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A FAMILY OF INVARIANT STRESS SURFACES 

STEEN KRENK 

Department of Building Technology and Struct ural Engineering 
Aalborg University, DK-9000 Aalborg, Denmark 

Abstract 

A family of invariant stress surfaces with a cubic dependence on the deviatoric stress 
components is expressed as a linear combination of the second and third deviatoric 
stress invariants. A simple geometric derivation demonstrates the convexity of the 
contours in the deviatoric plane. An explicit representation of the deviatoric contours 
in terms of a size and a shape parameter is given. The shape parameter effects a 
continuous transition from a triangle to a circle in the deviatoric plane. An explicit 
format in terms of the triaxial compresson and tension generators is derived, and the 
plane stress contour is given in explicit form. Several special cases are considered: a 
generalized Drucker-Prager criterion with straight generators and a smooth triangular 
deviatoric contour, surfaces with parabolic compression and tension generators, and 
the Lade failure surface for cohesionless soils. The use of an asymptotic tension cut-off 
condition in triaxial tension is discussed. 

INTRODUCTION 

Important properties such as failure and plastic deformation of solids is most often de
scribed in terms of surfaces in a space spanned by the stress components corresponding 
to a material point. These surfaces may serve as failure surface, yield surface or plastic 
potential. For isotropic materials these surfaces are usually described in invariant form, 
e.g. by use of the principal stress components (Ut, u2, o-3). These invariant surfaces can be 
represented in a three-dimensional space of principal stresses, and must satisfy symmet ry 
with respect to the three axes. In the description of real materials the mean stress 

(1) 

plays a special role. It is therefore convenient to extract the mean stress and introduce 
the principal deviatoric stress components s 1 = Ut - O"m, etc .. This is illustrated in Fig. 
1, where the mean stress represents the component along the vector (1, 1, 1), while t he 
deviatoric stress components (s 1,s2,s3) are confined to a plane orthogonal to this vector . 

The deviatoric st ress components must appear in symmetric form. This is most easily 
accomplished by using the second deviatoric stress invariant 

(2) 

and the third dc viatoric stress invariant 

(3) 



FIG. 1: Representation of stress space as mean stress and deviatoric plane. 

In addition to preserving symmetry the use of am, 12 and ]3 permits direct evaluation i 
an arbitrary coordinate system by appeal to invariance. Thus the analysis of the surface 
can be carried out using principal stress components, while the later use of the surface ea 
be made in terms of any convenient set of stress components. 

For many metals the behavior in tension and compression is similar, and the main influen< 
on plasticity and failure is represented by 12 • This is reflected in the extensive use of tt 
von Mises yield criterion, expressed entirely in terms of 12• On the other hand the mea 
stress Um has a considerable influence on the behavior of granular materials. It is rathE 
simple to extend the von Mises surface to incorporate the mean stress, see e .g. Druckc 
& Prager (1952) and Bresler & Pister (1958). However, differences are often observe 
between the material behavior in triaxial compression, a 1 = a 2 > a 3 , and in triaxi< 
tension a 1 > a 2 = a3 . Representation of this difference requires the use of ]3 . The simple~ 
stress surfaces including dependence on ]3 are those of Tresca and Mohr-Coulomb, whic 
assume independence of the intermediate principal stress component. These surfaces hav 
a hexagonal contour in any deviatoric plane, see e.g. Chen & Han (1988). They are mm 
ea.~ily described directly in terms of the principal stress components, but this and the lac 
of a unique normal at the corners make their use as yield surface and plastic potentic 
rather complicated. 

The present paper describes a family of smooth surfaces given in terms of am, ] 2 an 
J3. The format of these surfaces is a simple linear combination of the deviatoric stres 
invariants J2 and J3 with coefficients as a rbitrary functions of the mean stress a m· Th 
deviatoric contours of this family of surfaces is a two-parameter family of curves with a siz 
parameter and a shape parameter that effects a transition form a circle to a triangle. Thu 
this family of invariant surfaces is determined uniquely by two generators, convenient] 
taken as the compression and the tension meridian. 
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The structure of the paper is as follows. First the general format of the deviatoric contours 
is described in terms of a size and a shape parameter, and a polar representation is given in 
the Appendix. It is then demonstrated how the size and shape parameters can be replaced 
explicitly by a triaxial compression and a triaxial tension stress. An explicit format for 
the plane stress contour is then presented. Finally three special cases are discussed: a 
generalized Drucker-Prager surface with linear generators and smooth triangular deviatoric 
contour, surfaces with parabolic compression and tension generators and their use as failure 
surfaces for concrete, and a special surface proposed by Lade for cohesionless soils. 

