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Analysis of Stochastic Radio Channels with
Temporal Birth-Death Dynamics: A Marked Spatial

Point Process Perspective
Morten Lomholt Jakobsen, Troels Pedersen and Bernard Henri Fleury

Abstract—We employ the theory of spatial point processes to
revisit and reinterpret a particular class of time-variant stochastic
radio channel models. Common for all models in this class is that
individual multipath components are emerging and vanishing in a
temporal birth-death like manner, with the underlying stochastic
birth-death mechanism governed by two facilitating assumptions.
Well-known analytical properties of this class of channel models
are reestablished by simple arguments and several new results
are derived. The primary tool used to obtain these results is
Campbell’s Theorem which enables novel assessment of the
autocorrelation functions of random processes used in the general
channel model description. Under simplifying assumptions the
channel transfer function is shown to be wide-sense stationary
in both time and frequency (despite the birth-death behavior of
the overall channel). The proof of this result is a consequence
of the point process perspective, in particular by circumventing
enumeration issues arising from the use of integer-indexed path
components in traditional channel modeling approaches. The
practical importance of being able to analytically characterize
the birth-death channel models is clearly evidenced, e.g. by the
fact that key parameters enter explicitly in measurable quantities
such as the power-delay profile.

Index Terms—Stochastic radio channel modeling, time-variant
channel transfer function, time-frequency correlation function,
marked spatial point processes, Campbell’s Theorem.

I. INTRODUCTION

IN the historical development of time-invariant stochastic
radio channel models still being favored nowadays, the

first use of point processes can be traced back to the seminal
work by Turin [1], [2]. Specifically, Turin suggested modeling
the occurrences of multipath delay components via a one-
dimensional (possibly inhomogeneous) Poisson point process.
One-dimensional point processes were similarly involved in
the later developments by Suzuki [3] and Hashemi [4] as
a convenient tool for modeling and simulation. Despite a
pronounced use for the modeling of stochastic radio channels,
neither point processes nor their underlying theoretical frame-
work have dominated as tools for analysis. This trend persists
in the popular contribution by Saleh and Valenzuela [5] as
well as in the more recent extension by Spencer et al. [6].
Essentially, point processes are employed only in the channel
model specifications whereas tools from the underlying theory
have not been used for analytical characterizations. In fact,
this trend exists also for certain time-variant channel models,
see [7]–[10]. This trend can most likely be attributed in part

All three authors are with Aalborg University, Department of Electronic
Systems, Fredrik Bajers Vej 7, DK-9220 Aalborg East, Denmark.

to scientific tradition and to the scarce proportion of readily
accessible, engineering-targeted literature on point processes
around the time of Turin’s initial work. The textbook by
Snyder [11] is one of the earliest of its kind, targeting
engineers, and covering numerous examples and application
areas. However, the engineering-targeted exposition in [11]
(or its successor [12]) does not appear to have fully convinced
the channel modeling community to also start analyzing their
models using the variety of well-established tools from the
theory of point processes.

Recently, the theoretical framework of spatial1 point pro-
cesses has facilitated the analytical characterization of vari-
ous stochastic radio channel models, see e.g. [13]–[17]. In
[13], a point process approach has been employed to derive
and analyze a non-stationary geometric-stochastic propagation
model applicable within satellite-to-vehicle communications.
The impulse response model by Saleh and Valenzuela [5] and
more recent variations of it [6] have been analyzed in [14]–[16]
with new and detailed insight gained. Campbell’s Theorem, a
standard tool from the theory of spatial point processes, has
proven itself instrumental for deriving both well-known and
new results via concise and rigorous arguments, e.g. as in [13]
and [15].

Time- and space-varying multipath propagation phenomena,
such as path components which emerge and vanish, occur
partially due to movements of the communicating entities
and the surrounding scatterers [18], [19]. To imitate such
birth-death dynamics in the radio channel, the following two
tractable assumptions have been invoked several times in the
channel modeling literature:
i) Stationary emergences: The collection of time instances

where new path components emerge forms a stationary
point process on the real line.
† (Facilitating special-case: Poisson point process).

ii) i.i.d. lifetimes: The lifetimes of individual path compo-
nents are drawn independently and identically distributed.
† (Facilitating special-case: Exponential distribution).

The special-cases i)† and ii)† entered first in [7] while later
also in several other contributions, e.g. [8]–[10]. Under i)†

and ii)† the instantaneous number of path components in
the channel is a Poisson distributed random variable (with
known mean parameter). This property is justified in [7] by

1When prepending the term “spatial” we refer to point processes in two
dimensions or more. The essential distinction compared to one-dimensional
point processes is the inherent absence of a natural ordering of the points.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TAP.2014.2316294

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



FINAL SUBMISSION 2

reference to standard results from queuing theory. Basically,
the random process governing the time-varying number of path
components in the channel can be identified as an M/M/∞
queue [20, Sec. 16-2]. This observation also appears elsewhere
in the literature, see e.g. [10, Sec. III-C], where the construction
via i)† and ii)† is identified as a birth-death process or, in the
alternative terminology of [10], as a marked Poisson process.
Analytical benefits and additional insight can often be gained
from such structural identifications, e.g. as in [15] and [16] via
their individual point process perspectives. Surprisingly, the
promising potential of the available theory of marked spatial
point processes does not seem to have been exploited so far
in the literature on time-variant radio channel models. Yet,
spatial point processes have already been successfully utilized
in highly related areas of research, namely for the design and
analysis of wireless networks, see [21] and the extensive list
of references therein.

In the present contribution we analyze the class of time-
variant stochastic radio channel models which fulfill the more
general assumptions i) and ii) in contrast to the special-cases
i)† and ii)†. Random processes essential for radio channel
characterization are constructed from underlying spatial point
processes. Subsequently, the use of Campbell’s Theorem facil-
itates novel analytical assessment of the associated autocorre-
lation functions. A key feature of the point process perspective
is its ability to elegantly handle enumeration issues arising
in traditional channel modeling approaches. Specifically, the
traditional use of integer-indexed path components is naturally
replaced by a tractable point process-based indexing method.
Our first main contribution is an extensive analysis of the
temporal birth-death process induced from the underlying
assumptions i) and ii). We relate our analysis to the results
already obtained in the literature regarding the special-cases
i)† and ii)†. Secondly, we derive a novel and general ex-
pression for the time-frequency correlation function associ-
ated with the class of temporal birth-death channel models.
With example cases we illustrate how a particular channel
model can be readily extended by including random marks
in the point process construction. We show as well how the
point process perspective offers crucial insight for the task
of simulating channel realizations with temporal birth-death
dynamics. Overall, our contributions are comprised by the
point process formulations and the analytical characterizations
induced thereof. Our approach relies on simple arguments and
standard results from the theory of spatial point processes.
In particular, Campbell’s Theorem repeatedly reveals itself a
highly useful and easily applicable tool.

The paper is organized as follows. Sec. II provides the nec-
essary background information on the class of temporal birth-
death channel models with an overview of previous approaches
and contributions. We then present a concise but self-contained
introduction to the basics of spatial point processes in Sec. III.
Subsequently, we initiate our investigations of the class of
time-variant channel models by analyzing and characterizing
the temporal birth-death process in Sec. IV. We continue in
Sec. V with an exhaustive analysis of the channel’s time-
frequency correlation function. Sec. VI provides a selection
of examples illustrating how the channel model can be ex-

tended and we supplement with details and aspects related
to computer simulation. Finally, we draw our conclusions in
Sec. VII.

II. STOCHASTIC RADIO CHANNEL MODELS WITH
TEMPORAL BIRTH-DEATH DYNAMICS

The birth-death behavior of the class of channel models
under consideration is governed by the assumptions i) and ii)
in Sec. I. Common to the approaches [7]–[10] is that they
(with minor individual variations) essentially all propose a
time-varying multipath channel impulse response of the form2

h(t, τ) =

L(t)∑
`=1

α
`
(t)δ

(
τ − τ

`
(t)
)
, (1)

where L(t) is the number of path components at time t, α
`
(t)

is the complex-valued gain of the `’th path component, τ
`
(t)

is the associated propagation delay, and δ(·) is the Dirac delta.
The channel transfer function corresponding to (1) reads

H(t, f) =

L(t)∑
`=1

α
`
(t) exp

(
− j2πfτ

`
(t)
)
. (2)

The integer-indexed multipath representations in (1) and (2),
and slight variations thereof, are standard in the channel
modeling literature [18], [19]. The special-case which has
attracted most attention is when L(t) = L is constant (de-
terministic or random) within each realization of the channel.
That is, numerous traditional channel modeling approaches are
disregarding the case when the number of path components is
allowed to vary within each channel realization. However, the
channel models in [7]–[10] all incorporate a temporal birth-
death feature of the individual path components, either directly
via the integer-valued random process3 L(·) or via equivalent
representations. Here, the transition times of L(·) are to be
generated according to i) and ii) in Sec. I, but common to the
contributions [7]–[10] is that they all specialize exclusively
(by default) to the cases i)† and ii)†.

