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Abstract

We show how a spatial point process, where to each point there is associated a
random quantitative mark, can be identified with a spatio-temporal point pro-
cess specified by a conditional intensity function. For instance, the points can
be tree locations, the marks can express the size of trees, and the conditional
intensity function can describe the distribution of a tree (i.e. its location and
size) conditionally on the larger trees. This enable us to construct parametric
statistical models which are easily interpretable and where likelihood-based
inference is tractable. In particular, we consider maximum likelihood based
inference and tests for independence between the points and the marks.

Keywords: conditional intensity; likelihood ratio statistic; independence be-
tween points and marks; maximum likelihood; model checking; quantitative
marks.

1 Introduction

Marked point process (MPP) models have frequently been used for analyzing forest
stand datasets which typically consist of the locations of trees in a given observation
area and a list of marks associated with each tree, e.g. the height, the diameter at
breast height (DBH), and the species of the tree (Pommerening, 2002). Illian et al.
(2008) discussed different model classes for the marks given the points, including
the random-field model (i.e. when the marks are generated by sampling a random
field M at the points, where M is independent of the points) and the special case of
independent marking (i.e. when in addition the marks are independent, identically
distributed, and independent of the points); see also Stoyan and Wälder (2000),
Schlater et al. (2004), and Schoenberg (2004). As Guan and Afshartous (2007) re-
marked: ‘Generally speaking, however, the literature on modeling dependent marked
point processes is still limited and worth further investigation.’ In fact most statisti-
cal techniques for analyzing marked point pattern datasets have mainly been based
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on various non-parametric summary statistics describing the second order proper-
ties of the points and the marks (see e.g. Illian et al. (2008), Baddeley (2010), and
Diggle (2013)), and often the focus has been on testing for the random-field model
(Schlater et al., 2004; Guan and Afshartous, 2007) or independent marking (see e.g.
Stoyan and Stoyan (1994), Illian et al. (2008), and Myllymäki et al. (2013)).

In this paper, we focus for specificity and simplicity on point pattern tree datasets
with one quantitative mark for each tree which results from the growth of the tree
(our approach can easily be extended to a general MPP with several marks, including
a quantitative mark which results from a dynamic process so that the mark is either
an increasing or a decreasing function of time, and with covariate information (e.g.
terrain elevation and soil quality) included, but we leave such extensions to be
discussed in future work). For instance, the quantitative mark can express the size
of the tree, whether it be the height, the DBH, or some other measure of size
which grows over time. Figure 1 shows two examples. Our idea is simply to identify
such a MPP with a spatio-temporal process, where the dynamics is specified by a
conditional intensity function λ∗(t, x) which represents the infinitesimal expected
rate of events at time t and location x, given all the observations up to time t—
in the terminology of e.g. Diggle (2013), this is a mechanistic model. For instance,
for a forest stand dataset, considering the DBH as a convenient measure of size,
a large/small tree corresponds to a small/large time, and we use the conditional
intensity function to model the distribution of a present tree (i.e. its location and
DBH) conditionally on the larger trees. Section 2 formalizes this idea. The main
advantages of our approach is that the model is typically easily interpretable and
likelihood-based inference will often be tractable as demonstrated in Section 3.

Figure 1: Left: The centres of the discs specify the locations of 134 Norwegian spruce
trees in a 56×38 metre sampling region in Saxonia, Germany, where the radius of a disc is
two times the DBH (see Section 3.1 for more information on this dataset). Right: Positions
of 584 longleaf pine trees in a 200×200 metre sampling region in southern Georgia (USA),
where the radius of a disc is the DBH in 1987 minus the DBH in 1979 (see Section 3.2 for
more information on this dataset).