THE DEVIATORIC CONTOURS 

The simplest form a deviatoric contour that satisfies symmetry with respect to the three 
principal deviatoric stress components (s~, s2, s3 ) is the cubic polynomial 

( 4) 

where c is a parameter with dimension of stress and TJ is a non-dimensional parameter. 

A geometric interpretation of the family of curves generated by ( 4) is shown in Fig. 2. For 
TJ = 0 the curve is composed of the three lines 5j = c, j = 1, 2, 3. The relevant part is 
the isosceles triangle corresponding to the midside points 5 1 = c, 5 2 =53 = - &c etc., and 
the corner points 5J = -2c, 5 2 = 5 3 = c. The product on the left side of ( 4) is a convex 
function taking values between zero at the triangle and c3 at the center 5 1 = s2 = 5 3 = 0. 
Any value of the parameter TJ in the interval 0 to 1 will therefore generate a symmetric 
convex curve. For small values of TJ the curve is nearly triangular, and for TJ close to 1 the 
curve approaches circular shape. The smooth transition from triangular to circular shape 
is illustrated in Fig. 2. 

FIG. 2: Contour curves of cubic surface, TJ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. 
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It is convenient to express the curves in terms of the deviatoric invariants ] 2 and J3 . Wh• 
it is used that the sum of the deviatoric stresses is zero, the relation ( 4) takes the form 

and it follows immediately from (2) and (3) that this is 

h + cJ2 = (l-77)c3 

Thus, in any deviatoric plane the contour is given in terms of a size parameter c and a shaJ 
parameter 77· These parameters are not convenient in practice, because c is only indirect 
related to the size of the contour via the shape parameter 77· It is more convenient to u: 
a shape parameter 1 and a size parameter so defined by 

12 = 1 - 77 So = IC (' 

This gives the relation the form 

FIG. 3: Normalized cubic contour curves, 1 = 0.0, 0.3, 0.6, 0.8, 0.9, 1. 0. 

The renormalized curves are shown in Fig. 3. The parameter s5 is the value of the ]2 a 
points where ] 3 = 0, i.e. at points where one of the deviatoric stress components Sj vanish 
These points correspond to triaxial shear, e.g. s 1 = 0, s 2 = -s3 = s0 • There are 6 of thes 
points on the contour in the deviatoric plane, located on lines inclined ±30° with the thre 
deviatoric axes. At these points the contours are independent of the shape parameter 1 
and thus the size parameter so is in fact a representative magnitude of the deviatoric stres 
components. In (8) the size parameter s0 can be taken as positive. It then follows fron 
(7) that the shape parameter 1 varies between 0 and ±1, with small values correspondinl 
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to nearly circular contours and values close to ±1 giving nearly triangular shape. Positive 
values of 1 correspond to the orientation of the triangle as shown in Figs. 2 and 3 with the 
corners located on the negative part of the s1-axes. For negative value of 1 the corners of 
the triangle would be loacated on the positive part of the s1 -axes, but this is of less interest 
in the description of actual material behaviour. 

The contours (8) generate a surface in stress space, when the parameters so and 1 are 
considered as functions of the mean stress O"m = Ho-1 +o-2+173). In computations this surface 
is conveniently represented directly in terms of the stress invariants. However, it is desi rable 
to have a parametric representation for graphics purposes. The polar representation is 
derived in the Appendix. 