In [7] each amplitude |α
`
| is constant with time and the

amplitudes of emerging components are drawn i.i.d. according
to a log-normal distribution. Hence, the conditional second
moment of |α

`
| does not depend on the associated propagation

delay τ
`
. From narrowband considerations the propagation

delays are also modeled to be constant with time and they
are drawn i.i.d. from a uniform distribution.

The model in [9] is inspired by [7]. However, the amplitudes
|α

`
(t)| are now varying with time. To ensure smooth transi-

tions when birth and death events occur, a sequence of root-
raised cosine functions are incorporated in a multiplicative
manner. Each propagation delay τ

`
(t) is a function of a random

initial delay (the propagation delay when a path emerges) and
it varies with time as a function of the receiver’s position in

2In fact [7]–[10] rely on a space-varying approach which subsequently
can be converted into a time-varying equivalent by appropriately assuming a
receiver trajectory (most often a straight line in space). Furthermore, [7] and
[10] are both modeling the line-of-sight component via a separate stochastic
mechanism which alternates between being active and inactive.

3By L(·) we refer to the entire random process while with L(t) we indicate
that the time instance t is fixed. Hence, L(t) is a random variable.
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space. The power-delay profile is targeted to exhibit an overall
exponential decay. See [22] for further details.

In [8] each time-varying amplitude |α
`
(t)| is smoothed

using the non-negative part of an ordinary sine function. The
sine is stretched in time to match the individual lifetimes and
|α

`
(t)| is generated such that its conditional second moment

depends on τ
`
(t) in an exponentially decaying manner. Each

propagation delay τ
`
(t) varies with time as a function of

the receiver’s position together with an initial delay drawn
from an exponential distribution. From this construction the
power-delay profile appears to exhibit an overall exponential
decay, but the sine smoothing and the average number of path
components are both disregarded in the calculations.

The model in [10] is inspired by [8] and each path compo-
nent is characterized by a transfer matrix (polarization, antenna
characteristics, etc.) together with a propagation delay and
directions of departure and arrival. Hence, the channel model
in [10] accounts for small-scale fading, large-scale fading
and polarization aspects. A key aspect is the modeling of
path directions which are found to be Laplacian distributed
for smaller propagation delays followed by migration into a
uniform distribution for larger delays. Furthermore, a number
of heuristic guidelines are proposed for standard technicalities
related to computer simulation, e.g. initialization and time-
discretization.

A. Consequences of Temporal Birth-Death Dynamics

The individual contributions [7]–[10] rely on different as-
sumptions on the path gains, propagation delays, incidence
directions, and so on. The approaches, notations, methodolo-
gies, and techniques in use are rather diverse in general. But
common to all modeling approaches seems to be the fact that
a thorough analytical characterization and the assessment of
the resulting channel properties have been very difficult to
carry out. Computer simulation does not adequately provide
the desired insight and is often not tractable either – especially
not when the number of overall model parameters grows as
large as in [10].

The essential part of the analytical challenge comes with the
birth-death behavior of the random process L(·) describing
the time-varying number of path components. Conceptually,
the birth-death process L(·) may appear straightforward to
handle but difficulties quickly arise in the attempt to compute a
correlation quantity such as E[H∗(t, f)H(t′, f ′)], where E[ · ]
denotes expectation and (·)∗ denotes complex conjugation.
The difficulties emerge since for distinct time instances t and
t′, the integers L(t) and L(t′) are not necessarily referring to
the same integer-indexed path components anymore (glimpse
at Fig. 4 on page 8). This “enumeration issue” repeatedly af-
fects (1) and (2) every single time the birth-death process L(·)
experiences a transition. Consequently, re-enumeration via the
integer index ` or other means of non-trivial bookkeeping is
recurrently needed. Surprisingly, the enumeration issue (which
is a consequence of the birth-death behavior and the chosen
indexing) is barely mentioned in [7]–[10]. Specifically, [7] is
the only contribution explicitly acknowledging that a “time-
influenced” integer-indexed representation equivalent to (2)

brings along an inexpedient enumeration issue. An approach
is proposed based on set-valued random variables, see [7,
Sec. 2.2.1], which appears to be the only “mitigation” of the
enumeration issue published so far.

Fortunately, as we shall see in Sec. IV and Sec. V, the
enumeration-technical and analytical difficulties encountered
in [7]–[10] are swiftly circumvented by use of marked spatial
point processes. Specifically, we demonstrate how thorough
analytical insight can be obtained by virtue of this well-
established mathematical framework. The approach is fully
general in the sense that our results apply to any temporal
birth-death channel model from the class governed by i) and
ii), in particular to the models in [7]–[10], which all rely
on i)† and ii)†. However, as knowledge of the basics of
spatial point processes will be essential for transparency in
the later derivations, we provide in the following a concise,
self-contained and engineering-targeted introduction to this
mathematical framework.

III. SPATIAL POINT PROCESSES

A spatial point process [12], [23]–[26] is a random count-
able collection Y of points sitting in a d-dimensional Euclidian
space S (either Rd or a subset of it). The term “spatial” is
used here to stress the fact that d is larger than one, but the
term is often skipped again for the sake of brevity. Since the
peculiar ordering property of the real line obscures the overall
theory, the reader is encouraged [24] to always think of the
two-dimensional (d = 2) case, see Fig. 1.

For reasons of practical applicability and simplicity it is
convenient to restrict attention to the class of locally finite
and simple point processes. Here, locally finite means that
only a finite number of points are falling in every bounded
region B ⊂ Rd. Furthermore, the term “simple” indicates that
no two points of the process coincide. Both conditions are to
be satisfied with probability one. As no two points from Y
coincide, each individual realization of Y can be identified
as a countable set of points {y1,y2,y3, . . .}, yi ∈ S. The
counting index i on yi is used here only to distinguish
individual points and to indicate countability. This index does
not imply any ordering of the points (recall Fig. 1) and for
this reason we deliberately skip it again.

A. Region Counts and the Intensity Function

A natural way of exploring the properties of a point process
is to count the number of points falling in different regions
[26]. Accordingly, for any set B ⊆ S consider the region count

N
Y
(B) := |Y ∩B| =

∑
y∈Y

1[y ∈ B], (3)

where |·| denotes set cardinality and 1[ · ] is a generic indicator
function taking the value one if the logical statement in
brackets is fulfilled and zero otherwise. As suggested by its
name, the region count N

Y
(B) in (3) gives the random number

of points from Y falling within the region B. For fixed and
bounded B, the region count N

Y
(B) is an ordinary random

variable with range N0 := {0} ∪N. An example illustration
was already provided in Fig. 1. For a general point process Y ,
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Fig. 1. A pair of realizations of a two-dimensional point process Y . Notice
that the points are not enumerated/ordered and observe that each realization
has a different number of points NY (B) falling in the gray-shaded region B.

the probability distribution of N
Y
(B) depends on the region B

via its d-dimensional Lebesgue measure, shape, location, ori-
entation, and so on. The region B can be very complicated but
certain properties of the region counts are easily established.
In particular we have N

Y
(∅) = 0 and for disjoint regions

A,B ⊂ S we also have N
Y
(A ∪ B) = N

Y
(A) + N

Y
(B).

Indeed, various complicated regions can be build up from
simpler ones by use of set operations for which the behavior
of N

Y
(·) is obvious.

The expected value of the region count µ
Y
(B) := E[N

Y
(B)]

induces a measure on S, the so-called intensity measure of Y .
If the intensity measure can be expressed as an integral

µ
Y
(B) =

∫
B

%
Y
(y)dy, (4)

for some locally integrable function %
Y

: S → [0,∞), then
%

Y
(·) is called the intensity function of Y . The intensity

function does exist for virtually all applications of practical
relevance. If %

Y
(·) is constant on S then Y is called a

homogeneous point process and otherwise Y is said to be
inhomogeneous. In general, the shape of %

Y
(·) indicates where

points are more likely to occur. Besides this intuitive feature
the intensity function plays an important role for the use of
Campbell’s Theorem [24, Chap. 3], [26, Thm. 2.2]. This powerful
and widely applicable theorem states that the identity

E
[∑
y∈Y

g(y)
]

=

∫
S

g(y)%
Y
(y)dy (5)

holds whenever the integral on the right is well-defined,
where g(·) is any real- or complex-valued function defined
on S. Campbell’s Theorem is particularly useful as it enables
straightforward calculation of expected values of scalar ran-
dom variables of the form∑

y∈Y
g(y). (6)

Random variables of the type in (6) are frequently encountered
when dealing with point processes. One example already
appeared in (3) where g(·) is the indicator function for a region
B.

B. Marked Point Processes

Let Y be a point process on S ⊆ Rd and consider the
procedure of attaching a random label or a mark my to each
point y ∈ Y . These marks can be of very general type but
they must all belong to the same space M .

Definition 1. Let Y be a simple and locally finite point process
on S ⊆ Rd and let M be some space. If a random mark
my ∈M is attached to each point y ∈ Y , then

X := {(y,my) : y ∈ Y } (7)

is called a marked spatial point process with points in S and
marks in M .

By construction, X is a simple and locally finite random
subset of S × M . Accordingly, a marked point process X
with points in S and marks in M can always be viewed as
an unmarked point process on S×M . However, the converse
is not true since an arbitrary point process cannot always be
projected onto a lower dimensional space and viewed as a
marked point process. Such a collection of projected points is
not necessarily simple nor locally finite.