There exist a number of parametric models (and further models can easily be de-
veloped) for temporal and spatio-temporal conditional intensity functions, including
the Hawkes process (Hawkes, 1971) and its spatio-temporal extensions to epidemic
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type aftershock sequence (ETAS) models (Ogata, 1988), and the self-correcting or
stress-release process (Isham and Westcott, 1979) and its spatio-temporal extensions
(Rathbun, 1996). These extensions have mainly been used for modelling earthquake
datasets. See the reviews in Ogata (1998) and Daley and Vere-Jones (2008). Sec-
tion 3 develops new models fitted to the datasets in Figure 1, using an inhibitory
(self-correcting) model for the spruce dataset and a clustering (self-exciting) model
for the pine dataset. In particular, we find maximum likelihood estimates, test for
independence between the points and times based on the likelihood ratio statistic,
and discuss various diagnostics for model checking.

2 Marked point processes specified by a
conditional intensity

2.1 The general model

For specificity we refer to forest stand data: Consider a finite MPP {(Ui,Mi) :
i = 0, . . . , N}, where Ui is the random location of the ith tree, Mi = M(Ui) is
its size which for specificity we let be the DBH, M is a real-valued random field,
and N (the number of tree) is a non-negative discrete random variable. We assume
that the DBHs are increasingly ordered continuous random variables such that 0 ≤
M0 < . . . < MN ≤ τ < ∞ (the practical problem of ties is discussed at the end
of this section), where we treat τ > 0 (the maximal possible DBH) as an unknown
parameter. Furthermore, the points Ui are located in a given planar sampling region
W of finite area |W |.

For our purpose it is useful to relate the MPP to an infinite spatio-temporal point
process {(T1, X1), (T2, X2), . . .} (we can view this as another MPP where actually the
‘points’ are strictly increasing times 0 < T1 < T2 < . . . and the ‘marks’ X1, X2, . . .
are points in W ; this is one reason for writing (Ti, Xi) instead of (Xi, Ti), though we
use the common terminology ‘spatio-temporal’): We shall condition on (UN ,MN),
the tree with the largest DBH. Then we let the times

T1 = MN −MN−1, . . . , TN = MN −M0,

be the gaps between the largest DBH and the other DBHs in decreasing order. The
tree locations corresponding to the times T1, . . . , TN are

X1 = UN−1 . . . , XN = U0,

respectively. For the largest tree, T0 = MN −MN = 0 and X0 = UN . For the contin-
uation of the spatio-temporal point process, we assume TN+1 > τ . The actual model
for (XN+1, TN+2, XN+2, . . .) will not play any importance in this paper, since we shall
only exploit the simple one-to-one correspondence between ((U0,M0), . . . , (UN ,MN))
and ((UN ,MN), (T1, X1), . . . , (TN , XN)).

As generic notation for realizations, we use small letters and write e.g. (Ui,Mi) =
(ui,mi) and (Ti, Xi) = (ti, xi). It will always be understood without mentioning that
if we consider a realization ((U0,M0), . . . , (UN ,MN)) = ((u0,m0), . . . , (un,mn)), then
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(u0, . . . , un) ∈ W n+1, 0 ≤ m0 < . . . < mn ≤ τ , and the corresponding realization
of the spatio-temporal point process up to time τ is ((T0, X0), . . . , (TN , XN)) =
((t0, x0), . . . , (tn, xn)) with (t0, . . . , tn) = (mn−mn, . . . ,mn−m0) and (x0, . . . , xn) =
(un, . . . , u0). Note that having (UN ,MN) = (un,mn) is not implying that we know
that N = n. However, considering a realization ((U0,M0), . . . , (UN ,MN)) =
((u0,m0), . . . , (un,mn)), this is of course specifying that N = n.