TRIAXIAL COMPRESSION AND TENSION 

Many triaxial tests are carried out with two of the three principal stresses equal. The 
results of these tests are conveniently described in terms of the mean stress 17m and the 
difference between the largest and smalest principal stress. Let the principal stresses be 
ordered such that 17t ~ 172 ~ 173· The difference between the principal stresses is then 
characterized by 

(9) 

There are two types of test: triaxial compression and triaxial tension. In triaxial compres
sion 171 = 172 > 173, and 

(10) 

where the corresponding value of q on the deviatoric contour is denoted qc. Similarly in 
triaxial tension 171 > 172 = 173 , and 

( 11) 

where q1 is the value of q on the deviatoric contour corresponding to triaxial tension. The 
location of the points of triaxial compression and tension on the deviatoric contour are 
shown in Fig. 4. Each of these points is reproduced three times by symmetry. It is 
commonly found that qc > q11 and convexity then requires q1 > ~qc. 
For triaxial compression and tension the deviatoric stress invariants are 

(12) 

and 
J~ = h? J~ = f.;q~ ( 13) 

Substitution of these expressions into the equation (8) for the deviatoric contour gives the 
following explicit expressions for the parameters of that equation. 

(14) 
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FIG. 4: Points of lriaxial compression q, and tension q1 • 

I 27 q~ - qi 27 q, - qt 

s5 2 q; q[ q, + qt 2 q; q[ 

The parameters s0 and 1 can now be eliminated from the equation (8) 
giving the equation 

(15 

for the surfact 

where the triaxial compressive stress q, and tensile stress q1 are given functions of th 
mean stress O'm, i.e. q, = q,(O'm) and q1 = q1(0'111 ). Specific surfaces obtained from linear o 
quadratic functions q,(O'm) and q1(0'm) are discussed below. 

If the surface is described in terms of the size and shape parameters s0 and 1 the compres 
sion and tension generators q, and q1 follow from solution of the cubic equation (8) afte 
substitution of ( 12) or ( 13). The solution follows directly from the polar representation o 
the Appendix as 

cos 0 arccos('Y)) qt = ( ) cos ~ arccos( -1) 

so 
(17 

With the present sign convention for stresses 1 ~ 0, and thus q, ~ q1• 

THE PLANE STRESS CONTOUR 

Before turning to specific models the plane stress contour is considered. Let the stress com
ponents 0'1 and 0'2 be arbitrary, while 0'3 = 0. This enables a two-dimensional descriptior 
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in terms of the mean st ress O"m and the stress difference 6.a, 

( 18) 

In terms of these variables the deviatoric stress components are 

(19) 

Substitution of these expressions into the deviatoric stress invariants J 3 and J 2 gives 

(20) 

The plane stress contour can now be obtained by substitution of these expressions into 
(16), whereby an equation for 6.a2 is obtained. For any permissible value of am the stress 
difference 6.a is obtained from 

6.a2 = 8q~q? - 18(q~ - qcqt + qna~ + 27(qc - qt)a;!, 
6(q;- qcql + ql) + 27(qc- qt)O"m 

(21) 

The limits on the mean stress O"m in this formula are determined by the points corresponding 
to biaxial compression and biaxial tension. 

FIG. 5: Characteristic points of uniaxial and biaxial stress. 

The general shape of the plane stress contour is characterised by four points A, B, C and 
T defined in Table 1 and shown in Fig. 5. They correspond to biaxial tension, biaxial 
compression, uniaxial compression and uniaxial tension. The location of these points on 
the compression and tension generators of the surface is indicated in Fig. 5a. The biaxial 
states are located on lines with inclination qfam = 3/ ± 2, while the uniaxial states are 
located on the lines qfam = 3/ ± l. Note that biaxial compression is located on the 
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TABLE 1: Characteristic uniaxial and biaxial stress states. 

Point (a!' a2) am q 

Biaxial tension A (a., a.) ~a. a. 

Biaxial compression B (-ab, -ab) -~ab ab 

Uniaxial compression c ( -ac, 0) , (0, -a c) - ~ac ac 

Uniaxial tension T (at, 0) ' (0, at) ~ at at 

tension generator, while biaxial tension is loacted on t he compression generator. Clear!~ 
the interval covered by the mean stress in the plane stress contour is determined by th 
biaxial states A and B, i.e. -~ab < am < ~a •. 
The shape of the stress surface is to a large extent determined by the biaxial and uniaxia 
stress states A, B , C and T. In the following two sections the relation between these point 
and the parametric representation of the functions 9c(am) and q1(um) is investigated fo 
linear and quadratic funct ions. 

