
Aalborg Universitet

Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network
Coding

Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

Published in:
European Wireless 2014; 20th European Wireless Conference; Proceedings of

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Hundebøll, M., Pahlevani, P., Roetter, D. E. L., & Fitzek, F. (2014). Throughput vs. Delay in Lossy Wireless
Mesh Networks with Random Linear Network Coding. In European Wireless 2014; 20th European Wireless
Conference; Proceedings of (pp. 1-6). IEEE (Institute of Electrical and Electronics Engineers).
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6843201

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/ced1a3a6-4b8a-4d46-a93b-5a3e38f48080
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6843201

Downloaded from vbn.aau.dk on: August 23, 2025

Throughput vs. Delay in Lossy Wireless Mesh

Networks with Random Linear Network Coding

Martin Hundebøll, Peyman Pahlevani, Daniel E. Lucani, Frank H.P. Fitzek

Department of Electronic Systems

Aalborg University, Denmark

Email: {mhu,pep,del,ff}@es.aau.dk

Abstract—This work proposes a new protocol applying on–
the–fly random linear network coding in wireless mesh net-
works. The protocol provides increased reliability, low delay,
and high throughput to the upper layers, while being oblivious
to their specific requirements. This seemingly conflicting goals
are achieved by design, using an on–the–fly network coding
strategy. Our protocol also exploits relay nodes to increase
the overall performance of individual links. Since our protocol
naturally masks random packet losses from the upper layers, it
makes it particularly suitable for enhancing TCP’s performance
in wireless mesh networks, where packet losses are typically
interpreted as a sign of congestion by TCP’s congestion control
algorithms, thus crippling TCP’s throughput. To investigate the
gains and downsides of our protocol, we implement it as a
configurable proof-of-concept application, which is deployed and
evaluated in a real test bed with Raspberry Pi devices. We show
that order of magnitude gains in throughput over plain TCP are
possible with moderate losses and up to two fold improvement
in per packet delay in our results.

I. INTRODUCTION

Enhancing performance of wireless mesh networks has been

an important research area due to the potential to extend

coverage, adapt to changes in topology by using a distributed

mechanism, and the reduced infrastructure required to support

it. However, it has also brought a series of challenges to guar-

antee reliability, high throughput, and low delay for packets

routed through the system. This is particularly important if

we consider that de facto standards, such as TCP, perform

badly on wireless networks due to the presence of random

packet losses. The reason is that TCP will interpret these as

a sign of congestion and thus back off [1]–[3]. This back off

mechanism is quite aggressive, rendering TCP almost unusable

for moderate to high end-to-end packet losses, i.e, above

10%. Several approaches have been proposed to improve the

reliability of the lossy links, e.g., [4]–[7].

In recent years, network coding has been proven to be

pivotal in addressing the performance problems of TCP in

networks with random packet losses [8]–[10]. Network coding

focuses on transmitting linear combinations of data packets

that can be recoded at intermediate nodes instead of simply

forwarding data packets. In particular, Random Linear Net-

work Coding (RLNC), provides a distributed and efficient

approach to create coded packets by choosing the coefficients

of the linear combinations of blocks of packets uniformly at

random from the elements of a finite field. From a practical

perspective, one of the primary benefits of network coding

is its rate less property and its ability to provide reliability

Fig. 1. A first step towards multipath routing is segment-wise multipath,
where each hop benefits from multiple links.

with only little overhead from signaling and coordination,

thus reducing the costs of reliability. In [11], it is proposed

to integrate RLNC in the TCP stack using an online cod-

ing strategy, and the approach is evaluated with respect to

throughput in [12]. However, these solutions have been tailored

specifically to TCP and not compatible with other approaches.

One of our goals is to provide a reliable layer that can be used

by a variety of protocols, including TCP.

