1,1) model (dashed) versus measurements

(solid): (a) Sample autocorrelation, (b) partial-autocorrelation, and (c) cross-
correlation coefficients.

Fig. 3 compares the probability distribution of the sum of
the simulated time series (Y;(¢) + Y»(¢)) with the measurements
by using a quantile-quantile plot. If the simulated time series
and the measured time series have the same probability

distribution, then their quantile-quantile plot follows a straight
line with a unit slope. Fig. 3 shows that the probability
distribution of the model fits that of the measurements
adequately.
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Fig. 3. Quantile-Quantile plot of the simulated time series from the bivariate-
LARIMA(0,1,1) model against the measured time series (dashed), and straight
line with unit slope (solid).

In fact, the cross-correlation of multivariate time series has
a significant impact on the probability distribution of the sum
of the multivariate time series. In order to demonstrate this,
Fig. 4 shows the histograms of the probability distribution of
the sum of two time series that are fully correlated, strongly
correlated, weakly correlated and uncorrelated.

0.2
2 0.15
g Il Fully Correlated
= [l Strongly Correlated
= 0.1 |:|Weakly Correlated
_§ [ JUncorrelated
& 0.05

0

150

Active power (MW) 150

Fig. 4. Histogram of the probability mass of the sum of two time series when
they are fully correlated, strongly correlated, weakly correlated and
uncorrelated.

The two fully-correlated time series are identical to each
other. The strongly correlated time series correspond to the
two simulated time series (Y;(r) and Y,(¢#)) as for Fig. 2 and
Fig. 3. The weakly correlated time series are also simulated
from the bivariate-LARIMA(0,1,1) model. However, the
cross-correlation values (off-diagonal elements) of the
covariance matrix X, of the white noise are one-tenth the
values of the covariance matrix for the strongly correlated
case (see (17)). The uncorrelated time series are simulated
using the LARIMA model without the cross-correlation



structure. Fig. 4 shows a clear trend of the probability
distribution when the cross-correlation between the two time
series varies from full correlation to no correlation. The
probability mass concentrates on the two ends of the
distribution when the cross-correlation is strong. Whereas the
probability mass moves to the center of the distribution when
the cross-correlation is weak. In other words, a weak cross-
correlation smoothens out the probability distribution of the
total WPG. It is also worth pointing out that the mean values
of the total WPG are identical for the four types of cross-
correlation.

In summary, the bivariate-LARIMA(0,1,1) model captures
the autocorrelation, the partial-autocorrelation, the cross-
correlation and the probability distribution of the two
measured wind power time series adequately. It is also
demonstrated that the modeling of cross-correlation is of great
importance as it strongly influences the probability
distribution of the total WPG in a power system. Although the
illustration is based on bivariate time series, the extension of
the model to multivariate time series is mathematically
straightforward. In the n-variate case, the cross-correlation
structure shown in Fig. 1 is more complex, with an n X n
covariance matrix of the white noise and an n x n matrix of
the parameter 0.

III. STOCHASTIC OPTIMIZATION OF WIND TURBINE POWER
FACTOR

This section illustrates the stochastic optimization
algorithm used to design the power factor setting of WTs by
taking into account the stochastic behavior of WPG and load
demand.

Normally, grid-connected WTs are controlled to have a
unity power factor. For fixed-speed WTs without power-
electronic controllers, unity power factor is achieved by
switching on/off capacitor banks. For variable-speed WTs
with power-electronic controllers, unity power factor can be
obtained by controlling the grid-side voltage source converter.
There are several reasons to set WT power factor to unity.
First, a unity power factor minimizes current flow and thus
converter losses. Second, active power transfer capacity is
maximized if there is no reactive power flow through the
converter. However, from the network’s perspective, WT
power factor can be designed to minimize the power losses of
the network. The reduced power losses lower the network
operating cost for network operators.