LINEAR GENERATORS 

The simplest type of stress surface of the form (16) is generated by linear functions qc(am 
and q1( am)· As a consequence of the convexity requirement these functions must intersec 
the hydrostatic axis in the same point, am = a-0. The linear functions can then be given i1 
terms of ao and two non-dimensional parameters a and fJ in the form 

(22 

where convexity requires 2{J 2: a. This stress surface has stress contours with constan1 
shape parameter, 

"' = 
3J3 (a - {J)a{J 

2 ( a2 _ a{J + fJ2 )3/2 

This st ress surface is illustrated in Fig. 6. 

For a= fJ the surface is a circular cone. T his is t he Drucker-Prager stress surface, Drucke1 
& Prager (1952). It is often used as a first approximation to the yield surface of material! 
with mean stress dependence due to its simple form . However, a stress surface with fJ < o 
will generally represent actual material behavior better. 

If the th ree parameters a, fJ and a0 have been determined the four characteristic stres~ 
states A, B, C, and T follow immediately by substitution of t he definitions from Table 1 
into (22). 

aa. = 3a 
1 + 2a ao 

3a 
' O"c = 1 _ Q O"o 

3{J 
= 1 + fJ a-o (24) 
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FIG. 6: Linear stress surface generators and deviatoric contours, a = 1/3 , {3 = 2/9. 

Clearly a finite value of the uniaxial and biaxial compressive stress a, and ab requires 
a~ 2{3 < 1. 

Conversely, the parameters a, {3 and a0 can be determined from any three of the charac
teristic stresses aa , ab, a" and 0"1. Elimination of a and j3 in (24) establishes the following 
two equations 

=-- (25) 
O'o O'a O'c O"t O'b 

These equations determine O"o and Lhe fourth reference stress. The parameters a and {3 
then follow from 

30"o- 20"a 
(26) 

and 
{3 = O'b O't (27) 

30"o + 2ab 30"o - O"t 

These formulae enable calibration in terms of three stresses. Naturally the biaxial shear 
stress can also be used as one of these stress values, but the corresponding formulae are 
slightly more indirect. The present formulation does not impose any restriction on the 
parameters, except those needed for convexity. This is an imporLant advantage over other 
formats, e.g. that of Hibbitt et al. (1992) for granular materials, that only retain convexity 
in part of the parameter interval. 

The general form of the stress su rface wiLh linear generators is described in terms of three 
parameters. However, there is an important class of materials for which the compression 
and tension generators are linked. This is the class of materials in which strength derives 
from a combination of cohesion and fri ction. In the linear case the strength of these 
materials is governed by the Mohr-Coulomb criterion 

c cos cp 0 (28) 
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where o-1 is the largest and a 3 the smallest principal stress, while c is the cohesion and cp 
is the angle of friction, see e.g. Chen & Han (1988). When used as a plastic potential the 
angle of friction cp is replaced by the angle of dilatation 1/J. The Mohr-Coulomb criterion 
is independent of the intermediate principal stress a2 . The Mohr-Coulomb criterion gives 
a hexagonal contour in the deviatoric plane with corners on the compression and tension 
generators. Alternatively the stress surface (16) can be calibrated such that it coincides 
with the Mohr-Coulomb surface along the compression and tension generators. This offers 
computational advantages by smoothing the surface. 

0.8 

0.6 

0.4 

0.2 

10 20 30 40 50 60 70 80 90 
rp 

FIG. 7: Coefficients a, /3 and 1 as function of friction angle cp. 