Another key goal of our work is to provide increased

performance even in the presence of highly lossy links along

the communication path. To achieve this, we are inspired by

the work in [13], which proposed a scheme for utilizing over-

hearing in off-path nodes (called helpers) in a mesh network to

improve performance by reducing the number of transmissions

in the system. Figure 1 illustrates how a multi-hop path in a

wireless mesh network can include neighbors as part of the

path, thus forming a path corridor, composed of small three-

node multipath elements. RLNC removes the need for packet

scheduling, as the forwarding node (the encoder) transmits

linear combinations of packets, from which the helper node

can create new independent combinations and help the next-

hop (the decoder) to decode the received packets. The work

in [13] presents how link quality estimates can be used to

estimate how many packets the encoder and helper should

transmit, and when the helper should step in.

In the following work we enhance the ideas presented

in [13] by (i) adding a minimum of signalling between the

nodes to handle a continuing flow of packets, (ii) leveraging

an on-the-fly coding strategy to maintain low delay for packet

transmissions, and (iii) providing and implementation and

demonstration in real systems. Our protocol is described in

detail in Section II, while the implementation of our proof-of-

concept in Raspberry devices and setup are described in Sec-

tion III and Section IV, respectively. We provide extensive

measurement results transporting both UDP and TCP traffic

over our protocol and comparing it with plain implementations

of UDP and TCP under a variety of network conditions

in Section V. Our results show that order of magnitude gains

over plain TCP are possible even for moderate packet losses

and without trying to adapt specifically to TCP behavior as

previous work focused on. Finally, we conclude on the results

in Section VI.

II. PROTOCOL DESCRIPTION

The Fast, Reliable, And Network Coded (FRANC) protocol

is composed from different building blocks. The raw encoding,

recoding, and decoding is handled by the Kodo framework

[14], the budgets used by the encoder and helper nodes are

derived from the PlayNCool algorithms [13], while the simple

managing of coding blocks is the primary task for FRANC.

A. Budgets

The core element of FRANC is the utilization of the PlayN-

Cool algorithms from [13]. The algorithms estimate, based

on the error probabilities, the number of encoded symbols to

transmit in order for the decoder to receive enough symbols to

decode. By including a helper node as illustrated in Figure 2

in the system, the transmissions needed to decode a block can

be reduced, depending on the given error probabilities.

The error probabilities needed to derive the estimate, can

be extracted from the data-link layer. Implementations, such

as the Minstrel rate control system, or the B.A.T.M.A.N. and

OLSR mesh routing protocols, all maintain estimates of the

error probabilities towards neighbors in the network.

Fig. 2. The PayNCool budgets are based on three link metrics (e1, e2, e3)
describing the error probability of each link.

B. Parameters

FRANC is tuned by a set of parameters, with field size, block

size, symbol size, encoder timeout, and budget overshoot being

the most significant ones. We explain these parameters in the

following:

1) Field Size: For low computational complexity when en-

coding/decoding symbols, binary field size should be chosen.

A field size of 28 reduces the probability of generating linear

dependent encoded symbols, at the cost of more overhead and

higher computational complexity when encoding/decoding.

2) Block Size: The block size influences the length of

the Kodo header, the computational complexity for encod-

ing/decoding, and the overall cost of protocol signaling. It

should be selected as large as possible with respect to the

available MTU on the wireless link.

3) Symbol Size: The symbol size, together with the block

size, determines the resulting packet size, which includes room

for the encoded symbol, the Kodo header, and the FRANC

header as illustrated in Figure 3.

Fig. 3. Structure of encoded packets in FRANC. First a FRANC header
identifying the ENC type descibed below, followed by the encoded symbol
generated with Kodo, and finally the Kodo header which contains the encoding
coefficients.

4) Encoder Timeout: This controls the time the encoder

should wait for an acknowledgement from the decoder before

sending additional encoded packets, similar to the SIFS in the

IEEE 802.11 standards [15].

