

Aalborg Universitet

Trust in Co-sourced Software Development

Schlichter, Bjarne Rerup; Persson, John Stouby

Published in:
Proceedings of the Eighth Mediterranean Conference on Information Systems

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Schlichter, B. R., & Persson, J. S. (2014). Trust in Co-sourced Software Development. In Proceedings of the
Eighth Mediterranean Conference on Information Systems (pp. 1-14) http://aisel.aisnet.org/mcis2014/39

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: March 13, 2024

https://vbn.aau.dk/en/publications/60aed533-4646-485d-a2a6-aed03fdcb8f4
http://aisel.aisnet.org/mcis2014/39

Eighth Mediterranean Conference on Information Systems, Verona 2014 1

TRUST IN CO-SOURCED SOFTWARE DEVELOPMENT
Complete Research

Bjarne Rerup Schlichter*, Aarhus University, Denmark, brs@badm.au.dk

John Stouby Persson*, Aalborg University, Denmark, john@cs.aau.dk

*) The authors contributed equally to the paper

Abstract

Software development projects are increasingly geographical distributed with offshoring. Co-sourcing

is a highly integrative and cohesive approach, seen successful, to software development offshoring.

However, research of how dynamic aspects of trust are shaped in co-sourcing activities is limited. We

present a case study of how the co-sourcing relationship between a certified CMMI-level 5 Danish

software company and an offshoring supplier can be conceptualized as an Abstract System. An

Abstract System is a dis-embedded social system (such as banking) that is trusted despite lack of

detailed understanding or personal trust relations. The paper suggest how certain work practices

among developers and managers can be explained using a dynamic trust lens based on Abstract

Systems, especially dis- and re-embedding mechanisms.

Keywords: Dynamic Trust, Abstract Systems, Co-sourcing, Distributed Software Projects, CMMI,

Scrum, Agile, Offshoring

1 Introduction

Global competition, need for flexibility and resources with new types of expertise as well as reduction

of costs drives software developing companies to engage in geographical distributed software projects

(Lacity et al., 2009, Persson et al., 2009). Companies may pursue these opportunities by engaging in

co-sourcing, where an outsourcing provider and a client meld their IT competencies to accomplish the

clients work (Kaiser and Hawk, 2004).

Nevertheless, as in other business engagements there are issues of trust associated with this practice.

While software companies can improve their business processes by the use of CMMI (capability

maturity model, integrated (Team, 2010)), the trust issues related to offshoring may still be present.

Therefore, more studies on the dynamic interactions between offshoring, firm capabilities, and

emergent models of IT outsourcing are needed for understanding how to manage trust in development

projects. Earlier studies identified trust factors in traditional supplier-client offshoring relationships

(Kelly and Noonan, 2008, Westner and Strahringer, 2010, St John et al., 2013) and dynamic aspects of

trust in dedicated information systems implementation projects (Schlichter, 2010a). However,

available research is limited on how trust is maintained in a co-sourcing relationship. More

specifically, research of how trust is managed in software development offshoring from a company

with the highest CMMI level is limited. Leading us to the following research question:

How is trust maintained in co-sourced software development?

This paper presents how Systematic, a certified CMMI level 5 software company, perceives trust

issues in a co-sourcing environment across two countries involving the offshoring provider

Conscensia. First, the paper introduces the theoretical background on dynamic trust in distributed

settings. The research approach section describes the case, data collection, and data analysis. The

findings section presents our analysis of the actors’ perceptions of trust to co-sourced software

mailto:brs@badm.au.dk
mailto:john@cs.aau.dk

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 2

development as an Abstract System. Hereafter we discuss how our analysis address the research

question and contributes to previous research. Finally, we summarize the conclusion of the paper.

2 Theoretical Background

This section provides a theoretical and contextualised introduction to offshoring, co-sourcing, and

related trust issues.

2.1 Offshoring and co-sourcing

Offshore outsourcing involves cross-organizational transactions by the use of external agents to

perform one or more organizational activities (Dibbern et al., 2004). In software development, this

transaction can apply to everything from the use of contract programmers to third-party facilities

management.

Offshoring setups may pursue high levels of cohesion, interdependency, and integration, while other

setups pursue high levels of independence and low coupling among sites. In the pursuit of high

cohesion, companies may co-locate the software developers (Persson, 2013, Šmite et al., 2010) adopt

agile methodologies (Jalali and Wohlin, 2012, Persson et al., 2012) and strive for virtual team setups

with high levels of trust (Siebdrat et al., 2009, Søderberg et al., 2013). In addition to the widespread

virtual team conceptualization (Curseu et al., 2008, Ebrahim et al., 2009, Martins et al., 2004, Powell

et al., 2004, Schiller and Mandviwalla, 2007) , the high cohesion approach in software development

offshoring has been conceptualized as co-sourcing (Kaiser and Hawk, 2004). Kaiser and Hawk (2004)

define co-sourcing as an outsourcer and client melding their IT competencies to accomplish the

client’s work. Based on a case study from the financial industry Kaiser and Hawk (2004) suggest five

steps involving engagement, commitment, interchange, co-sourcing, and alignment. The goal of

alignment in outsourcing means alignment between the two firms in commitment and values through

mutually orientated adaptation of strategy and organization (Kaiser and Hawk, 2004). However,

available research provides limited explanation of how a high cohesion strategy such as co-sourcing

shapes trust in the software development process for offshoring.