Following the notation introduced in (9) the difference bet wen the maximum and minimum 
principal stress is denoted q = a 1 - 0"3. On the compression generator a 1 = a2 > o-3 • This 
gives the relation 

0"1 + 0"3 = 2am - ~q (29) 

and thus the compression generator of the Mohr-Coulomb criterion takes the form 

6 sin cp 
qc(am) = . (c cot <p - <~m) (30) 

3- smcp 

Similarly the stress states on the tension generator satisfy a 1 > a2 = a 3 , whereby 

0"] + 0"3 = 2am + ~q 
This gives the tension generator of the Mohr-Coulomb criterion in the form 

6 sin cp 
qt(am) = 

3 
. (c cotcp- am) + smcp 

(31) 

{32) 

These generators are recognized as a special form of (22) with the three parameters given 
in terms of the angle of friction and the cohesion as 

a = 
2 sin cp 

3-sincp 

10 

/3 = 
2 sin cp 

3 + sinrp 
(33) 



and 

FIG. 8: Plane stress contours for interpolated Mohr-Coulomb material 
for ut( <7c = 0.2, 0.3, 0.4 corresponding to t.p = 42°, 33°,25°. 

u0 = c cot <.p 

Note that the Mohr-Coulomb criterion corresponds to the condition 

1 1 
---=1 
(J a 

(34) 

(35) 

The coefficients a and (J are shown as function of the friction angle <.p in Fig. 7. Both the 
coefficients approach their theoretical maximum value for r.p aproaching 90°. 

The shape coefficient of the smoothed Mohr-Coulomb surface is a constant defined in terms 
of the angle of friction as 

(3 + sinrp)(3- sinrp) sinr.p 
I = ( 3 + sin2 rp )312 

(36) 

The shape coefficient is shown as a function of the angle of friction in Fig. 7. It is seen 
that the full interval 0 :S: 1 :S: 1 is covered. The corresponding deviatoric contours can be 
seen in Fig. 3. 

The two parameters of the Mohr-Coulomb criterion are determined from the uniaxial com
pression and tension stress. 

smr.p (37) 

Figure 8 shows the plane stress contour for three interpolated Coulomb materials with 
linear generators. The tension part of these contours generally give too high stresses for 
actual materials. The Mohr-Coulomb surface with straight generators is therefore often 
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used in connection with a tension cut-off. An alternative is the use of surfaces with curve< 
compression and tension generators. Two types of such surfaces are considered in th• 
following sections. 

The tension cut-off, also known as the Rankine criterion, can be expressed as 

cr1 = max CTj :5 cro 
} 

Clearly, this is a limiting form of the Mohr-Coulomb cri terion (28). The correspondin~ 
compression and tension generators are 

i.e. a= 2/3 = 1. The deviatoric contour of the Rankine criterion is a triangle. Experimenta 
results for such materials as concrete, rock and granular media suggest the use of tht 
Rankine criterion as a limiting failure criterion for O'm ~ cro. A general convex failur< 
criterion for these materials can therefore be expcted to satisfy the conditions 

with equality being approached for CTm ~ cro. 

QUADRATIC GENERATORS 

A more general set of surfaces is obtained by using quadratic functions for the compressior 
and tension generators. If the generators are assumed to be open for large negative value~ 
of the mean stress O'm, i.e. not to intersect the negative hydrostatic axis, the general format 
is 

( 41) 

This is a quadratic parabola with axis parallel to the hydrostatic axis given by the threE 
parmeters 0'0 , a and K, illustrated in Fig. 9. The apex of the parabola is located at thE 
point 

(crm,q)apex = (O'o + ~K2a,- ~Ka) (42) 

The stress parameter O'o is the intersection with the hydrostatic stress axis. This param
eter must be common for the compresion and tension generators. The non-dimensional 
parameter K is the slope of the generator at the intersection point, 

dcrml 
K = - dq q= O 

( 43) 

Clearly this slope must be positive, K > 0. Furthemore this slope will typically be different 
for the compression and the tension generator, and the two values are denoted Kc and 
Kt. respectively. Convexity of the surface at this point requires Kt ::; 2Kc, where Kt = 2Kc 
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Fro. 9: Quadratic stress surface generators and deviatoric 
stress contours, a/ ao = 50/ 3, 2Kc =Kt= 1/3. 

corresponds to a limiting triangular shape of the deviatoric stress contour when approaching 
zero size at am = a0. The parameter a, with dimension of stress, determines the shape 
of the generator for large negative mean stress. If the deviatoric contour is assumed to 
approach circular shape for large negative mean stress the parameter a is the same for the 
compression and the tension generator. 