C. Poisson Point Processes

The most fundamental types of spatial point processes are
members of the Poisson4 class:

Definition 2. [25, Def. 3.2] A point process Y on S ⊆ Rd is
called a Poisson point process with intensity function %

Y
(·) if

it fulfills the two conditions:
1) For any region B ⊆ S with µ

Y
(B) =

∫
B
%

Y
(s)ds < ∞

the region count N
Y
(B) is Poisson distributed with mean

µ
Y
(B).

2) Conditioned on the event N
Y

(B) = n ∈ N such that
0 < µ

Y
(B) < ∞, the joint distribution of Y ∩ B is the

same as that of n points drawn i.i.d. according to the
probability density function

f
B

(s) :=
%

Y
(s)

µ
Y

(B)
1[s ∈ B], s ∈ S.

We write Y ∼ PoissonPP(S, %
Y
).

For a Poisson point process the individual region counts
are Poisson distributed random variables. Hence the name of
the process. A particularly useful property of Poisson point
processes arises via the Marking Theorem [24, Sec. 5.2], [25,
Prop. 3.9]. This theorem states that if mutually independent
marks are attached to a Poisson point process, then the ex-
tended collection (of points and marks) is again a Poisson point
process (in a higher dimensional space) and the associated
intensity function is known. Loosely speaking, the Poisson
property of the region counts is sustained when expanding
the dimensionality. Notice that mutual independence is the
key requirement of the Marking Theorem. For instance, the
marks need not be identically distributed. Notice also that
the Marking Theorem does not apply to point processes in
general, only to Poisson point processes. This partly explains
the facilitating aspect of the special-case assumption i)† in
Sec. I.

4A highly accessible introduction to Poisson point processes can be found
in the book [24] by Kingman. Although not crucial, his approach and choice
of presentation is better perceived with some minor knowledge on abstract
measure theory. In contrast, several other books on spatial point processes
require a solid background in measure theory just to get started.
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IV. CHARACTERIZATION OF THE TEMPORAL
BIRTH-DEATH PROCESS L(·)

In this section we assess the fundamental properties of
the temporal birth-death process associated with the class
of time-variant stochastic radio channel models fulfilling the
assumptions i) and ii) from Sec. I. Our approach is to
reformulate and incorporate i) and ii) using a marked point
process. This perspective facilitates a convenient definition of
the temporal birth-death process L(·) which we briefly intro-
duced in Sec. II. We show that L(·) is strict-sense stationary
and we calculate its mean by use of Campbell’s Theorem.
Subsequently we extract a partial but crucial share of the
second-order properties of L(·), again by application of Camp-
bell’s Theorem. Furthermore, we illustrate for the facilitating
special-case i)† how additional insight can be gained from
changing perspective. Specifically, via the Marking Theorem
for Poisson point processes we swap to a higher dimensional
representation which allows us to readily identify that L(t) is
Poisson distributed for any fixed t ∈ R. Finally, we indicate
that i) and ii) are essential for preserving analytical tractability
of L(·) as even minor relaxation attempts turn L(·) into a non-
stationary random process.

A. Definition of L(·) Using a Marked Point Process

We begin by setting up a useful notation to incorporate
assumption i) from Sec. I. We introduce Y to represent the
one-dimensional stationary5 point process describing the time
instances when path components emerge. For instance, Y
could be a Poisson point process, a renewal point process
[12, Chap. 6], a Cox point process [25, Chap. 5], and so on.
A stationary point process is necessarily homogeneous [26,
Cor. 1] and so the intensity function %

Y
(·) of Y is constant

such that %
Y
(y) = λe for all y ∈ R. The subscript on the

positive constant λe is used to abbreviate the term “emerge”.
Secondly, we need to incorporate assumption ii) from

Sec. I. To account for the period (or lifetime) of each path
component, a random non-negative mark py is attached to each
element y ∈ Y (lifetimes are necessarily non-negative). The
letter p is used to emphasize the interpretation of each mark as
a “period” while the subscript y on py serves as a unique iden-
tifier for its underlying point (with probability one). Thus, the
countable collection of periods {py : y ∈ Y } is conveniently
indexed using the points from Y . The periods are drawn i.i.d.
according to some probability density function fperiod(·) with
non-negative support and finite first-order moment

E[py] = E[p?] =

∫ ∞
0

pfperiod(p)dp <∞. (8)

In (8) we use the wildcard notation E[p?] to denote the mean
of a “typical/arbitrary” mark p? (as they are all drawn i.i.d.).
The random collection

X := {(y, py) : y ∈ Y } (9)

5In the sense of spatial point processes which similarly to ordinary random
processes means that all distributional properties are preserved under arbitrary
fixed translations [26, Def. 1.7].

is by construction a marked point process on R × R+ with
points in R and marks in R+. This marked point process
is analytically convenient as it allows directly for random
variables of type (6) to be established.

By use of the random collection X in (9), the number of
“active” path components at time t can now be formulated as

L(t) :=
∑
y∈Y

1[y ≤ t]1[y + py > t], t ∈ R. (10)

An arbitrary component (y, py) from (9) contributes to the
value of the sum in (10) only if it emerges before and vanishes
after time t (incorporated by the product of the two indicator
functions). Obviously, L(·) as defined by (10) is a continuous-
time random process with range N0 (once more, glimpse at
Fig. 4 on page 8). Notice how the temporal birth-death process
L(·) is readily generated as a function of the underlying
random mechanism X . However, X cannot be reconstructed
from a realization of L(·) in general, despite the fact that Y
always can (from the time instances with upward jumps).

As a consequence of i) and ii), we show in Appendix A that
the temporal birth-death process L(·) is strict-sense stationary.
Intuitively, this is also to be expected since the underlying
point process Y is stationary and since the marks/periods
attached to it are mutually independent and identically dis-
tributed. By strict-sense stationarity, L(·) is also wide-sense
stationary which means that E[L(t)] does not depend on t
and E[L(t)L(t′)] depends on t′ − t only.

B. First- And Second-Order Properties of L(·)
Using the law of total expectation [27, Sec. 3.7] we obtain

E[L(t)] = E
[
E[L(t) |Y ]

]
= E

[∑
y∈Y

1[y ≤ t]E
[
1[y + py > t]

∣∣Y ]].
We emphasize that expectation and summation cannot be
directly interchanged in (10) since Y is a random collection.
Since each mark py does not depend on Y \{y}, we now get

E[L(t)] = E
[∑
y∈Y

1[y ≤ t]Pr(py > t− y|y)︸ ︷︷ ︸
g(y;t)

]

=

∫
R

g(y; t)%
Y
(y)dy,

where the last step follows by application of Campbell’s
Theorem. We have not (yet) used the fact that Y is stationary
and neither have we used the assumption that the periods are
identically distributed. Hence, the above integral formula is
valid for more general settings where the mean E[L(t)] may
depend on time t. We continue by exploiting i) such that

E[L(t)] =

∫ t

−∞
Pr(py > t− y)λedy (11)

and the substitution ξ := t− y together with ii) then yields

E[L(t)] = λe

∫ ∞
0

Pr(pt−ξ > ξ)dξ = λeE[p?], (12)

i.e. the mean E[L(t)] does not depend on t, in accordance
with L(·) being strict-sense stationary. Readers familiar with
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queueing theory will recognize the expression in (12) to be
consistent with well-known results for the M/G/∞ queue
[20, Sec. 16-2], i.e. when specializing i) to the case i)†.

The interpretation of (12) is quite intuitive: the average
number of path components in the channel is governed by
the rate (λe) at which new components emerge, together with
the inverse rate (E[p?]) at which they vanish again. The mean
E[L(t)] is not affected by the exact shape of the probability
density function fperiod(·) shared by all the marks. Only the
first-order moment E[p?] matters.

By strict-sense stationarity we know that the autocorrelation
function E[L(t)L(t′)] depends only on the time difference
t′ − t. To obtain further insight we introduce and split the
autocorrelation function as

RL(t, t′) := E[L(t)L(t′)] = E[(�1)] + E[(�2)], (13)

with the definitions

(�1) :=
∑
y∈Y

1
[
y ≤ min{t, t′}, y + py > max{t, t′}

]
(14)

(�2) :=

6=∑
y,ỹ∈Y

1[y ≤ t, y + py > t]1
[
ỹ ≤ t′, ỹ + pỹ > t′

]
.

The splitting in (13) reflects a deliberate choice as the first
quantity (�1) gives the random number of terms (y, py) from
(9) contributing jointly to both L(t) and L(t′). The mean of
(�1) is readily assessed using the same manipulations as those
leading to (11), in particular the law of total expectation and
Campbell’s Theorem:

E[(�1)] = E
[
E[(�1)|Y ]

]
= λe

∫ ∞
|t′−t|

Pr(p? > ξ)dξ (15)

with |t′ − t| = max{t, t′} −min{t, t′}.
The second quantity (�2) is not as easily handled as (�1) and

its interpretation is also not as straightforward. The symbol 6=
above the summation in (�2) is used to indicate that the sum
is taken over pairwise distinct points y and ỹ. Calculating
the mean of (�2) is indeed possible but more involved as it
requires to know the statistical properties of joint occurrences
of points from Y . In general, this knowledge is not available
through the intensity function %

Y
(·) of Y . It is contained in a

function called the second-order product density [25, Def. 4.3]
or the second moment density [26, Def. 2.5]. In the sequel we
calculate for illustration purposes the mean of (�2) for the
facilitating special-case i)†.