Now, conditional on (UN ,MN) we assume that the spatio-temporal point process
is specified by a conditional intensity function

λ∗(t, x) = λ∗(t, x|Ft), t > 0, x ∈ W,
where the star indicates that λ∗(t, x) depends on the history Ft at time t, i.e. trees
‘appearing’ before time t; formally, Ft is the σ-algebra generated by MN and those
(Ti, Xi) with Ti < t (for technical details, see Daley and Vere-Jones (2003)). Heuris-
tically, denoting N(A) the number of (Ti, Xi) falling in a set A ⊂ (0,∞)×W ,

λ∗(t, x) dt dx = E(N(dt× dx)|Ft).
The essential assumption for this type of model to be reasonable for forest stand
data is that the distribution of a present tree and its DBH is determined by con-
ditioning on those trees which are bigger (i.e. conditioning on their locations and
corresponding DBHs). More formally, for i = 1, 2, . . ., conditional on that Ft is spec-
ified by a realization (MN , (T0, X0), . . . , (Ti−1, Xi−1)) = (mn, (t0, x0), . . . , (ti−1, xi−1))
with t0 = 0, the density function for (Ti, Xi) is

p(ti, xi|mn, (t0, x0), . . . , (ti−1, xi−1))

=λ∗(ti, xi) exp

(
−
∫∫

(ti−1,ti)×W
λ∗(t, x) dt dx

)
, ti > ti−1, xi ∈ W. (2.1)

To ensure that (2.1) is indeed a density function, we require that λ∗(t, x) is a non-
negative measurable function such that the integral in (2.1) is finite and the integral

∫∫

(ti−1,∞)×W
λ∗(t, x) dt dx

is infinite when the history Ft is unchanged for t ≥ ti−1. In addition, to ensure that
N = sup{i ≥ 0 : Ti ≤ τ} is finite, we assume that the time process (T0, T1, . . .) is
not explosive on the time interval [0, τ ].

From (2.1) we obtain the joint density for a realization
((U0,M0), . . . , (UN−1,MN−1)) = ((u0,m0), . . . , (un−1,mn−1)) conditional on
(UN ,MN) = (un,mn) (if n = 0, we interpret ((u0,m0), . . . , (un−1,mn−1)) as ∅, the
empty marked point configuration):

p((u0,m0), . . . , (un−1,mn−1) | (un,mn))

= exp

(
−
∫∫

(0,τ)×W
λ∗(t, x) dt dx

) n∏

i=1

λ∗(ti, xi) (2.2)

where the dominating measure is ντ =
∑∞

n=0 µn, with µn being n-fold Lebesgue mea-
sure onW×[0, τ ] (where µ0 is the Dirac measure on ∅). In other words, exp(−τ |W |)ντ
is the distribution for a unit rate Poisson process on W × [0, τ ] when the DBHs have
been ordered (see e.g. Møller and Waagepetersen (2004)).
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2.2 Independence

Recall that the DBH Mi = M(Ui) is the value of the random field M at the tree
location Ui, cf. the beginning of Section 2.1. In the so-called random-field model
(Takahata, 1994; Mase, 1996), M is assumed to be independent of the spatial point
process for the tree locations. This simplifies the statistical analysis greatly, since the
tree locations and the DBHs can be investigated separately by using standard tech-
niques for spatial point processes and for geostatistical data (Schlater et al., 2004).
Formal tests for the hypothesis that a given dataset is generated by the random-field
model are discussed in Schlater et al. (2004) and in Guan and Afshartous (2007).
Note that the hypothesis does not warrant an independence among the DBHs nor
among the tree locations. The special case of the random-field model where the
DBHs are independent, identically distributed, and independent of the tree loca-
tions is called the independently marked point process model. A test of this more
restrictive hypothesis is described in Stoyan and Stoyan (1994); see also Illian et al.
(2008) and Myllymäki et al. (2013). We remark that all tests mentioned above are
based on non-parametric summary statistics and stationarity and isotropy conditions
are imposed; in addition Schlater et al. (2004) required the marginal distribution of
the marks to be normal.