Stress surfaces with quadratic compression and tension generators have been used ex
tensively as failure criteria for concrete. Thus Bresler & Pister (1958) generalized the 
Drucker-Prager surface by introducing a quadratic generator, while retaining circular de· 
viatoric contours. Other failure surfaces with different quadratic compression and tension 
generators have been proposed by Willam & Warnke (1975), Ottosen (1977), and Hsieh 
et al. (1982). These surfaces differ in the way the deviatoric contour is obtained from 
the compression and tension generators. Willam & Warnke (1975) interpolate in the 60° 
sectors between the generators in the deviatoric plane by using part of an ellipse. This is 
expressed in a rather complicated polar format. Ottosen ( 1977) assumes that all genera
tors are parabolas generated by letting the coefficient of the linear term in q depend on the 
angle of the generator. Also this scheme leads to a polar representation of the deviatoric 
plane. The dependence of the coefficient K on the angle in the deviatoric plane corresponds 
to that described in the Appendix for t he present format. In the Hsieh-Ting-Chen surface 
the ±60° sectors of the devia.toric plane are interpolated by parabolas with apex at the 
tension generator, Hsieh et al. (1982). This leads to corners at the compression generator. 
A survey of these three surfaces has been given by Chen & Han (1988). 

A surface with quadratic compression and tension generators given by ( 41) with parameters 
a0, a, Kc and Kt is conveniently calibrated by data points (am,c, qc) on the compression gen
erator and points ( Um,t. q,) on the tension generator. The general format for the parameter 
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TABLE 2: Parameters for concrete failure surfaces. 

O'o/ 0' c a/O'c K.c K.t 

Hsieh-Ting-Cheng 0.1017 14.673 0.3669 0.6767 

Willam-Warnke 0.1025 
14.735 

0.3680 0.6861 
16.484 

Ottosen 0.0965 9.645 0.3261 0.6209 

K.t = 2K.c 0.0950 7.915 0.3020 0.6040 

K.t = ~) K.c = ~ 0.1010 9.900 0.3333 0.6666 

calibration is 

{ -q~ -qc 0 
O'o 

Om,c 

compression 
1/a 

(41; 

{ -qz 0 - qt K.c amlt 
tension 

K.t 

The parameters can be determined directly by four data points or by a weighted least 
squares procedure if there are more than four points. 

Table 2 shows parameters obtained for the failure surface of concrete on the basis of data 
from the literature. The parameters for the Willam-Warnke and the Hsieh-Ting-Chen 
surfaces are from the calibration by Chen & Han ( 1988) using O'tf O'c = 0.10, 0'6/ O'c = 1.15 
and a representative point in triaxial compression. The parameters of the Ottosen surface 
are obtained from data of Schickert & Winkler (1977) using O't/O'c = 0.10, 0'6/0'c = 1.21 
and a representative point in triaxial compression. The three calibrated surfaces all show 
nearly triangular shape of the deviatoric contour for O'm ~ O'o, indicated by the ratio K.t/ K.c = 
1.84, 1.86, 1.90, respectively. The value 2 is the theoretical upper limit corresponding to a 
triangle. The table also contains parameters obtained by assuming exact triangular shape 
of the limiting deviatoric contour for O'm ~ O'o, combined with O'tfO'c = 0.10, 0'6/0'c = 1.15. 

Figure 10 shows the plane stress contours corresponding to three different sets of parameters 
from Table 2. The exterior curve corresponds to the parameters of Ottosen, while the 
interior curve corresponds to the surface with limiting triangular shape "'t = 2"'c· The 
intermediate curve corresponds to the Hsieh-Ting-Chen parameters. It is seen that the 
effect of introducing the constraint K. 1 = 2"'c is to contract the curve based on the original 
Hsieh-Ting-Chen parameters around O'J/0'2 ~ - 1/ - 0.5. 