Normally, such a loss minimization issue can be formulated
and solved under the framework of a standard optimal power
flow problem [20], [21]. However, in this case, both WPG and
load are modeled by continuous stochastic processes, not by
discrete probability masses as in [21]. Thus, a standard
optimal power flow algorithm [20] cannot be directly adopted.
Furthermore, as will be discussed later, probabilistic
constraints of bus voltage and line current are implemented in
the algorithm. This makes it even more difficult to apply the
standard optimal power flow algorithm.

Therefore, a stochastic optimization based on Monte Carlo
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simulation is adopted to minimize the expectation of system
power losses. In order to account for the seasonal variation,
the optimization process is divided into four main periods,
which are a summer weekday, a summer-weekend day, a
winter weekday and a winter-weekend day. To take into
consideration the diurnal period, each period is further
grouped into 24 hours. Therefore, for each of the four periods,
the objective of the stochastic optimization is to minimize the
expectation of the total active power losses of the network at

hour ¢, PLt , with respect to the power factor angle ¢’ of WTs:

min E[PL’((p’,PV’VT,PZ, )J fort=1,2,..,24, an

where E[ ] is to take the expectation of; @ = [¢1, @2, ..., ¢,] is
the vector of WT power factor angle; » is the total number of

WTs; PV'VT is the vector of active WPG at hour ¢ Pg is the

vector of active load demand at hour 7. The load power factor
is assumed constant at each bus.

¢’ consists of n deterministic variables, while P, contains

. t . .
n stochastic processes and P, contains d stochastic processes.

r . . t t . .
As P, is a function of Py, and P,, P, is also a stochastic
variable. However, due to the non-Gaussian distribution of

P;VT and the nonlinear loss function PLt( ), it is not

straightforward to evaluate the expectation of PLI analytically.

Therefore, Monte Carlo simulations are adopted to evaluate
the objective function (11). Such a Monte Carlo simulation
calls for stochastic models of WPG and load demand.

The above objective function is subject to the following
constraints:

Poin <P < Do fori=1,2,..,n, (12)
P(V) >V ) $25%,  for j=1,2,...7, (13)
PV Vgin ) <2.5%,  for j=1,2,....7, (14)
PIL> L)y ) S 5%, fork=12,.,K. (15)

where P( ) denotes the probability of; J is the total number of
buses and K is the total number of branches. Equation (12)
sets the lower (¢ni,) and upper (@m.x) limits of WT power
factor angle. Equation (13) specifies that the probability of

overvoltage at bus j at hour ¢, V/.t , should be lower than 2.5%.
Equation (14) specifies that the probability of undervoltage at
bus j at hour ¢, V; , should be lower than 2.5%. Consequently,

Vjt is within the voltage limits [V, Vinax] at @ probability of



95% or higher. Such probabilistic constraints are in
accordance with the requirements specified by the European
Standard EN50160 [22]. Equation (15) states that the

probability of overcurrent of branch k at hour ¢, ,t{ , should be

lower than 5%. In other words, I,i is lower than the current

limit of that branch [; ,, at a probability of 95% or higher.
The probabilistic constraints of bus voltage and line current
are further illustrated in Fig. 5.
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>,15’P(vfsv )<2.5% P(VI2V )<25%
:’:’ 10 L J min Jj max’
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A 1 Imax‘
P(I; < 1.)295% !
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0 0.2 0.4 0.6 0.8 1 1.2

Current (p.u.)
Fig. 5. Probabilistic constraints of bus voltage and line current.

The foregoing formulation, including (11)-(15), is a
nonlinear constrained stochastic optimization problem.
Therefore, a sequential quadratic programming implemented
in the optimization toolbox of MATLAB [23] is combined
with Monte Carlo simulation to find the optimal solution. Fig.
6 shows the flow chart of the stochastic optimization
algorithm for each of the four periods. The algorithm mainly
consists of three parts: time series simulation, probabilistic
load flow calculation using Monte Carlo simulation, and
nonlinear constrained optimization by sequential quadratic
programming. The stop criteria of the optimization include
first-order optimality measure and maximum number of
iterations [23]. The optimization procedures are summarized
as follows:

1)Simulate wind power and load time series from stochastic
models and group the data into four periods and 24 hours,

2)Initialize WT power factor @’ at hour ¢,

3)For each group of the data and given ¢’, perform Monte
Carlo simulation of length N to obtain probabilistic load
flow results, which include the expectation of total system
power losses, probability distribution of bus voltages and
line currents,

4)Evaluate the objective function and the probabilistic
constraints based on the probabilistic load flow results.