5) Budget Overshoot: The overshoot parameter adds a

fixed redundancy ratio to the encoder budgets, to reduce the

impact of variance in the estimated error probabilities. A high

overshoot ratio (e.g. 1.10), reduces the number of encoder

timeouts at the cost of more linear dependent packets.

C. Packet Types

One of the valuable characteristics of RLNC is the little

need for organization between nodes in wireless networks, and

FRANC benefits from this by using only two packet types and

not more than three states.

The primary packet type is ENC, which is sent by the

encoder/recoder, and carries encoded symbols generated by

Kodo. After receiving enough encoded packets to either par-

tially or fully decode a block, the decoder acknowledges this

by sending an ACK packet. These contain feedback from

the decoder including current rank and a bitmap of decoded

symbols.

The helper node overhears both ENC and ACK packets from

the encoder and decoder, respectively, and sends recoded ENC

packets according to the behaviour described by PlayNCool in

[13]. Every packet sent with FRANC has a header with a type

ID and a block ID.

D. Protocol States

The encoder resides in either of the three states illustrated

in Figure 4: ENC, WAIT, and IDLE. When in the former state,

the encoder increases its budget for every packet added to the

block, and spends it again by sending encoded packets, after

which the state is changed to WAIT. In this, the encoder waits

for the configured timeout, and if no ACK packet is received,

the budget is incremented and spent, similar to when a symbol

is added in the ENC state.

WAIT timeout

IDLE

dec (partial) complete

ENC

new symbol

new symbol

budget spent

dec (partial) complete

Fig. 4. Possible states and transitions of the encoder.

When receiving an ACK packet, the encoder compares the

included rank with number of added symbols. If the decoder

rank is less than the number of added symbols, nothing is

changed. If the rank is equal, and the number of added symbols

is less than the block size, the state changes to IDLE. When

the decoder rank equals the block size, the encoder increments

the block ID by one, and the state changes to IDLE. When

being in IDLE, and new symbols are added to the encoder,

the state changes to ENC.

The decoder is simply adding packets as they arrive and

sends ACKs whenever partially or fully decoded. In case of

the latter, the block count is incremented by one.

The helper can be in one of the two states illustrated in

Figure 5: IDLE or ENC. When in IDLE, the helper is adding

overheard symbols to its recoder, but not sending recoded

packets. When the number of added symbols exceeds the

threshold determined by PlayNCool, the state changes to ENC,

and the budget is increased and spent for every added symbol.

Whenever the maximum budget is spent, or a packet with an

new block ID is received, the state changes to IDLE.

IDLE ENC

threshold exceeded

max budget spent

new block received

Fig. 5. Possible states and transitions of the helper.

III. IMPLEMENTATION

The implementation of FRANC aims at providing a proof-

of-concept reference, as well as the means to evaluate and

improve the protocol in the test setup described Section IV.

It is built with the Netmix Networking Layers [16], and uses

the Kodo network coding software library from [14].

To allow the use of Kodo and to support maximum flexi-

bility, the implementation is built as a user space application

using raw Ethernet sockets on the wireless links. To avoid the

overhead of generating and processing data on the same device

as the encoding and decoding takes place, the implementation

uses a client application on a separate device to generate and

deliver data. This setup is illustrated in Figure 6.

Fig. 6. The flow of data from the generating device, through the encoder,
(and possibly helper), decoder, to the destination device, where it is delivered.

When testing unreliable communication, i.e. no feedback

or reliability mechanism at network or application layer, a

similar user space application is used to introduce the losses.

As illustrated in Figure 7, this simply reads data from the

client source and forwards it as raw Ethernet frames to the

next-hop, from where it is forwarded to the destination client

and delivered.

Both the encoding/decoding and the forwarding applications

support two-way traffic flows. They can be configured to

introduce synthetic packet losses with different probabilities

Fig. 7. The flow of data from the generating source device, through the
forwarding nodes, to the delivering destination device.

for different devices. The client applications on the source and

destination devices uses a virtual network interface to support

both TCP/IP and UDP/IP traffic from any regular user space

application.