The processes of software development have different conceptualizations of the ideal practice at the

operational level. One of these is the CMMI for development (Team, 2010), which prescribes 5 levels

of maturity ranging from initial, managed, defined, and quantitatively managed, to optimizing at level

5. Elevating the CMMI certification at the client organization is a suggested best practice in offshoring

(Rottman and Lacity, 2006). Specifically to close the process gap between client and supplier

organizations (Rottman and Lacity, 2006). At one point in time more than half of the firms worldwide

that were certified at level 5 were in India (Matloff, 2005). However, a CMMI level 5 supplier

certification provides no guarantee of successful offshoring (Matloff, 2005). Interestingly, CMMI has

been combined with agile methods even though the two approaches may be contradictory in some

aspects (Persson, 2010, Santana et al., 2009, Turner and Jain, 2002). Our case company show a such

successful combination of CMMI level 5 and Scrum (Sutherland et al., 2008a). The adoption of agile

methods in offshoring reflects a high cohesion approach to offshoring, that has several accounts of

success (Persson et al., 2012, Sutherland et al., 2008b).

Trust is a key construct in outsourcing to an unknown workforce since a ‘trusted’ partnership is

needed. Especially ‘techie’ to ‘techie’ relationships promotes trust (Ågerfalk and Fitzgerald, 2008).

Even though a vast amount of research in outsourcing and trust is published in the leading Information

Systems journals, only few papers directly addresses aspects of outsourcing in an offshore setting. The

majority of these papers address trust in relation to contractual relationships between legal entities but

not how actors establish trust into a team based software development process. E.g. they research how

trust between business partners can be seen as one of the factors that determines how development-

outsourcing projects are contracted, managed and priced to address i.e. risk (Gefen et al., 2008).

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 3

2.2 Trust

The success and failure of virtual teams (e.g. distributed software development groups communicating

mainly through information and communication technologies (ICTs)) is contingent upon trust. This

contingence is because trust functions like the glue that holds and links virtual teams together. Virtual

teams need to build trust swiftly at the very outset. However, past studies on virtual teams also found

that the trust in virtual teams appeared to be fragile. Thus, maintaining trust is as important as to build

it (Kanawattanachai and Yoo, 2002). Traditional control mechanisms imported from a face-to-face

communication environment are less effective in an ICT-mediated communication environment

(Piccoli and Ives, 2003). Virtual teams are a particularly fruitful ground for gaining an understanding

of how trust moderates, rather than directly affects, outcomes. Contextualized views of trust in global

virtual teams are there for called for (Jarvenpaa et al., 2004). The effects of using trust as a managerial

intervention depends on the situation and conditions (Schlichter and Rose, 2013). In situations with

weak structure, managers may attempt to change the level of trust. Increases in trust are likely to have

a direct, positive impact on a team member's attitudes and perceived outcomes. In situations with

moderately strong structure, increases in trust are likely to have contingent impacts through other

factors. In situations with strong structure, increases in trust are likely to have little or no effect on

work outcomes (Jarvenpaa et al., 2004). Team members' frequent communication in the team provides

reassurance that others are attending to the task and increases a member's early trust in the team and

feelings of cohesiveness’ (Jarvenpaa et al., 2004). Once individuals accumulate sufficient information

to assess a team member’s trustworthiness, the effects of swift trust declines and knowledge-based

trust formed by team members’ behaviours (perceived ability, integrity, and benevolence) become

dominant. The use of ICT increase perceived risk of team failure, which reduce the likelihood that

team members engage in future trusting behaviours’ (Robert Jr et al., 2009).

Emotional (e.g. trust) issues of outsourcing relations related to software development have not been in

focus and thus are in need of further studies (Kelly and Noonan, 2008). However, no framework

explains how trust is maintained when co-sourcing from a mature (CMMI level 5) software

development organization. Thus, we present a dynamic trust framework (Rose and Schlichter, 2012)

as the analytical lens for investigating co-sourced software development from a CMMI level 5

certified software company. Below, we introduce trust issues related to outsourcing, virtual teams and

presents the lens of Abstract Systems (Giddens, 1990) to establish a frame for conceptualizing

dynamic trust in these settings.