5)If the stop criteria are not reached, the sequential
quadratic programming algorithm updates the WT power
factor values @', and then go to step 3),

6)If any stop criterion is reached, terminate optimization at
hour ¢ If ¢ is less than 24, t=¢+ 1 and go to step 2).
Otherwise, output optimization results.

IV. SYSTEM DESCRIPTION

This section describes the distribution system and data that
are used to demonstrate the stochastic optimization problem
formulated in section III for the optimal setting of WT power
factors.

Generate time series

of Pyt and Pp from

stochastic models &
group time series data

into four periods and
24 hours

Fort=1:24

p———— S
Select data at hour t: Stochastic
P'yr and P Optimization
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| | by a Load Flow | |
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e Optimal power factor ¢
e Voltage and current

e System power losses

Fig. 6. Flow chart of the stochastic optimization algorithm for each of the four
periods.

A. Case Network

The case network is modified on the basis of the 69-bus
radial distribution system in [24]. The modification consists of
adding one 33/11 kV substation transformer and five WTs in
the distribution system. These WTs are variable speed
generators with power electronic interface, which can regulate
their reactive power output to the grid. The configuration of
the case network is shown in Fig. 7, with the network data
provided in [24]. The case network has 70 buses in total. The
capacity of the substation transformer is 12 MVA. The
transformer is tap-regulated, with the voltage magnitude at the



low-voltage side controlled within [1, 0.9833] p.u. There are
in total 13 tap positions, with maximum six steps above and
six steps below the reference position. One tap step adjusts
voltage by 0.0167 p.u. The voltage limits of all buses are set
to £7% of the nominal value (11 kV), i.e. Vi = 1.07 p.u. and
Vmin = 0.93 p.u. The current limit of all lines is 157A.

The network is divided into two areas. Area A consists of
feeder F1 and F2 and area B consists of feeder F3 and F4. The
two areas are located close to each other. Therefore, the cross-
correlation between WPG in area A and WPG in area B is
very strong.
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Fig. 7. The case network modified from the 69-bus distribution system [24].

B. Wind Power Data

As shown in Fig. 7, there are in total five WTs connected
to the network, with three WTs in area A (bus 5, 13 and 27 )
and two WTs in area B (bus 40 and 65). All the WTs have a
capacity of 0.5 MW, but the one connected to bus 27, which is
0.8 MW. The WPG from the three WTs in area A is assumed
to be fully correlated with each other. The full correlation is
also assumed to the WPG from the two WTs in area B. Due to
the close geography of area A and area B, WPG in area A is
strongly correlated with WPG in area B. Such a strong cross-
correlation is simulated using the bivariate-LARIMA model
presented in section II. In order to account for the seasonal
variations, the bivariate-LARIMA model is developed for the
summer and winter period individually. The corresponding
model parameters for the summer and winter period are
summarized in the Appendix. On the basis of the model,
bivariate wind power time series are simulated for a length of
five years (43800 data points) for Monte Carlo simulations.
Fig. 8 (a) shows the simulated bivariate wind power time

series for a period of two weeks.

C. Load Data

Load is connected to all the buses from bus 2 to bus 69.
The peak load data at each bus are given in [24]. The total
peak load of the network is (2.90+j1.99) MVA. Full
correlation is also assumed to the loads in area A as well as
the loads in area B. The strong cross-correlation of the load in
area A and the load in area B are caused by the diurnal period
of the load as well as the similar temperature in the two areas.
In this paper, the load model developed in [7] is adopted for
the simulation. The model is based on an AR process and
takes into account the seasonal variation, weekday/weekend
and diurnal period of loads. Similarly, two load time series are
simulated for a length of five years for Monte Carlo
simulations. Fig. 8 (b) shows the two simulated load time
series for a period of two weeks. The power factors of the
loads are assumed time-invariant as provided in [24].
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Fig. 8. Simulated time series of two weeks: (a) wind power generation, (b)
load.