IV. TEST SETUP

The test setup consists of a laptop to generate/deliver data,

and three Raspberry Pi (RPi) devices equipped with USB Wifi

dongles as described in [17]. Tests are performed by running

the nuttcp network benchmarking tool [18] in UDP or TCP

mode, depending on the test case. Both the nuttcp server

and client is executed on the laptop, and iptables is used

to force packets to be delivered to the virtual interfaces instead

of the loopback interface. This approach, as illustrated in

Figure 8, eliminates the need for clock synchronization when

measuring end-to-end delays, since the sender and receiver are

referencing the same clock.

Due to the computational overhead of doing encod-

ing/decoding in user space, and the limited CPU resources on

the RPi devices, the maximum rate of the wireless network

is limited to 12 Mbps, making the tests bound by link speed

instead of CPU resources.

Fig. 8. Simplified network/software stacks for each device in the test setup.

The data flow in Figure 8 originates from the nuttcp client

and enters the virtual tun1 interface, where it is read by the

left side client application. Data from the virtual interface is

tunneled through a TCP connection to the encoder/decoder

application on the left side RPi, where it is added to the block

in the encoder, and transmitted as encoded symbols in raw

Ethernet packets to the right side RPi. Once decoded, the data

is again tunneled to the right side client application on the

laptop, where it is written to the virtual tun2 interface and

thus received by the nuttcp server. The wireless interface

on the helper device uses promiscuous mode to overhear

packets from the to encoding/decoding devices, which enables

the use of unicast packets with rate adaptation and link

level acknowledgements. TCP acknowledgements from the

nuttcp server travels the reverse direction.

A. Tests

All tests are conducted with first an unreliable link, then

with FRANC without a helper, and finally with FRANC with

a helping node. To minimize the impact of changes in the

surrounding wireless networks, each test runs for 20 seconds

and is repeated ten times in an interleaved fashion for every

parameter configuration. The following values are selected for

the static parameters:

• Field Size: Binary

• Block Size: 150 symbols

• Symbols Size: 1450 bytes

• Timeout: 20 ms

• Overshoot: 5%

Three kinds of tests are conducted:

1) UDP throughput measurements for varying e3: The

error probability e3 is increased in steps of 10 percentage

points, while the two other error probabilities (e1, e2) grows

accordingly by 5 percentage points. The offered end-to-end

load on the system is 10 Mbps, which is enough to congest

the wireless link.

2) UDP rates for changing e1 and e2: To evaluate the

performance of FRANC with different values of e1 and e2,

UDP tests are conducted with e3 varying from 10% to 90%

in steps of 10. Each sweep is tested for three sets of (e1,e2):

(10%, 50%), (30%,3%), and (50%,10%).

3) TCP delays and throughputs for varying e3: While UDP

traffic is suitable for measuring raw performance, TCP traffic

is the most common type of traffic, and should thus be tested

as well. To evaluate the performance of FRANC and TCP

flows, tests are conducted for varying errors between 0% and

20%. Errors probabilities above 20% makes TCP practically

unusable. cubic is used as congestion avoidance algorithm,

as this is the default on linux systems.

V. RESULTS

The following results show an initial picture of the potential

of FRANC with respect to the performance of plain UDP flows

and the more complex TCP flows.

A. UDP Throughput and Transmissions

To evaluate the cost of introducing reliability for the wire-

less link, the throughput is measured for FRANC vs. a simple

UDP flow, where dropped packets are ignored.

Since the unreliable link does no attempt to recover lost

packets, it gives the upper bound of the link. On average,

the throughput of FRANC without a helper is 83% of the

unreliable link. With the helper enabled, the performance is

105% of the unreliable link, with a clear trend of improvement

as e3 increases.