The compression and tension generators of the quadratic representation bear a simple 
relation to the Coulomb hypothesis of independence of the middle principal stress. If this 
hypothesis is valid, the compression and tension generators should produce the same curve 
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FIG. 10: Plane stress contours for quadratic generators. 

when expressed in terms of ~(<71 + a3) and q = (at - a3). On the generators this implies 
am = Ha 1 + a3) ± kq. Thus the Coulomb hypothesis for the generators is equivalent to 
the condition 

(45) 

This condit ion implies that ab = O'c and O'a = O't. 

If the Rankine tension cut-off is imposed on the limition behavior of the generators for 
am~ a0 the deviatoric contour, the linear terms are given explicitly by Kc = ~and Kt = ~ · 
A surface with quadratic generators that satisfy a limiting Rankine condition in tension 
may be calibrated entirely in terms of the two uniaxial stresses ac and O't. 

a 
( 46) 

The corresponding parameters for atfac = 0.10 have also been included in Table 2. 

THE TWO-PARAMETER SURFACE OF LADE 

A simple invariant stress surface with only two independent parameters was proposed by 
Lade (1977) as failure criterion and plastic potential for cohesionless soils. This surface 
turns out to be a particularly simple version of the general format (8) in which the dcv iatoric 
contour changes from complete triangular shape at zero mean stress to a circle for large 
compressive stress. 

The original format of Lade's stress surface with the present sign convention for the stresses 
IS 

(
/3 ) (-J1)m 
/: - 27 P. = 1] ( 4 7) 
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where Pa is a reference pressure - taken as atmospheric pressure - while m and TJ are th 
parameters of the surface. The surface is expressed in terms of the Cauchy invariants fo 
the total stress 

( 48 

The total stress invariants / 1 and / 3 can be expressed in terms of the mean stress Um an< 
the deviatoric stress invariants J2 and }3 as 

(49 

The equation (47) for the surface is conveniently restated in terms of a reference stress u, 
and a parameter >. in the form 

After expressing the total stress invariant /3 in terms of the deviatoric stress invariants tht 
equation for the surface takes the form 

This is a special case of the format (8) where the size and shape parameters a.re given by 

In the present context O"m is negative, and thus the size parameter s 0 is always positive. 

The formulae (52) for the size and shape parameters lead to a simple geometric interpre· 
t ation of the Lade surface. The size of the exterior triangle associated with the present 
format and shown in Fig. 2 is given as c = soh = -um. Thus the external triangles ol 
the La.de surface constitute a pyramid with c = luml· This pyramid corresponds to the 
Rankine tension cut-off criterion (39) with O"o = 0. The actual surface is located inside this 
pyramid with size determined by s0 . The shape of the deviatoric contour is determined 
by the size of so relative to luml, and thus the deviatoric contour is triangular for Um ~ 0 
and becomes increasingly circular with increasing value of lum l· This transition in shape 
is governed completely by the growth in size, which is controlled by the exponent m and 
the scaling factor >.. In the present format using deviatoric stress invariants the surface 
is easily translated along the hydrostatic stress axis by replacing the mean stress um with 
O"m - O"o. 

CONCLUSIONS 

A family of invariant stress surfaces with potential application as failure surface, yield 
surface and plastic potential has been described. Any surface of the family is generated 
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by two functions qc(am) and q1(am) defining the compression and tension meridian, re
spectively. The surface is generated by interpolation in the deviatoric plane using a cubic 
polynomial in the deviatoric stresses. Isotropic invariance imposes symmetry conditions 
such that the cubic interpolation can be reduced to a linear combination of the deviatoric 
stress invariants J 2 and ] 3 . This format constitutes a simple generalization of the von 
Mises and Drucker-Prager surfaces to include dependence on the third stress invariant. 
The dependence on the third stress invariant is essential for the representation of failure 
and deformation characteristics of e .g. granular materials, concrete and rock. 

The general format does not impose any particular functional form on the generating 
functions qc(am) and qt( am) apart from convexity of the curves and the deviatoric convexity 
requirement ~qc(am) :::; q1(am) :::; qc(am)· When the compression and tension generators are 
identical the deviatoric contour is circular, and the von Mises, Drucker-Prager and Bresler
Pister surfaces are obtained from a constant, linear or quadratic generator, respectively. 
Many materials require the use of generators with qt(am) :::; qc(am), leading to smooth 
triangular deviatoric contours. The relation between the generators and the plane stress 
contour has been discussed, and an explicit formula for the plane stress contour is derived. 