In our dynamic setting it is natural to consider the null hypothesis of conditional
independence between the times (T1, . . . , TN) and the points (X1, . . . , XN) given
the information (UN ,MN) about the largest tree, i.e. the gaps of DBHs (MN −
MN−1, . . . ,MN − M0) are independent of the tree locations (UN−1, . . . , U0) given
(UN ,MN). This null hypothesis of independence is equivalent to λ∗(t, x) being of
the form

λ∗(t, x) = λ∗(t)h∗t (x), t > 0, x ∈ W, (2.3)

where

(i) λ∗(t) = λ∗(t|Gt) is a conditional intensity for the temporal point process
T1, T2, . . . which may depend on its history Gt before time t (recall that the
temporal point process is required to be non-explosive),

(ii) h∗t (x) = h∗(x|mn, (xi; ti < t)) is a density function on W which only depends
on mn and the ordered set (xi; ti < t) of points appearing before time t (with
the ordering given by the times; notice that x0 is included in (xi; ti < t)).

When we later discuss simulation and model checking, we use the temporal inte-
grated intensity

Λ∗(t) =

∫ t

0

λ∗(s) ds, t > 0,

and the fact that Si = Λ∗(Ti), i = 1, 2, . . ., form a unit rate Poisson process on
(0,∞). Note that (ii) implies that conditional on (UN ,MN) = (x0,mn), N = n, and
the ordering of the points, the density for the ordered point process (X1, . . . , Xn)
with respect to Lebesgue measure on W n is the so-called Janossy density

p(x1, . . . , xn|x0,mn, n) = exp(|W |)
n∏

i=1

h∗i (xi) (2.4)
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where, with a slight abuse of notation, h∗i (xi) = h∗ti(xi). Note also that Schoenberg
(2004) considered a more restrictive hypothesis than (2.3), requiring that the tree
locations are independent, and he developed a non-parametric test for this hypoth-
esis.

In Section 2.3 below we discuss maximum likelihood inference when a parametric
model for λ∗(t, x) has been specified. Then, if the null hypothesis given by (2.3) is
a submodel, we propose to test the null hypothesis by a likelihood ratio test as
exemplified in Section 3. Based on general experience, we expect the likelihood ratio
test to be more powerful than the non-parametric tests discussed above, but we
leave an investigation of this for future work.

2.3 Likelihoods

Suppose a realization ((U0,M0), . . . , (UN ,MN)) = ((u0,m0), . . . , (un,mn)) has been
observed. It follows from (2.2) that the largest gap between the DBHs, τ̂ = tn =
mn−m0, is the maximum likelihood estimate (MLE) for τ . If data has been collected
with a known lower bound mmin ≥ 0 on the DBH of trees, it may be more reasonable
to use the estimate mn −mmin for τ .

Suppose also that a parametric model λ∗θ(t, x) for the conditional intensity has
been specified in terms of an unknown parameter θ which is variation independent of
τ . Throughout this paper, we refer to this as the full model. By (2.2) and using the
MLE τ̂ = tn, the spatio-temporal log-likelihood conditional on (UN ,MN) = (un,mn)
is

L(θ) =
n∑

i=1

log λ∗θ(ti, xi)−
∫∫

(0,tn)×W
λ∗θ(t, x) dt dx. (2.5)

The situation simplifies if we assume independence as in (2.3) so that

λ∗θ(t, x) = λ∗θ1(t)h
∗
θ2,t

(x), t > 0, x ∈ W, (2.6)

with θ = (θ1, θ2) where θ1 and θ2 are assumed to be variation independent. Through-
out this paper, we refer to this as the reduced model of independence. Under this
model,

L(θ) = L(θ1) + L(θ2)

where we can separately treat the temporal log-likelihood

L(θ1) =
n∑

i=1

log λ∗θ1(ti)− Λ∗θ1(τ̂) (2.7)

and the spatial log-likelihood for the spatial point process

L(θ2) =
n∑

i=1

log h∗θ2,i(xi) (2.8)