The number of transmission used by FRANC to successfully

decode one block is shown in Figure 10. The results show that

a for increasing error probabilities on e3, the helper reduces the

total number of transmissions, which increases the throughput

as seen in Figure 9, and is beneficial for other nodes in the

network, who can use the freed airtime.

0 10 30 40 50 60 70 80 90
Packet Loss Rate (e3) [%]

0

1

2

3

4

5

6

7

8

9

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

args method

RLNC w/ Helper
RLNC w/o Helper
Unreliable

Fig. 9. Throughput as measured on a single hop wireless link with varying
synthetic losses.

0 10 30 40 50 60 70 80 90
Packet Loss Rate (e3) [%]

0

200

400

600

800

1000

1200

1400

1600

1800

T
ra

n
sm

it
te

d
 P

a
ck

e
ts

 [
#

]

Helper

Encoder w/ Helper

Encoder w/o Helper

Fig. 10. Number of transmissions per block from encoder needed to
successfully decode.

B. Helper Placement

The influence of the helper node is evaluated by changing

the error probabilities for e1 and e2. Figure 11 shows the

UDP throughput for three sets of e1 and e2 for a range of

e3 error probabilities, as well as the corresponding throughput

for FRANC without a helper and the unreliable link.

As expected, the throughput of FRANC without a helper

is on average 82% of the unreliable throughput. With the

helper enabled, there is a clear improvement as e3 increases.

The best helper performance is seen with symmetric e1 and

e2, due to the slightly better combined link quality (49% vs.

45%), and the higher number of encoder timeouts, which is

shown in Figure 12. The increased number of timeouts in the

asymmetric cases, suggests that the PayNCool budgets have

room for improvement in the corner cases.

C. TCP Throughput and Delay

With zero losses, FRANC performs similar to the unreliable

link, when the link is not congested. Figure 13 shows that

FRANC is suffering of high delays and limited throughput

when the offered load exceeds 5000 kbps. This is due to

a severe case of bufferbloat in the chain of nodes, where

the encoder device is reading from the client application

10 20 30 40 50 60 70 80 90
Packet Loss Rate (e3) [%]

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Helper (e1: 10, e2: 50)

Helper (e1: 30, e2: 30)

Helper (e1: 50, e2: 10)

RLNC w/o Helper

Unreliable

Fig. 11. Throughput for varying error probabilities for e3 and three different
sets of (e1, e2).

10 20 30 40 50 60 70 80 90
Packet Loss Rate (e3) [%]

0

5

10

15

20

25

30

T
im

e
o
u
ts

 [
#

]

Helper (e1: 10, e2: 50)

Helper (e1: 30, e2: 30)

Helper (e1: 50, e2: 10)

Fig. 12. Timeouts per block for varying error probabilities for e3 and three
sets sets of (e1, e2).

connection in bursts whenever af block is acknowledged. For

the unreliable case, the throughput is limited to 7000 kbps,

which is close the maximum UDP throughput.

When increasing the error probability of e3 to 10%, TCP

without FRANC misinterprets this as congestion, and backs off

0 2000 4000 6000 8000 10000
Offered Load [kbps]

0

500

1000

1500

2000

2500

D
e
la

y
 [

m
s]

0

1000

2000

3000

4000

5000

6000

7000

8000

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

RLNC w/ Helper delay

RLNC w/o Helper delay

Unreliable delay

RLNC w/ Helper rate

RLNC w/o Helper rate

Unreliable rate

Fig. 13. Delay and throughput for a TCP connection on a wireless link with
no error probability.

0 2000 4000 6000 8000 10000
Offered Load [kbps]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

D
e
la

y
 [

m
s]

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

RLNC w/ Helper delay

RLNC w/o Helper delay

Unreliable delay

RLNC w/ Helper rate

RLNC w/o Helper rate

Unreliable rate

Fig. 14. Delay and throughput for a TCP connection on a wireless link with
10% error probability.