As expected, the quantity in (15) depends only on the
time difference ∆t := t′ − t, and not on the specific time
instances t and t′ (by strict-sense stationarity). Obviously,
the same conclusion holds for E[(�2)], having calculated this
term explicitly or not. Opposite to the mean E[L(t)] in (12)
which is affected only by the first-order moment of fperiod(·),
the exact shape of this probability density function affects
directly the autocorrelation function E[L(t)L(t′)] in (13). As
will be shown in Sec. V, the quantity in (15) plays a crucial
role as it influences the time-frequency correlation function of
the channel. To the contrary, the quantity E[(�2)] does not.
Accordingly, we do not insist on calculating this particular
term.

To the best of our knowledge, equally concise and rigorous
derivations of the results (12) and (15) have not appeared
elsewhere in the literature. The novelty here is that our
conclusions are valid for the general assumptions i) and ii)
and that our findings emerge as a concise and direct result of
the point process perspective, in particular, as a result of using
Campbell’s Theorem.

C. The Poisson Special-Case i)†

By invoking i)† we immediately have (recall Sec. III-C)

Y ∼ PoissonPP(R, %
Y
), %

Y
(y) = λe, y ∈ R.

Due to ii), the marks {py : y ∈ Y } are mutually independent
and each individual period py does not depend on Y \{y}.
Thus, by the Marking Theorem (recall again Sec. III-C), it
follows that the marked collection X in (9) is itself a Poisson
point process, namely

X ∼ PoissonPP(R×R+, %X
).

The associated intensity function %
X

(·) reads [25, Prop. 3.9]

%
X

(x) = %
Y
(y)fperiod(p), x = (y, p). (16)

To ease the notation it is often convenient to drop the index y
on py as we just did. We simply think of each x ∈ X as a two-
dimensional point (y, p) and not as a one-dimensional point
with a mark attached. Notice that neither %

Y
(·) nor fperiod(·)

depends on y. Hence, the intensity function %
X

(·) varies only
with its second argument p via the shape of fperiod(·).

In view of the two-dimensional Poisson point process X
it is a straightforward exercise to see that L(t) is Poisson
distributed for any fixed t ∈ R. In fact, L(t) as defined in
(10) can now be recognized as a region count associated with
X . The region in question must necessarily be indexed by time
t and from inspection of the two indicator functions in (10)
we “mechanically” define

Bt := {(y, p) : y ≤ t, y + p > t} ⊂ R×R+. (17)

With this definition of the region Bt it follows that L(t) as
defined in (10) coincides directly with the number of points
from X falling within Bt, i.e. (see also Fig. 2)

L(t) = N
X

(Bt) =
∑
x∈X

1[x ∈ Bt], t ∈ R. (18)

Since X is a Poisson point process the region count N
X

(Bt)
is a Poisson distributed random variable (recall Sec. III-C). By
the identity in (18) it follows immediately that L(t) is Poisson
distributed. We emphasize the simplicity of this argument
and we highlight how our argument relates naturally to the
point process framework. In particular, no results from queuing
theory were needed as compared to the approach in [7].

Under the facilitating assumption i)†, we have now shown
that the strict-sense stationary random process L(·) has Pois-
son distributed marginals, i.e. the random variable L(t) is
Poisson distributed for any fixed t. This is quite natural since
under i)† both Y and X are Poisson point processes. In the
general case i), however, no such exceptional circumstance
holds jointly for Y and X . In the general case we have already
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Fig. 2. The region Bt ⊂ R × R+ for arbitrary t ∈ R with black bullets
representing points from X . Points falling within Bt indicate path components
which are active in the radio channel at time t, i.e. L(t) = NX(Bt). Notice
that the collection of points from X contributing jointly to both L(t) and
L(t′) are exactly those falling in the region Bt ∩Bt′ .

calculated in (12) the mean E[L(t)] by use of the law of
total expectation and Campbell’s Theorem. It is nonetheless
informative to reconsider the steps leading to (12) in the light
of the two-dimensional perspective when X is of Poisson
type. Specifically, the mean of the region count N

X
(Bt),

and hence the mean of L(t), is given by the value of the
associated intensity measure at Bt, namely as (recall the
general relationship in (4))

µ
X

(Bt) =

∫
Bt

%
X

(x)dx = λe

∫ ∞
0

pfperiod(p)dp = λeE[p?].

The above integration step is natural in the sense that is it
“dictated” by the point process framework: to get the intensity
measure just integrate the intensity function. In particular, we
did not even make use of Campbell’s Theorem as opposed to
the more involved steps leading to (12)6.

Another analytical benefit of Y and X being Poisson point
processes is that we can explicitly calculate the cumbersome
autocorrelation term E[(�2)] in (13). Since Y is a Poisson
point process, special-case use of Campbell’s Theorem yields
[25, Prop. 4.1]

E[(�2)] = E[L(t)]E[L(t′)] = (λeE[p?])
2.

Hence, under the facilitating assumption i)† we find the
autocorrelation function of L(·) to be

RL(t, t′) = E[(�1)] + E[(�2)]

= λe

∫ ∞
|∆t|

Pr(p? > ξ)dξ + (λeE[p?])
2. (19)

Notice that by evaluating (19) at ∆t = 0, one immediately
identifies the well-known property that the mean and the
variance of a Poisson distributed random variable coincide.

Example 1. Assume that ii)† holds as in [7]–[10]. We
introduce E[p?] = 1/λv with the subscript “v” abbreviating
“vanish”. Then (19) specializes to

RL(t, t′) =
λe

λv
exp

(
− λv|∆t|

)
+
(λe

λv

)2

. �

6This observation is well-aligned with the claim by Kingman in the preface
of his book [24], namely that the theory of (Poisson) point processes is more
natural and powerful in higher dimensions.

Example 2. For comparison we assume instead that all periods
in the collection {py : y ∈ Y } are uniformly distributed on
the interval [0, 2

λv
]. The mean parameter is still 1/λv but in

this case the autocorrelation function in (19) specializes to

RL(t, t′) =

λe

(λv

4
|∆t|2 − |∆t|+ 1

λv

)
1
[
|∆t| ≤ 2

λv

]
+
(λe

λv

)2

.

As intuitively expected, when the periods are uniformly dis-
tributed on the interval [0, 2

λv
], we find that the Poisson

distributed random variables L(t) and L(t′) are uncorrelated
whenever t and t′ are displaced further than 2/λv apart. �

The result in (19) was derived in [23, Sec. 5.6 (iii)] under
the facilitating special-case assumption i)†. However, the
derivation is more involved since [23, Sec. 5.6 (iii)] does not rely
on the straightforward application of Campbell’s Theorem.

D. Relaxing The General Assumptions i) and ii)

A compelling motivation for employing the special-case
assumptions i)† and ii)† is that these together lead to (quot-
ing [7]) simple mathematics. A practically relevant question
is whether these general assumptions can be relaxed while
preserving the ability to assess and comprehend the analytical
properties inherited by L(·).

From the result in (12), one may tend to think that the
relationship E[L(t)] = λeE[p?] would stay unaffected if
we relaxed i) such that Y would just be homogenous and
not stationary. Furthermore, ii) could potentially be relaxed
such that the marks were no longer identically distributed
but still sharing the same mean parameter E[p?]. Obviously,
L(·) would then no longer be strict-sense stationary as all
arguments from Appendix A would break down. However,
L(·) could potentially remain wide-sense stationary. A simple
construction inspired from Examples 1 and 2 in the previous
subsection shows that this is not the case.

Example 3. Consider drawing the periods using a threshold
procedure at the origin such that

py ∼ fperiod(p) =

{
λve−λvp if y ≥ 0,
λv
2 1[0 ≤ p ≤ 2

λv
] if y < 0.

(20)

One can then readily check via (11) and (12) that the particular
construction in (20) gives rise to a mean function depending
on time t in such a way that E[L(t)] = λe

λv
for t < 0 and

E[L(t)] =

λe

λv

(
1− e−λvt

)
+ λe

(λv

4
t2 − t+

1

λv

)
1
[
0 ≤ t ≤ 2

λv

]
for t ≥ 0 (see Fig. 3). Hence, the mean E[L(t)] is clearly
affected by the sudden change of the mark distribution as given
in (20). However, as time progresses the aftereffect of this
change in fperiod(·) becomes less and less noticeable (the birth-
death mechanism stabilizes again). �

The example-construction in (20) shows that it affects the
properties of the temporal birth-death process L(·) when the
periods are not identically distributed. The influence of (20)
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t
R

E[L(t)]

t = 0

Fig. 3. The effect of (20) upon the mean E[L(t)] from (12) as a result of
an attempt to relax the assumptions i) and ii).

on the autocorrelation function E[L(t)L(t′)] is even more
complicated than for the mean E[L(t)]. In conclusion, to
preserve analytical tractability of the birth-death process L(·),
the assumption ii) cannot be relaxed. Assumption i) can be
relaxed in the sense of replacing the term “stationary” with
“homogeneous”, and the resulting birth-death process L(·) will
sometimes remain wide-sense stationary but examples where
this is not the case can be readily constructed.