We focus on the managers’ trust in the co-sourced software development process (the ‘abstract

system’) to reach their expected goals. Abstract systems are combinations of technical means,

procedures, professional expertise and other structures. Examples of this are legal and banking

systems those actors approaches and uses despite their limited detailed understanding of how they

work. They trust them. This trust in abstract systems enables dynamism in modern societies, by

allowing social individuals to act with confidence in the absence of personal knowledge of, or contact

with, the structures, people, and actions embodied in the system. As a direct consequence, trust in

abstract systems allows e.g. the use of a bank without detailed knowledge of its procedures or

established relationships with its employees. Abstract systems are thus disembedding mechanisms,

enabling time-space distanciation and providing security and guarantees to their users. An abstract

system is a means to stabilize relations across time and space — ‘something to trust in’ (Walsham,

1998). Trust in abstract systems produces dynamism in society by allowing individuals to proceed in

situations of uncertainty, freeing (mental) resources and enabling social interactions across time and

space. The absence of such trust forces social actors to take many actions to reduce risk and

uncertainty, to control situations by face-to-face interactions and confidence-building measures, and to

set in place procedures and regulations to govern social interactions (Giddens, 1990), as rephrased by

(Schlichter, 2010b). We adapt the following principle analytical constructs related to trust derived

from Giddens by Schlichter & Rose (2013) as structured in figure 1.

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 4

 Abstract system – dis-embedded social system trusted despite lack of detailed understanding or

personal trust relations

 Trust – in persons and in abstract systems.

 Time-space distanciation – the ability of a social system to function over time and space without

the physical co-presence of its social actors, sustained by trust.

 Dis-embedding, re-embedding – processes where an abstract system is removed from immediate

close contact, and temporarily made personal again.

 Access point – a point where a lay person makes contact with the abstract system.

 Chronic reflexion – constant evaluation of our social situation and actions (including the

trustworthiness of people and abstract systems).

 Ontological security - confidence in the robustness and sustainability of self-identity and belief in

the continuity of social practice, sustained by trust in people and abstract systems.

Figure 1: Construct relationships in Giddens’ account of trust in abstract systems (Schlichter and

Rose, 2013)

We claim that the outsourcing relationship in the present co-sourced development project can be

understood as an Abstract System and hence that trust can be analyzed using the above-mentioned

constructs.

3 Research Approach

This section presents the case and its related context followed by an explanation of how we collected

and analysed data. The case study approach is in the terms of Cavaye (1996) single case with

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 5

interpretive use of qualitative data for discovery. This interpretive research approach allowed us to

investigate how co-sourcing shapes trust in offshoring in its organizational and cross-cultural context

as socially constructed and thus open to several interpretations by organizational actors but also to us

as researchers (Klein and Myers, 1999, Walsham, 1995, Walsham, 2006).

3.1 The case

The software company Systematic, established in 1985, have more than 450 employees at offices in

Denmark, the United Kingdom, the United States, Australia, Germany, Finland, and Sweden.

Systematic is the largest privately owned Danish software development company and is one of few

European companies that since 2005 reached and sustained a CMMI level 5 certification (Pries-Heje et

al., 2008). Especially larger public organizations often require a high maturity level. Their later

addition of the agile method Scrum in 2006 supposedly enhanced the productivity with a factor two

(Sutherland et al., 2008a), even though some research claim that CMMI can be in conflict with agile

methods as Scrum (Santana et al., 2009, Turner and Jain, 2002). Scrum is an iterative and incremental

development approach where planning is concurrent to the development activities and the work is

divided into smaller chunks called sprints. Each sprint is planned to be self-contained leading to a new

running version on the road to the final software product (Jakobsen and Sutherland, 2009). Systematic

has outsourced system development activities offshore for some years, primarily with a cost-reduction

focus, with varying degree of success. In 2010, Systematic initiated cooperation with the offshoring

company Conscensia and in autumn 2012, they bought 25 % of the company. Conscensia is a Danish

company established in 2006 selling facilitation of software development offshoring to Ukraine (cities

of Lviv and Kiev).

The case study takes its offset in one of the divisions of Systematic following the development of one

of the main product lines. Software development is done by more than 100 developers in seven groups

all divided into one or more teams where each team is staffed by both Danish and Ukrainian

developers. We focused on two teams: Team F (20 persons, 7 in Ukraine) and Team H (35 persons, 10

in Ukraine). The Ukrainian software developers reside in facilities belonging to the Danish service

provider Conscensia. Conscensia provides offices including infrastructure, finding, and recruitment of

competences matching the clients’ needs. Their human resource effort involves both technical and

interpersonal skill based recruitment as well as local facilitation of the software developers (e.g.

coaching, cultural training, career advisory, and assistance with communication across countries).