(omitting the constant log exp(|W |) = |W | from (2.4)). When we specify

h∗θ2,i(xi) = h̃∗θ2,i(xi)/c
∗
θ2,i
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by an unnormalized density h̃∗θ2,i(xi) = h̃∗θ2(xi|mn, (x0, . . . , xi−1)) with normalizing
constant c∗θ2,i = c∗θ2,i(mn, (x0, . . . , xi−1)), then (2.8) becomes

L(θ2) =
n∑

i=1

[
log h̃∗θ2,i(xi)− log c∗θ2,i

]
. (2.9)

In practice a problem arises when ties occur in DBHs due to discretization in
the data. We follow Diggle et al. (2010) in jittering tied DBHs.

3 Examples

For the models and data considered in this section, we let (un,mn) and (ti, xi), i =
1, . . . , n, denote the observed events. Further,W refers to one of the sampling regions
in Figure 1.

When determining the MLE of θ, we used the NLopt library (Johnson, 2010) as
implemented in the R package nloptr. First, the DIRECT-L method (Gablonsky
and Kelley, 2001) was used to obtain a global optimum θ̄. (As a check we also
used the DEoptim function of the R package RcppDE which gave similar results.)
Afterwards, to polish the optimum to a greater accuracy, we used θ̄ as a starting
point for the local optimization ‘bound-constrained by quadratic approximation’
(BOBYQA) algorithm (Powell, 2009) and obtained a final estimate θ̂.

Considering the reduced model of independence, the temporal integrated in-
tensity appearing in the temporal log-likelihood (2.7) will be expressible on closed
form, while the normalizing constants in the spatial log-likelihood (2.9) have to
be approximated by numerical methods. Also the three-dimensional integral in the
spatio-temporal log-likelihood (2.5) have to be approximated by numerical methods.
For these approximations we used the Cuhre method of the Cuba library (Hahn,
2005) as implemented in the cuhre function of the R package R2Cuba specifying
its arguments such that the absolute errors are small and in the case of the spatio-
temporal log-likelihood approximately equal under the full and reduced models (this
becomes important when we later consider likelihood ratios).

For plotting the datasets and results we have used the R package spatstat
(Baddeley and Turner, 2005).

3.1 Norwegian spruces

The spruce dataset in Figure 1 (left panel) was first analyzed in Fiksel (1984, 1988)
by fitting parametric models for unmarked Gibbs point processes (see also Stoyan
et al. (1995), Møller and Waagepetersen (2004), and Illian et al. (2008)). Penttinen
et al. (1992), Illian et al. (2008), and Grabarnik et al. (2011) accepted the hypothesis
of independent marking using tests based on non-parametric summary statistics, and
Penttinen et al. (1992) constructed a MPP model under this hypothesis. Goulard
et al. (1996) and Møller and Waagepetersen (2004) fitted parametric Gibbs MPP
models where the points and marks are dependent. We propose instead a parametric
model for the conditional intensity whereby the reduced model versus the full model
can be tested using the likelihood ratio statistic.
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We consider the following structure:

λ∗θ(t, x) = λ∗θ1(t)h
∗
θ2,t

(x)g∗θ3(t, x) (3.1)

where λ∗θ1(t) and h∗θ2,t(x) are as in (i)-(ii) in Section 2.2, g∗θ3(t, x) = g∗θ3(t, x|Ft) may
depend on Ft, and θ = (θ1, θ2, θ3). Specifically, we assume the self-correcting model
(Isham and Westcott, 1979)

λ∗θ1(t) = exp (α1 + β1t− γ1N(t))

with θ1 = (α1, β1, γ1) ∈ R× [0,∞)× [0,∞) and N(t) = #{i ≥ 0 : ti < t} being the
number of trees just before time t; for each integer i > 0, the density h∗θ2,ti(xi) =
h∗θ2,i(xi) is given by

h∗θ2,i(xi) =
1

c∗θ2,i

∏

j: j<i

φθ2(‖xi − xj‖)

which is inspired by Figure 9.2 in Møller and Waagepetersen (2004), where θ2 =
(α2, β2) ∈ [0,∞)× [0,∞),