V. THE TIME-FREQUENCY CORRELATION FUNCTION

In this section our goal is to calculate and analyze the
structure of the time-frequency correlation function

RH(t, t′, f, f ′) := E[H∗(t, f)H(t′, f ′)]. (21)

This function is often considered for radio channel charac-
terization as the information it carries is useful for several
reasons [28]. Among others, the time-frequency correlation
function reveals if the time-variant channel transfer function
H(·, ·) in (2) is wide-sense stationary (in time, in frequency
or in both domains simultaneously). This knowledge is cru-
cial since in practice we typically ask for stochastic models
which indeed are wide-sense stationary, mainly to facilitate
analytical insight and to simplify our system designs. A
frequently recurring example application of the time-frequency
correlation function emerges in linear minimum mean-squared
error channel estimation (see e.g. [29] for an OFDM use
case). Wide-sense stationarity of H(·, ·) in both time and
frequency notably simplifies the design and implementation of
such channel estimators. Furthermore, wide-sense stationarity
of H(·, ·) in frequency allows for inferring on the rate of
decay of received power versus propagation delay, namely,
to infer on the channel’s power-delay profile. Power-delay
profiles are crucial to the design of modern positioning and
communication systems and such profiles are often estimated
in practice using channel sounding measurements.

Calculating the correlation function in (21) is conceptually
straightforward when the number of path components (deter-
ministic or random) remains fixed within each realization of
the channel in (2). The traditional procedure is to introduce
two separate integer-indices ` and k, one for each term in (21),
and then to pair together those path components for which
` = k. However, in the current time-variant setup we cannot
compute (21) by traditional means since the temporal birth-
death process L(·) in (2) is changing without explicit reference
to the enumeration of the underlying random quantities (path
gains and propagation delays). The overall situation and the
enumeration issue are together illustrated in Fig. 4. Hence,
with the considered class of temporal birth-death channel

time

R

delay

R+

(a)

◦

◦

◦ ◦◦

◦

◦

◦

y y+p

time

L(·)

(b)

-1
-2
-3
-4
-5

0

t t′

L(t) = 3 L(t′) = 5

Fig. 4. Line segments in (a) indicating the time instances of birth-death
transition of the random process L(·) in (b). In this particular illustration,
notice that only a single path component (thick gray line) contributes jointly
to the count L(t) = 3 and the count L(t′) = 5.

models, we necessarily need to account for the enumeration
issue.

A. Formulating a Generic Channel Transfer Function Using
the Point Process X

To compute (21) we bypass the enumeration issue by
adopting our point process perspective from Sec. IV. The basic
idea is to replace the integer-indexed sum in the traditional
expression (2) by a point process indexed sum like the one
in (10). Motivated by the previous modeling approaches in
[7]–[10] we consider here a generic multipath representation
with

H(t, f) =
∑
x∈X

w(x, t, f)Hx(t, f), (22)

where X is the two-dimensional point process defined in (9).
Our definition in (22) displays a deliberate choice, namely that
we assign {w(x, ·, ·) : x ∈ X} as window functions to “imple-
ment” the birth-death process L(·) while {Hx(·, ·) : x ∈ X}
are “per path” contributions to the overall channel transfer
function. Conditioned on each x ∈ X , the corresponding
window w(x, ·, ·)|x is considered a deterministic function
(of t and f ) whereas Hx(·, ·)|x is a random process. These
choices are indeed arbitrary (i.e. other choices could have been
made instead) but our definition in (22) intentionally allows
to restore the models in [7]–[10] and allows further to readily
assess (21).

Each window w(x, ·, ·) must have a temporal support corre-
sponding to the indicator function 1[x ∈ Bt] since from (18)
we recall how the birth-death process L(·) can be interpreted
as a “time-sliding” region count. In general, the window
functions (which could depend on frequency) serve to provide
sufficiently smooth birth-death transitions as proposed in [8]
and [9] (recall Sec. II).
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Example 4. The simplest to consider is crude “on/off” win-
dows which do not depend on frequency, namely (recall (17))

w(x, t, f) = 1[x ∈ Bt], x = (y, p) ∈ X. (23)

Example 5. As suggested in [8], the window functions can
be defined such that

w
(
(y, p), t, f

)
= sin

(
π
t− y
p

)
1
[
(y, p) ∈ Bt

]
,

leading to smooth birth-death transitions. As mentioned in [9],
the windows can also be defined using other smooth functions,
e.g. root-raised cosines with the same temporal support. �

For the “per path” component processes {Hx(·, ·)} we
assume a zero-mean condition together with mutual uncor-
relatedness:

E[Hx(t, f) |x] = 0, x ∈ X, (24)
E[H∗x(t, f)Hx̃(t′, f ′) |x, x̃] = R2(x; t, t′, f, f ′)1[x = x̃].

(25)

The random processes {Hx(·, ·)} can be defined in numerous
different ways. The following constructions are illustrative
examples which we shall also get back to later in this section.

Example 6. For the geometric-stochastic modeling approach
in [9], the random processes {Hx(·, ·)} can be defined as

Hx(t, f) = αx(t)e−j2πfτx(t), x ∈ X, (26)

with the point x serving merely as an index. In fact, with
the windows in (23) and the random processes in (26) we
restore the traditional expression in (2), only now it is indexed
differently. Thus, we use the points from X to index individual
random processes while simultaneously generating the birth-
death process L(·) using the very same points from X . �

Example 7. A frequently encountered special-case of (26) is

Hx(t, f) = αxej2πtνxe−j2πfτx , x ∈ X. (27)

This model can be constructed from the marked point process{(
x, (αx, νx, τx)

)
: x ∈ X

}
, (28)

using a mark collection {(αx, νx, τx) : x ∈ X} of i.i.d. mem-
bers indexed via the points from X . Each three-dimensional
mark designates a triplet of a path gain, a Doppler shift, and
a propagation delay, respectively. The construction in (28) is
fundamentally similar to the one in (9), only now the marks
are random vectors instead of scalar random variables. �

B. Assessing the Time-Frequency Correlation Function Using
Campbell’s Theorem

By (24) it follows readily that the generic channel trans-
fer function in (22) has zero mean. To calculate the time-
frequency correlation function we enter (22) in (21) and
proceed at first via intermediate conditioning on X (the law
of total expectation) such that

RH(t, t′, f, f ′) = E
[
E[H∗(t, f)H(t′, f ′) |X]

]
(29)

= E
[ ∑
x∈X

w∗(x, t, f)w(x, t′, f ′)R2(x; t, t′, f, f ′)
]
, (30)

where the second equality is due to the assumption in (25).
Then, by application of Campbell’s Theorem we get

RH(t, t′, f, f ′) =∫
w∗(x, t, f)w(x, t′, f ′)R2(x; t, t′, f, f ′)%

X
(x)dx. (31)

The integral expression in (31) is one of our main results which
we shall use in the following to analyze a number of special-
case scenarios where further assumptions are introduced. The
recently obtained results in [13] are centered around a similar
integral-type correlation function, but that particular channel
modeling framework did not include temporal birth-death
transitions of path components.

A simple but relevant restriction that can be invoked is when
the correlation function R2(x; t, t′, f, f ′) from (25) does not
depend on x, which is the case when x serves only as an
index (e.g. in the example in (27)). Then (31) factorizes as

RH(t, t′, f, f ′) = R1(t, t′, f, f ′)R2(t, t′, f, f ′) (32)

with

R1(t, t′, f, f ′) :=

∫
w∗(x, t, f)w(x, t′, f ′)%

X
(x)dx. (33)

The product form in (32) holds an attractive and intuitive inter-
pretation: The first term R1 reports the correlation properties
of the temporal birth-death process L(·) via the associated
window functions (a large-scale quantity). The second term
R2 reports the “per path” time-frequency correlation properties
(a small-scale quantity). Hence, if changes are made to the
window functions w(x, ·, ·) in (22) these affect the correlation
term R1 whereas changes made to the component processes
Hx(·, ·) affect the correlation term R2.

C. A Doubly Wide-Sense Stationary Special-Case Model

The class of doubly wide-sense stationary stochastic channel
models has been favored both in literature and practice ever
since Bello introduced his seminal WSSUS characterization
[28]. Bello did not assume a specific form of the time-variant
channel transfer function as we do here. Instead he treated the
overall channel transfer function H(·, ·) as a general stochastic
process in two variables, but for consistency we restrict here
our attention to the repeatedly favored multipath model in (22).