Conscensia has two delivery managers in Lviv (A and B) with reference to the Vice President (VP) of

Global Delivery and a Chief Operating Officer (COO) with reference to the chief executive officer

(CEO). The CEO and the VP are situated in Denmark. A local IT department manager, a Recruitment

Manager and a Career Advisor, supports the COO. In all, more than 100 developers are situated in the

Lviv premises.

The two Systematic teams, supported by Delivery Manager A, develop mission critical software,

primarily based on .Net and Java. Both teams apply Scrum in their development process and they sit in

their own open offices at each location. The teams use Intelli / IDEA as Integrated Development

Environment, Rational Team Concert (RTC) to manage source code, and Concurrent Version System

(CVS) to manage documentation. Lync facilitates the majority of communication, such as live calls

and shared screens. Daily scrum meetings are held for 15 minutes in the morning in dedicated rooms

using large screens and laptops showing each other’s environments. The teams are organized with a

product-manager and headed by a project manager and a scrum-master for each sub-team.

3.2 Data collection

The data collection included document studies and individual semi-structured interviews with team

members and management from both Systematic and Conscensia. We initiated the case study with

informal meetings with managers in Systematic (in Denmark) and Conscensia (in Ukraine) in spring

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 6

2012. To get an overview of the overall organization, we did exploratory interviews with managers

and developers in the early summer 2012 in Lviv. We developed an interview guide based on this

explorative phase focused on their offshoring challenges and alleviation strategies. This guide

supported our semi-structured interviews in Lviv and Denmark autumn 2012, spring 2013 and spring

2014. The pilot interviews conducted with managers of Conscensia and a couple of software

developers brought about several changes to the interview guide such as framing and focusing

questions for software professionals. They furthermore provided an understanding of the environment

and the challenges faced by the organizations and helped identify additional candidates for

interviewing.

We interviewed four members off each team with different roles and nationalities as well as managers

from Conscensia and Systematic. After interviewing the Danish side of the case, we interviewed the

Ukrainian side once more to qualify observations and challenge provisional findings. The interviews

lasted from 40 to 60 minutes; they were recorded and fully transcribed verbatim. To ensure correct

information regarding e.g. use of technology and to maintain good relations with the interviewees the

transcriptions was sent for verification. We did 19 interviews combined with informal meetings. In

addition to the interviews, we photographed the premises (offices and facilities for scrum-meetings)

and collected supporting documents such as organograms, sketches of workplaces, presentations, and

product descriptions. The present trust research, focus on eight interviews with four participants from

team A. The interview guide (appendix 1) was quite open addressing risks and indirectly areas related

to trust, but was not directly based on the trust constructs form figure 1.

3.3 Data analysis

We analysed the interview transcripts and documents to uncover the involved participants’ attention to

trust related to co-sourced software development. Searching for deviations from established theory by

approaching the analysis as a critical dialogue between the theoretical frameworks (the Schlichter &

Rose model in figure 1) presented in the background section and our empirical work (Alvesson and

Kärreman, 2007). To identify incidents or perceptions related to offshoring and trust, we searched and

coded the transcripts in NVivo (Bazeley, 2007). We coded statements pertaining to trust issues and

grouped them to reveal patterns or other findings. For further triangulation, managers in Systematic

and Conscensia reviewed the analyses, which lead to a few corrections providing alternative

interpretations and questioning of findings (Klein and Myers, 1999). In the following, we present our

findings based on the model of dynamic trust (Schlichter and Rose, 2013) (figure 1) for co-sourced

software development.

4 Findings

In this section, we present the project manager’s trust issues related to the co-sourced development

process. For each of the eight trust constructs in figure 1, we identified relations of trust and the

associated constructs in the case (table 1), primarily from our interviews with management, but also

enlightened by software developers in the teams.

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 7

Trust construct Frequency Issues related to the trust-construct

1 Technical means 6 The use of electronically scrum boards
Video conferencing – screens and com.
Rational Team Concert software

2 Procedures /
structures

13 The SCRUM approach to system development
CMMI-5 procedures followed
Support structure at Conscensia

3 Professional
expertise

7 Education of staff
Earlier experience from outsourcing

4 Individuals and
groups

2 Basically all the actors andgroups : Teams, Projects, Managers,
Developers,

5 Time-space
distanciation

7 The Co-located team meetings
Work on same sprints from different locations.

6 Access point 2 Staffs PC’s with tools
Scrum-meetings and other project meetings

7 Dis-embedding
and
re-embedding

30 The use of CMMI-5
Risk alleviation techniques
Contact through video-conferences
Social gatherings and Country visits

8 Chronic reflection 9 Thoughts on how co-sourcing developed in different settings
Learning process at team leads

9 Ontological
security

2 The actors firm confidence on the stability of the setup.

Table 1: Abstract Trust Constructs observed in the case

First, we argue that observations from the case confirms that a co-sourced development process can be

conceptualized as an Abstract System hence allowing us to apply the analytical framework presented

above (Figure 1). An Abstract system is a dis-embedded social system trusted despite lack of detailed

understanding or personal trust relations. The social system in consideration for our case study is an

abstract system that is developing software. The abstract system is used by the management

represented by a set of actors: The project manager and the deputy director. These users (named ‘lay-

persons’ according to the Abstract System vocabulary) does not have a full and complete

understanding on what’s going on during the actual software development process but trusts the

abstract system which underpins it – as well as the abstract system relies on this trust. The trust is

dynamic, influences in both directions. A set of artefacts, i.e. form of technical embodiments