The special cases of linear and quadratic generators have been dealt with in some detail, 
and the use of a Mohr-Coulomb relation between the generators and the Rankine tension 
cut-off as a limiting condition have been discussed. Various calibrations of a failure surface 
with quadratic generators for concrete have been presented, using available data. The 
failure surface is nearly triangular in tension and becomes increasingly more circular with 
increasing compression. However, the quadratic format of the generators does not lead to 
accurate determination of the limiting behavior in tension. 

The invariant family of stress surfaces can be described either in terms of the compression 
and tension generators or in terms of a size and shape function. It is demonstrated that 
the Lade surface for cohesionless soils, usually stated in terms of total stress invariants, 
in fact is a particularly simple case of a representation in terms of size and shape. The 
surface is contained within a triangular pyramid in stress space corresponding to the zero
tension cut-off, and for any value of the mean stress the size and shape of the deviatoric 
contour follows from the corresponding triaxial shear stress. The closer the contour is to 
the circumscribing triangle, the more triangular its shape. This way of representing the 
surface may be of interest in the representation of combined yield and failure surfaces for 
materials like concrete. It is desirable that the yield surface approaches the failure surface 
at failure after hardening. However, recent results by Labbane et al. (1993) indicate that 
the yield surface should be less triangular, at least in the initial stages of hardening. Thus, 
it is not feasible simply to introduce the yield surface simply as a scaled version of the 
failure surface. The present formulation suggests a possible alternative, where the yield 
surface becomes gradually more triangular with increasing magnitude as illustrated by t he 
family of curves in Fig. 2. 
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APPENDIX: POLAR REPRESENTATION 

In this appendix the contours given by the invariant cubic polynomial (8) are expressed 
in polar form . Any point in the principal deviatoric plane can be described in terms of it~ 
components along the two orthonormal vectors e,, ey shown in Fig. 1. 

1 
-(-1 -1 2) v'6 ' ' (53) 
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The components of the principal deviatoric stress vectors in terms of this basis are 

Sr = S · er = (54) 

Sy = s · ey = (55) 

where the condition of zero mean of the deviatoric stresses has been used in (55). These 
components are now resolved in polar components in the form 

Sr = -s sin8 sy = s cos8 (56) 

where the angle 8 is referred to the y-axis because this is normally the vertical axis. The 
length s of the principal deviatoric stress vector s is given by 

si + s~ + s5 (57) 

while the polar angle 0 is given by 

(58) 

It is clear from the symmetry of the problem that the angle 38 plays a natural role. By 
substitution of (58) into the well known trigonometric relation for cos 38 we obtain 

~s3 2s2
- s2 

cos 38 = 4 cos3 8 - 3 cos 8 = 3 - 3 
2 s s 

(59) 

and upon substitution of s from (57) and use of the zero sum condition for the deviatoric 
stresses we get the relation 

(60) 

This relation is now used to write the general formula (8) for the contours in the deviatoric 
plane as a polar relation between the radius r and cos 38. 

(61) 

This cubic equation in so/ s can be solved directly by scaling the variable such that the 
ratio between the coefficients of the first two terms is 4 to 3. The solution can then be 
obtained by the trigonometric formula already used in (59). The scaled form is 

(62) 
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The solution is obtained by the substitution 

/[~ = cos~ (6: 

into (62), whereby 
cos 3~ = 1 cos 38 (6· 

This gives the final form of the polar representation of the contours in the form 

5

5
° = ~cos (k arccos(l cos 38)) (6! 

This coincides with a generic curve used for the linear term in the quadratic failure criteric 
proposed by Ottosen (1977) with the size parameter I<1 = /fs01 and the shape paramet• 
I<2 = I · While this formula provides a convenient means for drawing the contours, tt 
direct formulation (8) or ( 16) in terms of the deviatoric invariants ] 2 and J 3 is consider ab: 
simpler to use in computations, and offers the possibility of explicit calibration by poin· 
on the deviatoric axes. 
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