When the on/off windows from (23) are employed, the
frequency-variable dependencies disappear and the correlation
term in (33) simplifies to

R1(t, t′) =

∫
Bt∩Bt′

%
X

(x)dx = µ
X

(Bt ∩Bt′)

= E
[
N

X
(Bt ∩Bt′)

]
,

i.e. the first factor in (32) provides the expected number
of points from X contributing jointly to both H(t, ·) and
H(t′, ·), recall Fig. 2 and Fig. 4. Notice that the region count
N

X
(Bt∩Bt′) coincides with the random quantity (�1) defined

in (14) in Sec. IV-B and its expectation has already been
calculated in (15). Since the expression in (15) is a function of
∆t only, so is the correlation term R1(t, t′) = R1(∆t). If we
specialize to traditional modeling approaches where L(t) = L
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is constant within individual channel realizations, then all we
have to modify is the term R1(∆t). If L is a fixed constant
then R1(∆t) is to be replaced by L itself, whereas if L is
a random variable, then R1(∆t) is to be replaced by E[L].
However, for the temporal birth-death channels considered in
this paper the (large-scale) correlation term R1(∆t) is given by
E[N

X
(Bt∩Bt′)], i.e. the expected number of path components

contributing jointly to both H(t, ·) and H(t′, ·).
An important additional restriction to consider is when

the “per-path” correlation function in (25), apart from not
depending on x, also does not depend directly on (t, t′, f, f ′)
but only on the time and frequency differences ∆t = t′ − t
and ∆f = f ′ − f . In this case the time-frequency correlation
function in (32) specializes to

RH(∆t,∆f) = R1(∆t)R2(∆t,∆f) (34)

which overall is a function of time and frequency differences
only. Hence, the generic channel transfer function H(·, ·)
in (22) can (via suitable assumptions) become wide-sense
stationary in both time and frequency (despite the birth-death
behavior of individual path components).

Example 8. For the simplest but frequently encountered
special-case model in (27) the general conditions in (24) and
(25) are easily satisfied. We can for instance employ the
assumption that the i.i.d. vector marks are drawn from a joint
distribution such that

E[αx |νx, τx] = E[α? |ν?, τ?] = 0, x ∈ X, (35)

where we make use of a wildcard notation like in (8). The
assumption in (35) is usually justified from a default argument
of uniformly distributed initial phases. With i.i.d. marks and
(35) the condition in (25) is satisfied exactly such that

R2(x; t, t′, f, f ′) = E
[
|α?|2ej2π(∆tν?−∆fτ?)

]
= R2(∆t,∆f)

where the expectation is with respect to the joint distribution
of a typical/arbitrary vector mark (α?, ν?, τ?). �

In contrast to the special-case construction in (27), the more
general model in (26) does not straightforwardly hold the
ability to induce (double) wide-sense stationarity in (22). At
a first glance it may seem rather innocent to ask for how and
when (26) will induce wide-sense stationarity. Surprisingly,
it seems that the question is not so innocent after all. If
we make the simplistic assumption of αx(·) and τx(·) being
independent random processes (for each x ∈ X) it means that
we need to draw our conclusions via

R2(x; t, t′, f, f ′) = E[α∗x(t)αx(t′)]E
[
e−j2π(f ′τx(t′)−fτx(t))

]
.

Obviously, the random process αx(·) must be wide-sense
stationary in order to make the first expectation a function of
∆t only. Surprisingly, the only way for the second expectation
to be a function of ∆f is when the random process τx(·) has
constant realizations (and hence it does not depend on t and t′).
A simple argument for this claim can be found in Appendix B.

D. Principal Representation of H(·, ·) and Its Associated
Time-Frequency Correlation Function

The insight gained so far motivates the assumption of
window functions from (23), random but constant propaga-
tion delays, and wide-sense stationary path gain processes.
Accordingly, we introduce a tractable special-case expression
of the generic channel transfer function in (22) reading

H(t, f) =
∑
x∈X

1[x ∈ Bt]αx(t)e−j2πfτx . (36)

This choice of the “per path” processes can be seen as a natural
intermediate between (26) and (27) such that the overall model
in (36) has the ability to become doubly wide-sense stationary.
We now make use of a collection of random processes (path
gains) together with a collection of random marks (propagation
delays) with both collections being indexed via the points
from X . We assume that the marks {τx : x ∈ X} comprise
an i.i.d. collection drawn from a probability density function
fdelay(·). Conditioned on all marks, we assume that the random
processes {αx(t) : x ∈ X} all hold zero mean, are mutually
uncorrelated, and individually exhibit an autocorrelation func-
tion parameterized via the corresponding mark:

E[αx(t) |τx] = 0, x ∈ X, (37)

E[α∗x(t)αx̃(t′) |τx, τx̃] = Rα(∆t; τx)1
[
x = x̃

]
, (38)

Among other virtues, (38) allows to conveniently assign condi-
tional average power to each random process αx(·) as a func-
tion of its corresponding propagation delay τx. Notice that (37)
ensures (24) to be satisfied and furthermore that (38) ensures
(25) to be satisfied with R2(x; t, t′, f, f ′) = R2(∆t,∆f).

By repeating the previous calculations we now obtain a
time-frequency correlation function for the model in (36) with

RH(∆t,∆f) = R1(∆t)E
[
Rα(∆t; τ?)e−j2π∆fτ?

]
, (39)

where the expectation is with respect to fdelay(·), i.e. we utilize
again a wildcard notation τ? to represent a typical mark. By
(39), the time-variant channel transfer function H(·, ·) in (36)
is wide-sense stationary in both time and frequency.

To summarize this section we emphasize the tools which
enabled our novel assessment of the time-frequency correlation
function with the most general form as given in (31), and
specialized in (32), (34), and (39). In a nutshell, our key step
was to reformulate and generalize the traditional expression
(2) into the generic expression in (22). This we did in
order to circumvent the enumeration issue induced by the
traditional integer-indexing of path components. Specifically,
we reformulated (2) using the point process X which is
the same random collection we also used for generating the
temporal birth-death process L(·) in Sec. IV. Our generic
representation in (22) was then employed in direct substitute
of the traditional and widely accepted model (2) of the
channel transfer function. The inherent structure of the generic
substitute representation is the reason for it being appropriate
for analysis using the combined application of the law of total
expectation and Campbell’s Theorem.
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VI. SELECTED EXAMPLES AND SIMULATION ASPECTS

In this section we show via specific examples how key
parameters of the temporal birth-death channel model enter
explicitly in quantities which can be measured in practice,
e.g. the power-delay profile. Furthermore, depending on its
purpose, we show how the channel model can be readily
modified to incorporate fewer or more stochastic features.
Finally, we illustrate from a simulation technical point of view
the facilitating and convenient aspects of the assumptions i)†

and ii)†.

A. Power-Delay Profile Induced From A Separation Property

In Sec. V-D we did not introduce a specific choice for
the autocorrelation function Rα(·; ·) in (38). By making such
a choice and by making also explicit choices about the
probability density functions fperiod(·) and fdelay(·), we end
up with a final and specific expression for the time-frequency
correlation function in (39).

Example 9. A simple choice for the autocorrelation function
Rα(·; ·) in (38) is to assume that

E[α∗x(t)αx(t′) |τx] = Rα(∆t; τx) = σ2
α(τx)J0(2πη∆t),

where J0(·) is the zeroth-order Bessel function of the first
kind, η is a positive parameter to be specified, and σ2

α(·)
assigns conditional average power to each random process
αx(·) as a function of its corresponding propagation delay
τx. Similar assumptions (or choices) are often found in the
literature [8], [29]. The use of the Bessel function J0(·)
originates from Clarke’s seminal work [30]. Notice that we
in fact assume the correlation function to be the same for all
individual path gain processes {αx(t) : x ∈ X}, except for
an individual scaling by σ2

α(τx). With these choices the time-
frequency correlation function in (39) is seen to factorize in a
product of time and frequency separated terms, namely as

RH(∆t,∆f) = Rtime(∆t)Rfreq(∆f), (40)
Rtime(∆t) := R1(∆t)J0(2πη∆t), (41)

Rfreq(∆f) := E
[
σ2
α(τ?)e−j2π∆fτ?

]
. (42)

The product form in the right-hand side of (40) reflects the
separation property mentioned in [29]. An immediate and prac-
tically convenient consequence of the separation property in
(40) is that it notably simplifies the design of linear minimum
mean-squared error estimators of the channel transfer function
H(·, ·), e.g. for OFDM applications [29].

Notice how even (41) factorizes, namely as a product of
large-scale and small-scale fading induced correlation prop-
erties (recall also the discussion below (32) in Sec. V-B).
To further concretize (41) we could invoke assumption ii)†

as done in [7]–[10] and in Example 1 in Sec. IV-B. The
large-scale correlation term R1(∆t) would then exhibit an
exponential decay. Specifically, we would have

Rtime(∆t) =
λe

λv
exp(−λv|∆t|)J0(2πη∆t).

Exponentially decaying correlation functions for large-scale
fading processes (shadowing) have been suggested in the

literature several times, see e.g. [31] for one of the earliest
occurrences. We have selected the Bessel function J0(·) as
the small-scale correlation structure only to provide a specific
and popular example. Obviously, we could have made any
other selection for the normalized correlation function and
substituted it directly into (41) instead of J0(·).