(contracts, agreements, IT-based tools) constitutes the abstract system which also includes humans

(software developers) and well-established procedures (i.e. CMMI-5). In the present

conceptualization, managers are the actors approaching the abstract system.

Figure 2 models the dynamic aspects of trust in the Conscensia/Systematic case, as an abstract system

of a co-sourced development project. The model illustrates how the actor, the project manager,

interacts with the development project through both face work interactions, configuration workshops,

and faceless interactions as well as own configuration work using own computer.

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 8

Figure 2: Contextualized model of dynamic trust in co-sourcing

The conceptualisation in Figure 2 show how the generic abstract trust constructs from the case

analysis (table 1) can be contextualised.

Two constructs (Dis-embedding and Re-embedding) calls for special interest since the case company

pursues a high level of task distribution, and hence a higher level of trust in the co-sourced software

development process (Schlichter and Persson, 2013). An analysis related to these two constructs is

presented below in more detail. The department manager’s emphasis on access to more flexible and

lower cost resources than found domestically as a main driver for co-sourcing in Systematic, guided

this analysis.

4.1 Dis-embedding

Dis-embedding is the lifting of social relations out of immediate context of personal relations that

becomes stabilized across time and space. We observed several indications of dis-embedding in the

case, where the abstract system of software development (the ‘sprints’) executes across the different

locations (the ‘time-space’ distanciation) to the managers satisfaction. As stated by one of the team

leads: ”We have an integrated set up so I don’t split our teams into a Lviv team and a Aarhus team, we

are more like a single team but just located in different locations.” (Team lead A).

One example of the dis-embedding mechanisms is the structured set of procedures (e.g. the CMMI-5

procedures applied) framing the development process:

“I have a possibility to compare this with my previous places of work. The company I was working at,

it was my first company, I was working there for three years and they also got some CMMI

certification but I don’t think that processes were used on this company so much as they are on

‘Systematic’ and I can see that it really just works. We follow the defined process and I think it helps

in our daily work, we just know what to do and how to do.” (Team lead).

Abstract Systems

Co-sourced System

Development

Access Point

Scrum-sessions

Individuals and

Groups

Team lead and PM

Ontological Security

Self-confidence of

Team lead and PM

Time-Space

Distanciation

Co-location

ex
h
ib

it
→

←
 e

v
o

lv
es

 i
n

Chronic Reflection

On-going eval. of

own performance by

tream lead and PM

Re-embedding

Visits by PM at site

and team members

in DK

is

made

immedi

ate at

PM’s trust in the

Software Dev.

Project

Dis-embedding

CMMI-5, SCRUM

Conscensia

display

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 9

Another dis-embedding mechanism is the activities by the offshoring company Conscensia, both in

form of cultural difference training: (Software developer); in form of day-to-day on-site support to the

development process and local HR processes, e.g.: “We have some performance talks with <them>,

but this is mainly taken care of the <Conscensia>HR department in Ukraine with my input”

(Systematic manager).

Our observations from the case show how the structured development processes and on-site support

from the hosting company are dis-embedding mechanisms enabling the actors trust into the software

development process.

4.2 Re-embedding

Re-embedding are processes where an abstract system, removed from immediate close contact,

temporarily is made personal again. From the interviews, we see two examples of temporary

personalisation. The first is the physical movement of staff between Systematics premises in Ukraine

and Denmark:

“[We go to Denmark sometimes] Yes, I think that our cooperation is going quite well and I think this

is one of the main reasons for that is because we meet in person even though LYNC is a great tool it

cannot replace live communication. Yes, so we do travel. We have some people from Danish side

coming here to Lviv. I think actually in common I’m going three times a year….For one to two weeks.”

(Team lead).

The team lead state that this face-to-face contact cannot be replaced by on-line communication, even

though the use of on-line communication, e.g. in form of the tool LYNC somehow also serves re-

embedding purposes by giving the interaction a physical touch:

“We do that by video-calls. At both locations, we have webcams at the desks so we can see the person

we are talking with. Not because we do not know him, but it is always nice to see the face – to see how

he reacts when told about a mistake – to see if he becomes crossed about it or still smiles” (Manager

A) and ”one of the most important is Microsoft LYNC which we are using for communication and for

our video calls, video meetings, and just for messaging. I think this is one of most important as well.”