V. SIMULATION RESULTS AND DISCUSSIONS

This section first presents the simulation results of the
stochastic optimization of WT power factor. Then, the
economic benefits of the optimal power factor setting are
evaluated.

A. Optimal Wind Turbine Power Factor Setting

Many countries, such as Denmark, Germany and the UK,
specify power factor or reactive power generation requirement
for grid-connected WTs [25]. The requirement varies from
one country to another. For example, in the Danish grid code
for grid-connected WTs, reactive power generation is
confined to a control band with respect to active power
generation. In practice, a grid-connected WT needs to fulfill
the specific requirement depending on the regulation of the
country. In this paper, the minimum power factor of WT is set
to 0.8 both in leading and lagging directions. In other words,
the maximum power-factor angle @y,x is 37° and the minimum
power-factor angle @, is -37°. Normally, power-electronic
converters of WTs are usually over-rated at 130% of the rated
power output. Consider that apparent power equals to



=P’ \/ l+tan® ¢ . Such a power factor requirement

JPP+0’

ensures that at the rated active power output, the maximum

apparent power output (1«/1+tan2 Prax = 125%) is within the

converter rating.

Fig. 9 shows the optimal power factor angles of WTs
obtained from the stochastic optimization for a summer
weekday, a summer weekend, a winter weekday and a winter
weekend. All the power factor angles are positive, which
indicates that WTs generate reactive power. The power factor
angles during a summer weekday are within [11, 32] degree,
while the power factor angles during the other three periods
are within [10, 24] degree. In addition, the power factor angles
during a summer weekday fluctuate more frequently than
during the other periods. This is caused by a relatively high
wind power fluctuation in summer and a high load demand
during weekdays. As shown in Fig. 9, it is also expected that
the diurnal variation of load demand is reflected on the diurnal
reactive power output of WTs.
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Fig. 9. Optimal daily power factor angles of WT at bus 27: (a) summer
weekday and weekend, (b) winter weekday and weekend.

Fig. 10 shows the probability density function of the
voltage at bus 27 over a year after the stochastic optimization.
The mean value of the voltage is 0.99 p.u., and the standard
deviation is around 2% of the mean value. In this case, the
maximum allowed voltage (1.07 p.u.) is not exceeded.
However, there is a bulge on the probability density function
around 1 p.u. This is caused by the tap changer of the
substation transformer, which regulates the voltage at bus 70
within [0.983, 1] p.u. As the WT is connected at bus 27, the
voltage at 27 is on average slightly higher than the voltage at
bus 70.

Fig. 11 shows the average daily power losses of the
network during a summer weekday (SD), a summer weekend
(SE), a winter weekday (WD) and a winter weekend (WE).
The network power losses with WTs using unity power factor
setting is shown on the first bin, and with WTs using optimal
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power factor setting shown on the second bin. The network
power losses are lowered when using the optimal WT power
factor setting. As compared to the case with unity power
factor setting, the network losses are reduced by 10.4% during
a summer weekday, 7.4% during a summer weekend, 16.7%
during a winter weekday and 10.9% during a winter weekend.
As a result, annual power losses are reduced approximately by
13% from 248 MWh with unity power factor of WTs to 215
MWh with optimal power factor setting of WTs. The
significance of this amount of loss reduction will be evaluated
in the following subsection.
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Fig. 10. Empirical probability density function of voltage at bus 27.
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B. Economic Benefits of Optimal Power Factor Setting