The expression in (42) holds important information as well.
Specifically, as we can immediately identify (42) as the Fourier
transform

Rfreq(∆f) = F{σ2
α(·)fdelay(·)}(∆f)

we find that the power-delay profile of the channel is

Pdelay(τ) := Rtime(0)F{Rfreq(·)}(τ) =
λe

λv
σ2
α(τ)fdelay(τ).

This function characterizes the dispersion and rate of decay of
received power versus propagation delay. Knowledge of the
power-delay profile (sometimes also called the delay-power
spectrum) is crucial for localization aspects and wireless com-
munications in general. Motivated by empirical observations,
a standard assumption is that Pdelay(·) exhibits an overall
exponential decay. In [8], [9] such an exponential decay is
maintained by appropriate selections of the conditional power
assigning function σ2

α(·) and the probability density function
fdelay(·).

To conclude this example we stress the importance of
being able to calculate and analytically assess the functions
Rtime(·), Rfreq(·), Pdelay(·), etc. The importance lies in the fact
that key parameters of the channel model, such as λe and λv,
enter explicitly in these practically measurable quantities. This
offers a potential avenue for new and rigorously motivated
parameter estimators and enables the temporal birth-death
channel model to be utilized as a tool for measurement
prediction. Such capabilities stand in notable contrast to the
limitations of “pure” simulation models, where we usually do
not know if different model parameters interact and where
questions regarding stationarity properties most often remain
inconclusive. �

At a first glance it may seem quite restrictive that we, in
the above example, assumed a shared normalized correlation
function for all individual path gains {αx(t) : x ∈ X}. A
straightforward way to generalize this is to introduce a second
collection of i.i.d. marks. We illustrate this idea in the sequel.

B. Modeling Flexibility

The forthcoming example illustrates an important attribute
of the point process perspective: Once the underlying point
process X in (9) is in place, we can in a natural and straight-
forward manner change the modeling details of the channel
transfer function. Specifically, we can swap in dimensionality
by attaching fewer or more marks to each x ∈ X depending
on the number of features we wish the random process H(·, ·)
to exhibit. Yet, the notation is not noticeably affected by such
changes and the crucial details in the derivation of the resulting
time-frequency correlation function (Sec. V-B) stay virtually
unaffected. This attractive fact stands in notable contrast to
a variety of model extensions proposed in the literature.
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Certain well-known model extensions appear essentially to
lack structure or to suffer from the absence of a profound
theoretical modeling framework. Examples include Spencer’s
extension [6] of Saleh and Valenzuela’s model [5] together
with the ultra-wideband model [32] which is fundamentally
based on [5] as well.

To extend the temporal birth-death channel model in (36)
we can for example utilize the marked point process{(

x, (τx, θx)
)

: x ∈ X
}
. (43)

We still make use of a separate collection of random processes
(path gains) but now the collection of random marks consists
of vectors instead of scalars. Conceptually we are attaching
two-dimensional marks (τx, θx) and the collection in (43) can
of course be seen as a point process in a four-dimensional
space (which may sometimes be useful, but not always). The
newly added collection {θx : x ∈ X} models azimuth (inci-
dence) directions for the individual path components as also
addressed in e.g. [6] and [10]. Each θx is drawn independently
from a probability density function fazimuth(·) with support set
[−π, π). The assumption in (38) is then replaced by

E[α∗x(t)αx(t′) |τx, θx] = σ2
α(τx)Rα(∆t; θx) (44)

such that each path gain αx(·) holds an individual normal-
ized autocorrelation function Rα( · ; θx) parameterized by θx.
Based on (44), we now find that the resulting time-frequency
correlation function takes the form

RH(∆t,∆f) =

R1(∆t)E[Rα(∆t; θ?)]E
[
σ2
α(τ?)e−j2π∆fτ?

]
, (45)

where the first expectation is with respect to fazimuth(·) and the
second with respect to fdelay(·).

Example 10. Conditioned on the two marks (τx, θx), we
could for instance generate each path gain process αx(·) in
terms of azimuth-dispersed sub-components such that

αx(t) :=

√
σ2
α(τx)

M

M∑
m=1

Am exp
(
j2πη cos(ϕm)t

)
where {Am} i.i.d.∼ CN (0, 1) and {ϕm} i.i.d.∼ VM(θx, κ). Here
we use CN and VM to denote the complex normal distribution
and the von Mises distribution, respectively. Furthermore,
(M,η, κ) are fixed parameters to be set according to the partic-
ular context (environment, physical speeds, carrier wavelength,
etc.) but they are not of our main concern at present.

It follows that αx(t)|(τx, θx) ∼ CN (0, σ2
α(τx)), and with

some minor calculations we get (recall (44))

Rα(∆t; θx) = E[exp(j2πη cos(ϕ?)∆t) |θx] (46)

=
I0(
√
κ2 − (2πη∆t)2 + j4πκη∆t cos(θx) )

I0(κ)
,

where in (46) the expectation is with respect to an arbitrary
ϕ? drawn from the von Mises density

fVM(ϕ; θx, κ) =
exp(κ cos(ϕ− θx))

2πI0(κ)
, ϕ ∈ [−π, π),

and I0(·) denotes the zeroth-order modified Bessel function
of the first kind. We refer to [33] for more details on the
von Mises distribution and the properties of the resulting cor-
relation function. To calculate the time-frequency correlation
function in (45) we need to average (46) with respect to the
density fazimuth(·), i.e.

E[Rα(∆t; θx)] = E
[
E[exp(j2πη cos(ϕ?)∆t) |θx]

]
=

∫∫
fazimuth(θ)fVM(ϕ; θ, κ)ej2πη cos(ϕ)∆tdϕdθ, (47)

where the region of integration is [−π, π)× [−π, π). The ex-
pression in (47) is difficult to assess except for certain special
cases of the density fazimuth(·). However, if we employ the
assumption that fazimuth(·) is the uniform density on [−π, π),
then (47) simplifies to the standard expression J0(2πη∆t)
from Example 9. To see this, simply swap the order of
integration in (47) and notice that

∫
fVM(ϕ; θ, κ)dθ = 1

since the individual roles of the “variables” ϕ and θ are
interchangeable in the von Mises density. Hence, from the
very beginning we could have made the default selection of the
Bessel function J0(2πη∆t) for the shared correlation function
in (38). However, we could also have employed individual
correlation functions as just shown. Yet, with the particular
choices made the time-frequency correlation function in (45)
coincide with the one from Example 9. �

The above example illustrates a particular choice and recipe
for how each path gain process αx(·) can be parameterized and
generated in a computer simulation. In the following we high-
light a few selected details on tractable simulation procedures
for the underlying birth-death process L(·). In addition to
its analytical advantages, the point process perspective proves
itself also particularly valuable for simulation purposes.

C. Simulation Aspects Regarding the Point Process X and the
Temporal Birth-Death Process L(·)

The approaches in [7]–[10] rely exclusively on the assump-
tions i)† and ii)†. The motivation for using these assumptions
is that they together endow the resulting channel model
with simple mathematics [7]. In fact, i)† and ii)† are also
particularly convenient for computer simulation, especially due
to our theoretical knowledge from Sec. IV regarding the point
process X .

The contribution in [7] focuses on modeling and exper-
imental investigations and does not cover aspects related
to computer simulation. Both [8] and [9] mention a few
simulation aspects with example visualizations of generated
channel impulse responses. However, exact details or guide-
lines are not provided. In particular, the enumeration issue
related to the birth-death transitions of L(·) is not mentioned.
In contrast, [10] proposes a number of heuristic guidelines
for controlling, initializing and time-discretizing the temporal
birth-death mechanism. For instance, the random process L(·)
is always initialized such that no path components are present.
Hence, if the origin is selected to be the arbitrary starting time,
then [10] systematically assigns L(0) = 0. The motivation for
this is (quoting [10, Sec. III-C]): To avoid the problem of defining
a specific starting state. It is then suggested to initially let
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the process run long enough to yield the “correct” value for
E[L(t)]. Based on ii)†, a value is then given for the minimum
forerun needed to yield an error of at most 1% (in a certain
sense). The actual simulation should subsequently take place
after this forerun7.

With our theoretical knowledge from Sec. IV, approximate
simulation guidelines like the example mentioned above can
be entirely circumvented. In particular, rather than defining a
starting state, L(0) should be drawn from a Poisson distribu-
tion instead of being systematically assigned to zero. Condi-
tioned on L(0), the task is then to calculate the conditional
joint distribution of emergence times and lifetimes of those
L(0) path components which necessarily are present in the
channel at initialization time t = 0. Obviously, all L(0) path
components must have emerged before time t = 0.

Example 11. Our goal in this example is to show the facilitat-
ing aspects of i)† by itself. Accordingly, we combine i)† with
ii). In the following we show how to initialize the birth-death
process L(·) using emergence times and lifetimes drawn from
the equilibrium distribution.