(Team lead).

Our observations from the case show how trust is re-established through the personal (face-to-face)

interactions supported by physical movement and video-calls. These re-embedding mechanisms

compensates for the lack of completely dis-embedded structures.

5 Discussion

In this paper, we report an interpretive case study to answer the research question: How is trust

maintained in co-sourced software development? We found that co-sourced software development can

be conceptualized as an Abstract System. Trust in this Abstract System was notably maintained by dis-

and re-embedding mechanisms. Dis-embedding was facilitated by the SCRUM and CMMI-5

processes and the structures provided by the offshoring company. Re-embedding was facilitated

through physical gatherings (moving staff between Ukraine and Denmark) and videoconferencing.

This study show the usefulness of the model of dynamic trust (Schlichter and Rose, 2013) in

explaining the maintenance of trust in software development offshoring. Maintenance of trust is a key

challenge in offshoring with virtual team setups (Siebdrat et al., 2009, Søderberg et al., 2013) that

needs to be understood as a concurrently interpersonal and structural phenomenon. Our findings

suggest that trusting a high cohesion strategy to offshoring such as co-sourcing (Kaiser and Hawk,

2004) is not only explained through re-embedding but also dis-embedding by other processes and

structures. In the Systematic/Conscenscia case these defined process were Scrum and CMMI-5

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 10

(Sutherland et al., 2008a), however other processes may also facilitate dis-embedded trust to co-

sourcing.

Previous IS research have to a large extend addressed trust in relation to contractual relationships

between legal entities, not how actors establish trust into a team based software development process.

E.g. researching how trust between business partners can be seen as one of the factors that determines

how development-outsourcing projects are contracted, managed and priced to address i.e. risk (Gefen

et al., 2008). Our study provides a contextualized view of trust (see Figure 2) called for in global

virtual team research (Jarvenpaa et al., 2004). Based on the model of dynamic trust (Schlichter and

Rose, 2013) and the corresponding findings from our case study, we suggest that such a contextualized

view of trust can be understood in terms of: Technical means, procedures / structures, professional

expertise, individuals and groups, time-space distanciation, access point, Dis- and re-embedding,

chronic reflection, and ontological security (Table 1). These abstract trust constructs, may be used in

future studies to investigate how trust is maintained in different offshoring contexts for software

development.

Trust is an emotional issue in software development offshoring that needs further studies (Kelly and

Noonan, 2008). Our contextualized model of dynamic trust in co-sourcing based on a mature (CMMI

level 5) software development organization as the case contributes to this call for research. (Kelly and

Noonan, 2008) studied trust in offshoring with a very opaque development process. We present how

trust in a case with a very well defined development processes is not only dis-embedded but also

frequently re-embedded in ways similar to their “relationship work”.

Previous research also suggests that the use of ICT increased perceived risk of team failure, which

reduced the likelihood that team members would engage in future trusting behaviours (Robert Jr et al.,

2009). However, our findings suggest that re-embedding through not only physical gatherings but also

videoconferencing is a central component in maintaining trust in a co-sourcing relationship. Thus, our

findings support that team members' frequent communication increases trust in the team and feelings

of cohesiveness’ (Jarvenpaa et al., 2004). However, while Jarvenpaa et al. (2004) argues that situations

with strong structure, increases in trust are likely to have little or no effect on work outcomes,

management in Systematic were highly attentive to maintaining trust in their offshoring relationship

with Conscensian developers in Ukraine.

6 Conclusion

Based on an interpretive case study, we conclude that the co-sourced software development process

can be conceptualized as an Abstract System and that the conceptualization provides insight into the

intrinsic dynamic trust relations. We claim that trust is maintained in co-sourced software development

by the use of dis- and re-embedding mechanisms:

 The formal process of SCRUM and CMMI-5 and the facilitation management (cultural training /

HR support / general process support) done by the offshoring company provides structures and

hence a high level of dis-embedding

 Re-embedding is provided through physical gatherings (moving of staff between Ukraine and

Denmark) and videoconferencing.

We acknowledges the need for a more in depth analysis and hence description of the presented

constructs and their relationships. During the next phase of our research we will refine the model

given in figure 2 as well as dig deeper into how specific aspects of the software ecology influences

trust during the software development process.

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 11

7 Acknowledgments

The research received support from Center for IT Project Management and Innovation at Aarhus

University. We also thank Conscensia and Systematic for their helpfulness and participation. Ternopil

National Economic University provided a living discursive atmosphere and highly appreciated logistic

support during stays in Ukraine. The first author is professor by honour at TNEU.

References:

ALVESSON, M. & KÄRREMAN, D. 2007. Constructing mystery: Empirical matters in theory

development. Academy of Management Review, 32, 1265-1281.