0 2000 4000 6000 8000 10000
Offered Load [kbps]

0

2000

4000

6000

8000

10000

D
e
la

y
 [

m
s]

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

RLNC w/ Helper delay

RLNC w/o Helper delay

Unreliable delay

RLNC w/ Helper rate

RLNC w/o Helper rate

Unreliable rate

Fig. 15. Delay and throughput for a TCP connection on a wireless link with
20% error probability.

unnecessarily. This is seen in Figure 14, where the maximum

TCP throughput drops to ∼1000 kbps in the unreliable case,

while it is increased to >2500 kbps when enabling FRANC.

Delays increase by a factor of two for both the unreliable and

the FRANC cases, again showing the effects of bufferbloat

when congesting FRANC. The high delays for FRANC can

be reduced by changing to delay-aware congestion control

algorithms such as TCP Vegas. Initial tests on this already

show significant improvements.

For the case of 20% loss on e3 in Figure 15, TCP throughput

drops to less than 200 kbps if running without FRANC, while

FRANC is able to maintain a throughput of ∼2000 kbps, with

delays decreased by an order of magnitude when compared

to the unreliable case. When looking at the delay per bit, as

plotted for 10% loss in Figure 16, it is clear that FRANC

performs best in the range just below the congested state.

The results from TCP tests show no gain when enabling the

helper node, which was expected from the UDP results above.

This is explained by the TCP ACKs travelling the inverse

direction being limited by fair nature of the MAC. When

enabling the helper, three nodes are competing for access, as

opposed to only two nodes without the helper.

0 2000 4000 6000 8000 10000
Offered Load [kbps]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
e
la

y
/T

h
ro

u
g
h
p
u
t

[m
s/

kb
p
s]

RLNC w/ Helper

RLNC w/o Helper

Unreliable

Fig. 16. Delay over throughput for a TCP connection on a wireless link
with 10% error probability.

VI. CONCLUSION

When TCP connections travel on wireless mesh networks

with lossy links, the congestion control algorithms suffer

from random packet losses. In cases of packet loss rates of

more than 5-10%, the performance of TCP degrades and the

connection becomes practically useless.

To improve TCP performance in these scenarios, we pro-

posed the Fast Reliable Network Coded (FRANC) protocol,

which is an enhancement of the PlayNCool scheme proposed

in [13]. However, FRANC is not designed purely for TCP

and can support other flow types seamlessly. The protocol

utilizes an on-the-fly version of Random Linear Network

Coding to let forwarding nodes transmit linear combinations

of packets that are decoded at the receiver side. The on-

the-fly encoder and decoders allow FRANC to provide both

good throughput and delay performance. Furthermore, the use

of linear combinations enables overhearing nodes to inject

recoded combinations in the link, which reduces the total

number of transmissions needed to successfully decode at the

receiver side. The ability to recode with random coefficients

requires no coordination between nodes, which in turn reduces

the needed signalling to a bare minimum and simplifies the

overall logic. Thus, FRANC uses only two packet types:

encoded packets and acknowledgement packets.

With a proof-of-concept implementation of FRANC, we

evaluate its performance with respect to both throughput and

delay. Our results show that the increased delay as a result of

random packet loss is significant, and we show the FRANC is

able to reduce the delay several fold, while maintaining a high

throughput. Our measurements show that the throughput can

be an order of magnitude higher than plain TCP for moderate

packet losses, e.g., 20%.

The proof-of-concept implementation of FRANC suffers

from the bufferbloat syndrom, which causes high delays

when the connection is congested. Initial tests with alternative

congestion control algorithms show that these effects can be

reduced dramatically, and further investigation will be carried

out for our future work.

The reduced number of transmissions with a helper node

brings benefits to the surrounding network, which can utilize

the freed airtime to transmit. This effect is expected to grow

as more hops are added to the connection. This, together with

the benefit of doing recoding in the forwarding nodes, shall

be addressed in future work.