φθ2(r) = 1[r ≤ α2] (r/α2)
β2 + 1[r > α2], r ≥ 0, (3.2)

c∗θ2,i =

∫

W

∏

j: j<i

φθ2(‖x− xj‖) dx

is the normalizing constant, and where 1[·] denotes the indicator function (the func-
tion (3.2) is similar to a pairwise-interaction function in Diggle and Gratton (1984)
with zero hardcore); and

g∗θ3(t, x) = exp

(
−α3

∑

ti<t

1[‖x− xi‖ ≤ β3, t− ti ≥ γ3]

)

where θ3 = (α3, β3, γ3) ∈ [0,∞)3 with β3 = γ3 = 0 if α3 = 0. This spatio-temporal
point process is well-defined and finite on [0, s] ×W for every s ∈ (0,∞), since for
any t ∈ [0, s], λ∗θ1(t) ≤ ρ(s) where ρ(s) = exp(α1 + β1s) is a constant, and since h∗θ2,t
is a density and g∗θ3 ≤ 1.

The parameters have the following interpretation. Clearly, α1 and β1 specify a
log-linear and increasing trend in time, however, if β1 > 0 and γ1 > 0, then a
large difference between Nt and the target β1/γ1 implies that λ∗(t) compensates to
force this difference back towards zero. The density h∗θ2,t(x) specifies around each
larger tree with location xi (i.e. ti < t) an inhibitive circular region D(xi, θ2); this
inhibitive interaction is weakened linearly as the distance ‖x− xi‖ grows; and there
is no interaction if ‖x − xi‖ ≥ α2. The reduced model of independence is the case
α3 = 0. If α3 > 0, then the g∗θ3(t, x)-term specifies around every xi with t− ti ≥ γ3
(i.e. the DBH of the tree located at xi has to be at least γ3 units larger) a spatio-
temporal source of inhibition given by a circular influence zone D(xi, β3).

The spatio-temporal point process can be simulated on [0, τ̂ ] × W as follows.
Notice that under the self-correcting model,

Si = Λ∗θ1(Ti) =
exp(α1)

β1

i∑

j=1

exp(−γ1j) [exp (β1Tj)− exp (β1Tj−1)] , i = 1, 2, . . . ,

(3.3)
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form a unit rate Poisson process on (0,∞), cf. Section 2.2. Conversely,

T1 =
1

β1
log {1 + β1 exp (γ1 − α1)S1}

and

Ti =
1

β1
log

{
exp (β1Ti−1) + β1 exp (γ1i− α1)Si

−
i−1∑

j=1

exp (γ1(i− j)) [exp (β1Tj)− exp (β1Tj−1)]

}
, i = 2, 3, . . . .

Thereby we easily obtain a simulated realization t1 < . . . < tn, say, under the self-
correcting model restricted to [0, τ̂ ]. Further, assuming for the moment that α3 = 0,
for each i = 1, . . . , n, we generate a point xi from the density h∗θ2,i(xi); here, we
simply use rejection sampling, with a uniform proposal distribution on W . Finally,
if in fact α3 > 0, we make a thinning in accordance to the ordering in time so
that each (ti, xi) is kept with probability g∗θ3(ti, xi), where the history is given by
(UN ,MN) = (un,mn) and the kept events (tj, xj), j < i, by this thinning procedure;
the kept events then form a simulation of the spatio-temporal point process.

For the reduced model of independence (the case α3 = 0), since (3.3) specifies
Λ∗θ1(τ̂) = Λ∗θ1(tn), the temporal log-likelihood (2.7) can easily be calculated. The
MLE under the full model is given by α̂1 = 5.52, β̂1 = 21.72, γ̂1 = 0.02, α̂2 = 2.17,
β̂2 = 3.11, α̂3 = 0.37, β̂3 = 2.81, and γ̂3 = 0.05. A rather similar MLE under
the reduced model of independence is given by α̂1 = 5.40, β̂1 = 20.01, γ̂1 = 0.02,
α̂2 = 2.86, and β̂2 = 2.25.