BAZELEY, P. 2007. Qualitative Data Analysis with NVivo, London, Sage Publications Ltd.

CURSEU, P. L., SCHALK, R. & WESSEL, I. 2008. How do virtual teams process information? A

literature review and implications for management. Journal of Managerial Psychology, 23,

628-652.

DIBBERN, J., GOLES, T., HIRSCHHEIM, R. & JAYATILAKA, B. 2004. Information systems

outsourcing: a survey and analysis of the literature. ACM SIGMIS Database, 35, 6-102.

EBRAHIM, N. A., AHMED, S. & TAHA, Z. 2009. Virtual Teams: a Literature Review. Australian

Journal of Basic and Applied Sciences, 3, 2653-2669.

GEFEN, D., WYSS, S. & LICHTENSTEIN, Y. 2008. BUSINESS FAMILIARITY AS RISK

MITIGATION IN SOFTWARE DEVELOPMENT OUTSOURCING CONTRACTS. MIS

Quarterly, 32, 531-542.

GIDDENS, A. 1990. The Consequences of Modernity, Cambridge, MA, Polity Press.

JAKOBSEN, C. R. & SUTHERLAND, J. Scrum and CMMI Going from Good to Great. Agile

Conference, 2009. AGILE '09., 24-28 Aug. 2009 2009. 333-337.

JALALI, S. & WOHLIN, C. 2012. Global software engineering and agile practices: a systematic

review. Journal of Software: Evolution and Process, 24, 643-659.

JARVENPAA, S. L., SHAW, T. R. & STAPLES, D. S. 2004. Toward Contextualized Theories of

Trust: The Role of Trust in Global Virtual Teams. Information Systems Research, 15, 250-

267.

KAISER, K. M. & HAWK, S. 2004. Evolution of offshore software development: From outsourcing

to cosourcing. MIS Quarterly Executive, 3, 69-81.

KANAWATTANACHAI, P. & YOO, Y. 2002. Dynamic nature of trust in virtual teams. The Journal

of Strategic Information Systems, 11, 187-213.

KELLY, S. & NOONAN, C. 2008. Anxiety and psychological security in offshoring relationships: the

role and development of trust as emotional commitment. Journal of Information Technology,

23, 232-248.

KLEIN, H. K. & MYERS, M. D. 1999. A set of principles for conducting and evaluating interpretive

field studies in information systems. MIS Quarterly, 23, 67-93.

LACITY, M. C., KHAN, S. A. & WILLCOCKS, L. P. 2009. A review of the IT outsourcing literature:

Insights for practice. The Journal of Strategic Information Systems, 18, 130-146.

MARTINS, L. L., GILSON, L. L. & MAYNARD, M. T. 2004. Virtual teams: What do we know and

where do we go from here? Journal of management, 30, 805-835.

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 12

MATLOFF, N. 2005. Offshoring: What can go wrong? IT professional, 7, 39-45.

PERSSON, J. S. 2010. Managing distributed software projects, Denmark, PhD thesis, Department of

Computer Science, Aalborg University.

PERSSON, J. S. The Cross-Cultural Knowledge Sharing Challenge: An Investigation of the Co-

location Strategy in Software Development Offshoring. IFIP WG 8.6 International Working

Conference on Transfer and Diffusion of IT, 2013 2013 Bangalore, India., 310–325.

PERSSON, J. S., MATHIASSEN, L., BOEG, J., MADSEN, T. S. & STEINSON, F. 2009. Managing

risks in distributed software projects: an integrative framework. Engineering Management,

IEEE Transactions on, 56, 508-532.

PERSSON, J. S., MATHIASSEN, L. & AAEN, I. 2012. Agile distributed software development:

enacting control through media and context. Information Systems Journal, 22, 411-433.

PICCOLI, G. & IVES, B. 2003. TRUST AND THE UNINTENDED EFFECTS OF BEHAVIOR

CONTROL IN VIRTUAL TEAMS. MIS Quarterly, 27, 365-395.

POWELL, A., PICCOLI, G. & IVES, B. 2004. Virtual teams: a review of current literature and

directions for future research. SIGMIS Database, 35, 6-36.

PRIES-HEJE, J., NØRBJERG, J., AAEN, I. & ELISBERG, T. 2008. The Road to High Maturity:

How the first Danish company reached CMMI level 5 in 100 months. PA Nielsen & K.Kautz

(2008).Software Processes & Knowledge: Beyond Conventional Software Process

Improvement.Aalborg: Software Innovation Publisher, 163-192.

ROBERT JR, L. P., DENNIS, A. R. & HUNG, Y.-T. C. 2009. Individual Swift Trust and Knowledge-

Based Trust in Face-to-Face and Virtual Team Members. Journal of Management Information

Systems, 26, 241-279.