The loss reduction due to the optimal power factor setting
of WTs may provide economic benefits to both network
operators and WT owners. In order to evaluate such economic
benefits, a cost assessment during the stage of system
planning is carried out. The assessment is carried out over the
period of twenty years of operation since the establishment of
the system. For such a long-term system planning, the total
assessed cost should include initial fixed costs, annual fixed
costs and annual variable costs [26]. The initial fixed costs
consist of a 33/11 kV 12 MVA tap-changing transformer,
building cost, 33 kV and 11 kV switchgears, Petersen coil,
assembling, and cable cost (20 km, XLPE three-core
150mm?). Based on the price list provided by the local Danish
DNO, these initial fixed costs are approximately 2.587 M€ in
total. The annual fixed costs include the annual property tax,
i.e. 3600 €, and annual maintenance and inspection cost, i.e.
6670 €. The above price values are provided by the Danish
distribution network operator in Danish Krone (DKK) and are
converted to € through the ratio of 7.50 DKK/€. The annual
variable cost contains the electricity cost due to system power
losses. Furthermore, system power losses may increase every
year due to the annual load growth. A typical annual load
growth rate is 1.5% for a Danish distribution system. Fig. 12
shows annual system power losses over twenty years with the
1.5% annual load growth rate. A fixed electricity price 70



€/MWh is used here to calculate the cost of power losses.

Consequently, for the initial year, the total investment
costs, including the initial fixed costs and the property tax of
the initial year, are 2.590 M€ (= 2.587 M€ + 0.0036 ME€); the
Maintenance and inspection costs are 6670 €. The annual
power loss costs with unity and optimal power factor setting
of WTs are listed in Table I. A present worth (PW) factor of
0.9 is used to evaluate the future money at the present value
[26]. The network total cost is evaluated over twenty-year and
summarized in Table I. As shown in Table I, the network total
cost is 2.848 M€ when the unity power factor setting of WTs
is used. However, the network total cost is reduced to 2.824
M€ when the optimal power factor setting of WTs is used. A
total amount of 24000 € will be saved in this case. This saved
money can be shared between the network operator and the
WT owners.

Assume that WT owners are rewarded with all the savings
obtained (24000 €). This amount of money can be offered by
network operators to WT owners in two forms. One is annual
cash payment, which is 1200 € per year. Another one is to
reduce the energy transfer fee that network operators charge
WT owners. This requires the following calculation of the
energy transfer fee for WT owners. During a year, the total
wind energy generated is 8841 MWh (for the total WT
capacity of 2.8 MW). According to [26], the energy flow
should also be discounted using the PW factor. Therefore, as
shown in Table I, over a period of twenty years, the total wind
energy generated is 77661 MWh. As a result, the energy
transfer fee for WT owners is reduced by 0.03 cents’kWh
(=24000 €/77661 MWh). Although this reduced energy
transfer fee seems to be small, according to the local network
operator, it actually can deplete the energy transfer fee by
around 11% of what WT owners are paying at the moment
(i.e. 0.28 cents/kWh). It is also worth mentioning that, for the
above calculation, the optimal power factor setting is not
updated every year even though the load grows annually.
However, if the stochastic optimization is performed for every
year considering annual load growth, a higher amount of
annual system power losses can be achieved. Based on the
above calculation, this will lead to a further reduction in total
system costs and thus an even lower energy transfer fee for
WT owners.

Il Unity Power Factor
(] Optimal Power Factor

0 5 10 15 20
Year

Fig. 12. Annual system power losses over 20 years with 1.5% annual load
growth rate.

VI. CONCLUSIONS AND FUTURE WORK

This paper has developed a multivariate-LARIMA model
for correlated WPG. The multivariate-LARIMA model is
obtained by introducing a cross-correlation structure to the
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LARIMA model. The cross-correlation structure models the
correlation coefficients of WPG at different time lags
adequately. Furthermore, the cross-correlation structure can be
readily implemented. A sensitivity analysis of correlation
coefficient indicates that as the cross-correlation of WPG
weakens, the probability distribution of WPG becomes flatter.