REFERENCES

[1] M. Gerla, K. Tang, and R. Bagrodia, “TCP performance in wireless
multi-hop networks,” in Mobile Computing Systems and Applications,

1999. Proceedings. WMCSA ’99. Second IEEE Workshop on, Feb 1999,
pp. 41–50.

[2] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of
multihop wireless channel on TCP throughput and loss,” in INFOCOM

2003. Twenty-second annual joint conference of the IEEE Computer and

Communications. IEEE Societies, vol. 3. IEEE, pp. 1744–1753.
[3] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile

ad hoc networks,” Wireless Networks, vol. 8, no. 2/3, pp. 275–288, 2002.
[4] S. Rangwala, A. Jindal, K.-Y. Jang, K. Psounis, and R. Govindan, “Un-

derstanding Congestion Control in Multi-Hop Wireless Mesh Networks,”
in Proceedings of the 14th ACM international conference on Mobile

computing and networking. ACM, 2008, pp. 291–302.
[5] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving

TCP/IP Performance over Wireless Networks,” in MobiCom, vol. 95.
Citeseer, 1995, pp. 2–11.

[6] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A
feedback-based scheme for improving TCP performance in ad hoc
wireless networks,” Personal Communications, IEEE, vol. 8, no. 1, pp.
34–39, 2001.

[7] D. Kim, C.-K. Toh, and Y. Choi, “TCP-BuS: Improving TCP perfor-
mance in wireless ad hoc networks,” in Communications, 2000. ICC

2000. 2000 IEEE International Conference on, vol. 3. IEEE, 2000, pp.
1707–1713.

[8] Y. Huang, M. Ghaderi, D. Towsley, and W. Gong, “TCP Performance
in Coded Wireless Mesh Networks,” in Sensor, Mesh and Ad Hoc

Communications and Networks, 2008. SECON ’08. 5th Annual IEEE

Communications Society Conference on, June 2008, pp. 179–187.
[9] P. Samuel David and A. Kumar, “Network coding for TCP throughput

enhancement over a multi-hop wireless network,” in Communication

Systems Software and Middleware and Workshops, 2008. COMSWARE

2008. 3rd International Conference on. IEEE, 2008, pp. 224–233.
[10] L. Scalia, F. Soldo, and M. Gerla, “PiggyCode: a MAC layer network

coding scheme to improve TCP performance over wireless networks,” in
Global Telecommunications Conference, 2007. GLOBECOM’07. IEEE.
IEEE, 2007, pp. 3672–3677.

[11] J. K. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher, and J. Bar-
ros, “Network coding meets TCP,” in INFOCOM 2009, IEEE. IEEE,
2009, pp. 280–288.

[12] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
2011.

[13] H. Khamfroush, P. Pahlevani, D. E. Lucani, M. Hundebøll, and F. Fitzek,
“On the Coded Packet Relay Network in the Presence of Neighbors:
Benefits of Speaking in a Crowded Room,” IEEE International Confer-

ence on Communications, 2014.
[14] M. Pedersen, J. Heide, and F. Fitzek, “Kodo: An Open and Research

Oriented Network Coding Library,” Lecture Notes in Computer Science,
vol. 6827, pp. 145–152, 2011.

[15] “IEEE Standard 802.11n-2009: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” http://standards.ieee.
org/findstds/standard/802.11n-2009.html, 2009, online; accessed 04-feb-
2014.

[16] “netmix - A C++ Software Library for Network Application,” http://
github.com/hundeboll/netmix, online; accessed 05-feb-2014.

[17] A. Paramanathan, P. Pahlevani, S. Thorsteinsson, M. Hundebøll,
D. Roetter, and F. Fitzek, “Sharing the Pi: Testbed Description and
Performance Evaluation of Network Coding on the Raspberry Pi,” IEEE

VTC Vehicular Technology Conference. Proceedings, 2014.
[18] “nuttcp - Network Benchmarking Tool,” http://nuttcp.net, online; ac-

cessed 05-feb-2014.