For the likelihood ratio statistic Q for testing the null hypothesis α3 = 0 against
the alternative hypothesis α3 > 0, the value of −2 logQ compared with a χ2-
distribution with 8 − 5 = 3 degrees of freedom provides a p-value of about 79%.
Recall that if α3 = 0, then Si, i = 1, 2, . . ., given by (3.3) form a unit rate Poisson
process on [0,∞). Thus for further testing the null hypothesis we also consider the
one-sample Kolmogorov-Smirnov test for Λ∗

θ̂1
(ti) − Λ∗

θ̂1
(ti−1), i = 1, . . . , n, being a

sample from a unit rate exponential distribution; the p-value is about 9%. Further-
more, Figure 2 shows non-parametric estimates of four functional summary statistics
(the L, F , G, and J-functions, see e.g. Møller and Waagepetersen (2004)) for the
spruces locations together with so-called 95% simultaneous rank envelopes (Myl-
lymäki et al., 2013) obtained by 2499 simulations under the fitted reduced model
of independence, so that the estimated probability for one of the curves of the non-
parametric estimates is outside the corresponding envelope is 5% if α3 = 0. The
95% envelopes cover the non-parametric estimates and the deviation from the the-
oretical curve for a homogeneous Poisson process indicates inhibition between the
tree locations. Finally, the estimated p-value for the reduced model of independence
using the combined global rank envelope test (Myllymäki et al., 2013) is between
64.6% and 65.6%. In conclusion, the spruces dataset is reasonable well described by
the reduced model of independence.
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Figure 2: Non-parametric estimates of functional summary statistics for the spruces loca-
tions (solid lines) together with 95% simultaneous rank envelopes (shaded areas) calculated
from 2499 simulations of the fitted reduced model of independence. For comparison the
theoretical curves for a homogeneous Poisson process are shown (dot-dashed lines). Top
left: (L(r) − r)-function. Top right: F -function. Bottom left: G-function. Bottom right:
(J(r)− 1)-function.
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3.2 Longleaf pines

The pines dataset in Figure 1 (right panel) were collected and analyzed by Platt
et al. (1988); see also Rathbun and Cressie (1994) for a detailed description of the
data. Rathbun and Cressie (1994) considered a larger dataset, including information
about annual mortality and ‘disturbance paths’, and they divided the trees into var-
ious time and size groups, which were analyzed individually using different types of
spatial models. Cressie (1993), Stoyan and Stoyan (1996), Mecke and Stoyan (2005),
Tanaka et al. (2008), and Ghorbani (2012) fitted different Neyman-Scott point pro-
cess models for the pine locations. To the best of our knowledge, a parametric MPP
model for the pines dataset in Figure 1 has so far not been suggested and analyzed.

We consider a kind of marked Hawkes process where (a) trees ‘live, grow, and
produce offspring in a random fashion’ and (b) ‘a large tree is likely to have a greater
influence on the growth of a small tree than a small tree has on a large tree’ (the
quotations in (a)-(b) are from Platt et al. (1988) and (b) may explain the observation
in Chiu et al. (2013) that trees close together tend to have smaller diameters than
the typical tree): Let

λ∗θ(t, x) = µ+
∑

ti<t

αqγ(t|ti)qσ(x|xi) exp (−β(t− ti)/‖x− xi‖) (3.4)

where θ = (µ, α, γ, σ, β) with µ ≥ 0, 0 ≤ α < 1, (σ, γ) ∈ (0,∞)2, β ≥ 0, qγ(t|ti) =
1[t− ti ≤ γ]/γ is the uniform density on (ti, ti + γ), and qσ(x|xi) is the bivariate
Cauchy density function with scale parameter σ and restricted to W . Since W is
rectangular, the normalizing constant of this truncated bivariate Cauchy distribution
is expressible on closed form (Nadarajah and Kotz, 2007).