ROSE, J. & SCHLICHTER, B. R. 2012. Decoupling, re‐engaging: managing trust relationships in

implementation projects. Information Systems Journal.

ROTTMAN, J. W. & LACITY, M. C. 2006. Proven practices for effectively offshoring IT work. MIT

Sloan Management Review, 47, 56-63.

SANTANA, C., GUSMÃO, C., SOARES, L., PINHEIRO, C., MACIEL, T., VASCONCELOS, A. &

ROUILLER, A. Agile software development and cmmi: What we do not know about dancing

with elephants. Agile Processes in Software Engineering and Extreme Programming, 2009.

Springer, 124-129.

SCHILLER, S. Z. & MANDVIWALLA, M. 2007. Virtual Team Research An Analysis of Theory Use

and a Framework for Theory Appropriation. Small group research, 38, 12-59.

SCHLICHTER, B. R. 2010a. Development of trust during large scale system implementation. Journal

of Cases on Information Technology, 12, 1-17.

SCHLICHTER, B. R. 2010b. Dynamic Trust in Implementation of Large Information Systems –

Conceptualised by Features from Giddens’s Theory of Modernity. Systems, Signs & Actions,

4, 1-22.

SCHLICHTER, B. R. & PERSSON, J. S. 2013. Co-sourcing in software development offshoring: A

case study of risk alleviation 8th International Research Workshop on IT Project Management

Milano, Italy.

SCHLICHTER, B. R. & ROSE, J. 2013. Trust dynamics in a large system implementation: six

theoretical propositions. European Journal of Information Systems, 22, 455-474

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 13

SIEBDRAT, F., HOEGL, M. & ERNST, H. 2009. How to manage virtual teams. MIT Sloan

Management Review, 50, 63-68.

ŠMITE, D., WOHLIN, C., GORSCHEK, T. & FELDT, R. 2010. Empirical evidence in global

software engineering: a systematic review. Empirical Software Engineering, 15, 91-118.

ST JOHN, J., VEDDER, R. & GUYNES, C. S. 2013. Relationship Changes In IT Offshoring.

International Journal of Management & Information Systems (IJMIS), 17, 131-134.

SUTHERLAND, J., JAKOBSEN, C. R. & JOHNSON, K. Scrum and CMMI Level 5: The Magic

Potion for Code Warriors. Hawaii International Conference on System Sciences, Proceedings

of the 41st Annual, 7-10 Jan. 2008 2008a. 466-466.

SUTHERLAND, J., SCHOONHEIM, G., RUSTENBURG, E. & RIJK, M. Fully distributed scrum:

The secret sauce for hyperproductive offshored development teams. Agile, 2008. AGILE'08.

Conference, 2008b. IEEE, 339-344.

SØDERBERG, A.-M., KRISHNA, S. & BJØRN, P. 2013. Global Software Development:

Commitment, Trust and Cultural Sensitivity in Strategic Partnerships. Journal of International

Management.

TEAM, C. P. 2010. CMMI(R) for Development, Version 1.3, Improving Processes for Developing

Better Products and Services.: Software Engineering Institute.

TURNER, R. & JAIN, A. Agile meets CMMI: Culture clash or common cause? Extreme

Programming and Agile Methods—XP/Agile Universe 2002, 2002 2002. Springer, 153-165.

WALSHAM, G. 1995. The Emergence of Interpretivism in IS Research. Information Systems

Research, 6, 376-395.

WALSHAM, G. 1998. IT and changing professional identity: Micro-studies and macro-theory.

Journal of the American Society for Information Science, 49, 1081-1089.

WALSHAM, G. 2006. Doing interpretive research. European Journal of Information Systems, 15,

320-330.

WESTNER, M. & STRAHRINGER, S. 2010. Determinants of success in IS offshoring projects:

Results from an empirical study of German companies. Information & management, 47, 291-

299.

ÅGERFALK, P. J. & FITZGERALD, B. 2008. OUTSOURCING TO AN UNKNOWN

WORKFORCE: EXPLORING OPENSOURCING AS A GLOBAL SOURCING

STRATEGY. MIS Quarterly, 32, 385-409.

Appendix 1: Except of the interviewguide

1) Introduction (to the setting, small talk to assure relaxed situation, since last time)

2) Task Distribution

a. How are tasks specified?

b. Who specifies tasks?

c. What do you do if you don't understand a task?

d. What do you do if you do not know how to solve a task?

nn et al. / Trust in co-sourced software development

Eighth Mediterranean Conference on Information Systems, Verona 2014 14

e. How are tasks divided across sites?

f. How do you coordinate task dependencies between sites?

3) Trust Issues

a. What influences your believes in the success full completion of a project?

b. How can this change?

c. What is a successful project?

d. Are there any differences in how you trust different actors in the project?

i. How / Why ?