Moreover, the proposed stochastic optimization algorithm
provides optimal power factor settings of WTs for each hour
of a day and for four types of days, i.e. a summer weekday, a
summer-weekend day, a winter weekday and a winter-
weekend day. As a result, a set of 96 power factor values is
obtained for each of the WTs in the network. These power
factor values considerably abate the system power losses
under various combinations of WPG and load demand. In this
case, an annual loss reduction of 13% is achieved. In light of
the cost evaluation conducted, including the investment costs
and operating costs of the network over a period of twenty
years, the total costs are curtailed by 0.8%, which amounts to
a saving of 24000 €. This amount of savings, if rewarded to
the WT owners, may cut down the wind energy transfer fee by
11%.

The developed stochastic model and stochastic
optimization can be used as a basic tool by network operators
to estimate power losses of their networks and to negotiate
with WT owners to achieve a more economic operation of the
system.

As is evidenced in [18], the cross-correlation between
WPG and load demand is very weak, ranging between 0 and
0.24. Thus, such a cross-correlation is not considered in this
paper. However, the cross-correlation between WPG and load
demand may become stronger through a new market
mechanism. For instance, if a significant amount of wind
power is traded in the electricity market, it will affect the
variation of electricity price, which further influences system
load behavior. Thus, future work can consider the cross-
correlation between WPG and load demand in the stochastic
models. The economic benefits of deferring system expansion
because of increased maximum active power transfer
capability can also be investigated. The multivariate stochastic
wind power model developed in this paper can be used to
represent wind farms in the reliability evaluation of a power
system through a sequential Monte Carlo simulation [16],
[17], [27]. If the outage rates of substation transformers,
cables, circuit breakers and WTs are provided, the distribution
reliability indices such as system average interruption
frequency index (SAIFI), system average interruption duration
index (SAIDI) and energy not supplied (ENS) can be
computed accordingly [28].

APPENDIX

The estimated model parameters of the bivariate-
LARIMA(0,1,1) model shown in Fig. 1 are summarized as
follows.



O I S ~0.15 —0.04

0= Fl= , (16)
Oy On | | 044 022

~ l062 056

Y= , (17)
0.56 0.61

~ | 6o 0.008

0 =| = . (18)
Bo 0.007

The model parameters 0; and X, are calculated from the
covariance matrices of the two measured wind power time
series through:

0;r(1)+0,r(0)+T" (1)=0

19

r()=-x.6, (4

where I'(0) is the covariance matrix at time-lag zero and I'(1)

is the covariance matrix at time-lag one. I'(0) and I'(1) are

estimated from the measured wind power time series.

Equation (19) is also valid for multivariate-LARIMA(0,1,1)
model.

The model parameter 0y is adjusted to match the mean

values of the simulated time series (Y;(#) and Y,(f)) with the
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measured values through a Monte Carlo simulation.

When the bivariate-LARIMA model is applied to the
summer and winter season individually, the corresponding
model parameters are summarized as follows. For summer
season,

6 _[-018 001
T 046 025

a 0.68 0.61
Ea,sm =
0.61 0.65

o _[003
o™ =1 0,04

E

For winter season,
N -0.11 -0.10
el,wt =

-0.42 0.18

- 0.56 0.51
Za,wt =
0.51 0.56

~ 0.04
00,sm =
0.05

>

TWENTY-YEAR EVALUATION OF THE NET\{//(;?{LKEH{IVESTMENT AND OPERATING COST (10° €)
Study Invest. Maint. Loss Annual PW Discount Wind
Year & Insp. Cost Cost Factor Cost Energy
Unity Opt. Unity Opt. Unity Opt. (MWh)
0 2590 6.67 17.4 15.1 2614 2612 1.000 2614 2612 8841
1 3.6 6.67 17.4 15.3 279 25.6 0.900 25.1 23.0 7957
2 3.6 6.67 17.9 15.5 28.2 25.8 0.810 22.8 20.9 7161
3 3.6 6.67 18.2 15.8 28.5 26.0 0.729 20.8 19.0 6445
19 3.6 6.67 25.1 21.4 354 31.6 0.315 4.8 4.3 2785
Total 2658.4 133.4 415 356 3207 3148 2848 2824 77661
Total wind energy transfer fee reduced is (2848-2824) x 10° €/ 77661 MWh = 0.03 cents/kWh
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