This spatio-temporal point process can be interpreted as an immigrant-offspring
process, whereby it can easily be simulated, since

• the immigrants form a Poisson process on (0,∞)×W with constant intensity
µ (we also consider (T0, X0) = (0, x0) as an immigrant);

• each immigrant or offspring (Ti, Xi) generates a Poisson processes on (0,∞)×
W , where the intensity function associated to (Ti, Xi) = (ti, xi) is given by the
term after the sum in (3.4) for (t, x) ∈ (ti,∞)×W and it is zero otherwise—for
simulation of this Poisson process, we first simulate a Poisson process where
the number of events is Poisson distributed with parameter α, the times are
i.i.d. with density qγ(t|ti), the locations are i.i.d. with density qσ(x|xi), and
the times and locations are independent, and second we make an independent
thinning where the retention probability is given by the exponential term in
(3.4);

• thus there is a cluster associated to each immigrant (Ti, Xi), where the cluster
is given by (Ti, Xi) and its first, second, . . . generation offspring processes;

• given the immigrants, these clusters are independent;

and hence the temporal process can be viewed as a branching process which is seen
to be non-explosive.
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Suppose β = 0. This is the reduced model of independence and the temporal
process is a Hawkes process with conditional intensity

λ∗(µ,α,γ)(t) = µ|W |+ α
∑

ti<t

qγ(t|ti)

and integrated intensity

Λ∗(µ,α,γ)(t) = µ|W |t+ αN(t− γ) + α
∑

i: t−γ<ti<t
(t− ti) /γ

where we set N(t) = 0 whenever t < 0. Thus the temporal log-likelihood (2.7) is
easily handled. Note that the mean number of points in each cluster is 1/(1−α) (see
e.g. Section 2.2 in Møller and Rasmussen (2005)), and so by ignoring edge effects,
the estimated expected number of points is

µ̂|W |τ̂ /(1− α̂) (3.5)

when using our parameter estimates given below.
The MLE under the full model is given by µ̂ = 4.950×10−5, α̂ = 0.999, γ̂ = 5.051,

σ̂ = 3.669, and β̂ = 0.375. Under the reduced model of independence, the MLE is
given by µ̂ = 4.601 × 10−5, α̂ = 0.953, γ̂ = 5.078, σ̂ = 3.984, and hence using
(3.5), µ̂|W |τ̂ /(1 − α̂) = 2893.50 is providing an unreasonable high estimate for the
expected number of longleaf pines. Indeed, considering the likelihood ratio statistic
Q for the null hypothesis β = 0 versus the alternative hypothesis β > 0, the value
of −2 logQ evaluated in a χ2-distribution with one degree of freedom gives a highly
significant p-value of 6× 10−4. Also a one-sample Kolmogorov-Smirnov test for the
null hypothesis based on the times (similar to the one considered in Section 3.1) is
providing a highly significant p-value of 2.2× 10−16.

Performing for the fitted full model a one-sample Kolmogorov-Smirnov test based
on the times, where the temporal integrated intensity has to be calculated by nu-
merical methods, the p-value is about 60%. Figure 3 is similar to Figure 2 but for
the longleaf pines and the fitted full model. The figure indicates a reasonable fit and
a more clustered behaviour than expected under a homogeneous Poisson process
model. The estimated p-value for the fitted full model using the combined global
rank envelope test (Myllymäki et al., 2013) is between 15.9% and 17.6%. In conclu-
sion, although α̂ is close to the boundary of the parameter space, the longleaf pines
dataset is reasonable well described by the full model while the model of indepen-
dence should clearly be rejected.
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Figure 3: As Figure 2 but for the longleaf pine trees and the fitted full model.
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