Initially, recall Fig. 2 and shift the region Bt to the origin.
Since X as defined in (9) is a Poisson point process we have
that L(0) = N

X
(B0) is a Poisson distributed random variable

with mean µ
X

(B0) = λeE[p?]. Hence, we start by drawing the
non-negative integer L(0). By the second item of Definition 2
in Sec. III, we should then draw the L(0) points X ∩ B0

mutually independent and identically distributed according to

fB0(x) =
%

X
(x)

µ
X

(B0)
1[x ∈ B0] =

fperiod(p)

E[p?]
1[(y, p) ∈ B0],

where the intensity function %
X

(·) is taken from (16). Due to
the shape of the unbounded triangular region B0, it is most
convenient to draw each two-dimensional point x = (y, p)
by a two-step procedure. Marginalizing fB0

(·) with respect to
each of y and p yields respectively

fy(y) :=

∫
fB0

(y, p)dp (48)

=
1[y ≤ 0]

E[p?]

∫ ∞
−y
fperiod(p)dp =

Pr(p? > −y)

E[p?]
1[y ≤ 0],

and

fp(p) :=

∫
fB0(y, p)dy (49)

=
fperiod(p)

E[p?]

∫ 0

−p
1dy =

pfperiod(p)

E[p?]
.

Both fy(·) and fp(·) integrate to unity. The corresponding
conditional distributions read

fy|p(y|p) =
fB0

(y, p)

fp(p)
=

1

p
1[y ∈ (−p, 0)] (50)

7This procedure resembles the well-known burn-in periods often used in
Markov Chain Monte Carlo (MCMC) simulations [25, Sec. 8.1.2]. Such a burn-
in is employed to ensure that the marginal distribution of the Markov chain’s
current state is sufficiently close to its (unknown) equilibrium distribution for
all practical purposes.

and

fp|y(p|y) =
fB0

(y, p)

fy(y)
=

fperiod(p)

Pr(p? > −y)
1[p > −y], (51)

which also both integrate to unity. Now, to generate a point
x = (y, p), we can first generate the emergence time y
according to fy(·) in (48) and then generate the corresponding8

period p according to fp|y(·|y) in (51). Alternatively, we
can first generate the period via (49) and then generate the
corresponding emergence time via (50). The approach most
preferable for implementation depends on our choice of the
density fperiod(·). In essence, to initialize the temporal birth-
death process L(·) in equilibrium at time t = 0 we do as
follows:

1. Draw L(0) = N
X

(B0) from a Poisson distribution with
mean λeE[p?].

2. Draw the points X ∩B0 i.i.d. according to (48) and (51)
(alternatively, use (49) and (50)).

With these two steps the temporal birth-death process L(·)
exhibits its exact theoretical properties at initialization time
t = 0 without imitating a forerun from the infinite past. �

The example above illustrates in a convincing manner the
benefits and the potential of the point process perspective.
In contrast to the approximate and heuristic initialization
guideline in [10], the channel can now be initialized exactly (in
equilibrium) by means of a “mechanic procedure” dictated by
the properties of the Poisson point process X (Definition 2
in Sec. III). Simulation aspects deduced specifically from
assumption ii)† can be found in [34].

VII. CONCLUSION

The theoretical framework of spatial point processes and its
powerful tools, like Campbell’s Theorem, comprise a natural
environment for the engineering treatment of various stochas-
tic radio channel models. Our analysis of the class of temporal
birth-death channel models, governed by the assumptions i)
and ii) in Sec. I, supports this conclusion and the usefulness
of Campbell’s Theorem has been demonstrated repeatedly.
Overall, the proposed point process perspective is analytically
beneficial due to its flexibilities with respect to dimensionality
swapping and its ability to circumvent enumeration issues
arising from the use of integer-indexed path components
in traditional channel modeling approaches. Specifically, the
key technique we employed consisted in replacing certain
integer-indexed sums by equivalent expressions indexed by
points from spatial point processes. In essence, this allows
for keeping track of individual path components by use of
the same stochastic mechanism which also generates the
temporal birth-death behavior of the channel. In addition to its
analytical advantages, the point process perspective has proven
itself particularly valuable for simulation purposes as well. A
complete and categorized overview of our findings is given in
Fig. 5.

8In this construction y and p are obviously dependent since we have
conditioned on the fact that exactly L(0) path components are present at
time t = 0. To the contrary, the periods of those path components to enter in
the future are to be drawn independently of their emergence times.
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i) + ii)

i)† ii)†

Sec. IV-A Sec. IV-B Sec. V Sec. VI

L(·) strict-sense stationary

Example 9X ∼ PoissonPP

Sec. IV-C

Example 11

Example 1

Contributions
[7]-[10]

Fig. 5. Overview of the present contribution in the form of a Venn-diagram.
Notice that we have not indicated Sec. IV-D anywhere in the figure as this
paragraph attempts to relax the assumptions i) and ii) displayed in terms of
the rectangular box.

In Sec. IV we have shown that the temporal birth-death
process L(·) is strict-sense stationary. The mean of L(·) does
not depend on the exact shape of the probability density
function induced via ii), only the its first-order moment mat-
ters. However, the autocorrelation function of L(·) is directly
affected via its shape. Finally, we indicated in Sec. IV the
crucial roles of i) and ii) in that relaxation attempts in general
turn L(·) into a non-stationary random process.

We derived in Sec. V an integral expression of the channel’s
time-frequency correlation function. To the best of our knowl-
edge this general expression has not appeared elsewhere in the
channel modeling literature. Under simplifying assumptions
the time-frequency correlation function is comprised by the
product of a large-scale and a small-scale term and we have
shown that the channel transfer function can become wide-
sense stationary in both time and frequency (despite the
channel’s temporal birth-death behavior).

We have exemplified in Sec. VI the paramount ability to
explicitly calculate the time-frequency correlation function.
Several key parameters of the birth-death channel model
enter in practically measurable quantities such as temporal
correlation functions and the power-delay profile. Immediate
practical potentials are that new/novel parameter estimation
procedures can be rigorously motivated and that the class of
temporal birth-death channel models can as well be used as
a tool for measurement prediction (as compared to a model
class useful merely for simulation purposes).

APPENDIX A
STRICT-SENSE STATIONARITY OF THE TEMPORAL

BIRTH-DEATH PROCESS L(·)
Proposition. As a consequence of i) and ii), the random
process L(·) defined in (10) is strict-sense stationary.

Proof: To see that L(·) is strict-sense stationary we have
to show (for any fixed time shift s ∈ R and for any k ∈ N)
that

Pr
(
L(t1 + s) ≤ n1, . . . , L(tk + s) ≤ nk

)
(52)

does not depend on our choice of s. However, the common
time shift in (52) corresponds in fact to nothing but a transla-
tion of the point process Y since by the definition of L(t) in

(10) we have

L(ti + s) =
∑
y∈Y

1[y ≤ ti + s]1[y + py > ti + s]

=
∑
ỹ∈Ỹ

1
[
ỹ ≤ ti, ỹ + pỹ+s > ti

]
, i = 1, . . . , k,

where Ỹ := Y − s is the random collection {y − s : y ∈ Y }
of shifted points. Indeed, for any fixed s ∈ R, the shifted
collection Ỹ is a stationary point process on the entire real
line with the same statistical properties as Y . Additionally, the
marks/periods are drawn i.i.d. irrespectively of the underlying
point pattern. From this we now conclude that(

L(t1 + s), . . . , L(tk + s)
)
∼
(
L(t1), . . . , L(tk)

)
.

That is, (52) does not depend on s and so the random process
L(·) defined in (10) is strict-sense stationary.

APPENDIX B
ON CONDITIONS FOR WIDE-SENSE STATIONARITY

Proposition. Let τ(·) be real-valued random process for
which the product-moment E[τ(t)τ(t′)] exists for all t, t′ ∈ R.
Then the function

g(t, t′, f, f ′) := E
[
e−j2π(f ′τ(t′)−fτ(t))

]
(53)

depends at most on ∆f = f ′ − f only if τ(·) is a random
process with constant realizations.

Proof: Observe that the expectation in (53) relates directly
to the characteristic function (or the moment generating func-
tion) of the bivariate random variable (X,Y ) =

(
τ(t), τ(t′)

)
.

Consider for simplicity the moment generating function

M
XY

(f1, f2) := E
[
ef1X+f2Y

]
, (54)

which relates to the characteristic function C
XY

(·, ·) by eval-
uating (54) at (jf1, jf2). Moreover, it is readily seen that
we directly obtain (53) by evaluating (54) at (j2πf,−j2πf ′).
Requiring (53) to be a function of ∆f essentially means that
we require M

XY
(f1, f2) = M(f1 + f2), for some function

M(·). Then by using the fact that (54) is a moment generating
function it follows for all n,m ∈ N0 that

∂n

∂fn1

∂m

∂fm2
M

XY
(f1, f2)

∣∣∣
(0,0)

= E[XnY m] = M (n+m)(0),

where M (k)(·) denotes the k’th order derivative of M(·).
Hence, for first- and second-order properties of X and Y we
find that E[X] = E[Y ] and E[X2] = E[XY ] = E[Y 2], which
means that the correlation coefficient ρ

XY
between X and Y

is such that |ρ
XY
| = 1. Accordingly, X and Y are related via

some affine transform Y = aX + b but only a = 1 and b = 0
together fulfills the first- and second-order requirements for
X and Y . This completes the proof since these two random
variables were arbitrary samples from the random process τ(·).
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