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SUMMARY 

Design of a measuring program devoted to parameter identification of structural dynamic 
systems described by random fields is considered. The design problem is formulated as an 
optimization problem to minimize the total expected costs due to failure and costs of a mea­
suring program. Design variables are the numbers of measuring points, the locations of these 
points and the required number of sample records. An example with a simply supported plane, 
vibrating beam is considered and tentative results are presented. 

1. INTRODUCTION 

The identification of parameters in dynamic models for civil engineering structures based on 
measured input-output data has been a topic of research for several researchers in the last 
decades, see e.g. Kozin et al. [1] and Eykhoff [2]. 

The value of information achieved by identifying the different model parameters that char­
acterize a dynamic structure depends on the system identification methods and on how the 
measurements are performed. The information achieved can be used to update the reliability 
of the structure. Further, and- not less important- an evaluation of the dynamic design model 
can be performed, i.e. the validity of the mathematical model adopted in the design can be 
checked and this model can be updated for further investigations. 

An important problem which arises with full-scale measurings is how to design the experiment 
to obtain best knowledge on the random field taking account of the basis of measurings in a 
finite number of points, so that records obtained from those locations yield dynamic parameter 
estimates with the least uncertainty. What should be the number of sensors, necessary for 
obtaining sufficient information on the random fields, where should they be placed and finally 
how many measurements should be made. The number of sensors is usually limited to minimize 
the cost of instrumentation. 

Though various system identification methods have been developed for identifying the different 
parameters, few researchers, see e.g. Shah et al. [3], have looked at the question of where to 
locate sensors in a structure to obtain the best estimates of the partially unknown parameters. 
The problem of optimal sensor positioning has often found its solution from practical consider­
ations, e.g. location on the antinode (maximize signal-to-noise ratio) or deck level in offshore 
structures (minimize measuring cost). To improve the signal-to-noise ratio while recording the 
structural response, the sensors often need to be located as closely as possible to the antinodes. 
Following this strategy, an instrumentation lay-out can be designed. However, if we have more 
than one important mode and, more than one sensor, the problem of optimal measuring lay-out 
becomes very difficult. 

To the knowledge of the authors there is not developed mathematical optimization procedures 
for measuring program designing where the financial cost of the measuring program ana benefit 
of new information is taken into account. 
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In this paper a method to determine an optimal measuring program to obtain the best estimates 
of the unknown parameters is proposed based on a cost function introduced to make a trade-off 
between benefit of the new information and the cost of the measuring program. The method is 
especially developed for dynamically sensitive structures where the reliability of the structural 
system is sensitive to the dynamic parameters. 

After discussing sources and types of uncertainties which may be reduced through the acqui­
sition of additional information, a reliability based measuring design problem is formulated. 
Next the proposed optimization procedure is used in a simple example where the parameter 
in the optimization problem is the minimum required number of independent sample records. 
The example considered is a vibrating plane beam model subjected to random transverse load­
ing. Finally, some tentative results are presented concerning the question, "Should additional 
information be obtained" ? . 

The reliability calculations in this paper are performed with the computer program PRADSS, 
see S0rensen [4]. 

The optimization problems are solved by using the NLPQL algorithm, see Schittkowski [5]. 

2. RELIABILITY BASED DESIGN OF A MEASURING PROGRAM 

First-Order Reliability Methods 

A reliability analysis is based on a reliability model of the structural system. The elements in 
the reliability model are failure elements modelling potential failure modes of the structural 
system, e.g. fatigue failure. Each failure element is described by a failure function g(x, p) = 
0 in terms of a realization x of a random vector X = (XI,X2, .. ,Xn) and deterministic 
parameters p. X is assumed to contain n stochastic variables describing e.g. load, strength, 
geometry etc. Realizations x of X where g(x, p) ::; 0 corresponds to failure states in the 
n-dimensional basic variable space while g(x, p) > 0 corresponds to safe states. 

In first-order reliability methods (FORM), see e.g. Madsen et al. [6], a transformation T of 
the generally correlated and non-normally distributed variables X into standardized normally 

- - --1-
distributed variables U = (U1 ,U2, .. ,Un) is defined. Let U = T (X,p). In the u-space the 
element reliability index f3 is defined as 

f3 · _rnin (uru)t (1) 
g(T(u),p)=O 

If the failure function is not too non-linear the probability of failure PF can with good approx-
imation be determined from 

(2) 

where cp( ·) is the standard normal distribution function. 

Sources and Types of Uncertainty 

In general, the additional information from field tests would not eliminate all the uncertainties 
in a reliability problem. In assessing reliability of a structure different sources of uncertainty are 
pertinent. In Der Kiureghian [7] the evaluation of the reliability index under the following four 
sources of uncertainty are discussed: Inherent variability, estimation error, model imperfection 
and human error. Inherent variability, often called randomness, may exist in the characteristics 
of the structure itself or in the environment to which the structure is exposed. 

j 
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Estimation error arises from the incompleteness of statistical data and our inability to accu­
rately estimate the parameters of the probability models that describe the inherent variabilities. 
Model imperfect.ion arises from our use of idealized mathematical models to describe complex 
phenomena. Finally, the human error uncertainty arises from errors made by engineers or 
operators in the design, construction or operation phases of the structure. 

Inherent variability is essentially a state of nature and the resulting uncertainty may not be 
controlled or reduced, i.e. the uncertainty associated with inherent variability is something 
we have to live with. The uncertainty associated with estimation error , model imperfection 
and human error may be reduced through the acquisition of additional data, the use of more 
accurate models and implementing rigorous quality control measures in the design, construction 
and operation phases of a structure. 

The available statistical information, objective and subjective, on relevant variables and the 
set of mechanical and probabilistic models and their associated error estimates constitute the 
state of knowledge in a reliability problem. The state of knowledge is said to be perfect 
when complete statistical information and perfect models are available; otherwise, the state of 
knowledge is said to be imperfect. Real engineering problems invariably deal with imperfect 
states of knowledge. 

The acquisition of additional information, such as performing a full-scale measuring of a struc­
ture, of course, will require the time, energy, and financial resources. The added cost for this 
new information should be included or reflected in design of a measuring program. The added 
cost may be justified if it eliminates a significant part of the uncertainty, thus leading to a 
lower expected probability of failure of the structure. 

Optimization Problem 

In order to design an optimal measuring program it is suggested , based on the various aspects 
discussed above, to minimize the costs due to failure and the costs connected with the measuring 
program. It is assumed that dynamic system parameter estimates in the identification problem 
are based on m sample records, at each of the N measuring points, achieved by performing a 
full-scale measuring program. An optimization problem of an optimal measuring program can 
now be formulated as 

mzn 

s.t 

C(N,m,z) = CFPF(N,m,z) + CM(N,m,z) 

N >0 

m 2:0 
z~ < z · < z~ 
I- I- I i = 1,2, ... ,N 

(3) 

(4) 

(5) 

(6) 

where N, m and z are the optimization variables. CF is cost of failure and CM is cost of N 
measurings at geometrical locations z where m sample records are taken in each point. The 
expected cost C is the objective function . PF is probability of failure after measurings have 
been performed. As constraints upper and lower limits on the measurings locations, lower 
limits on the sample records and number of measuring points are given. The optimization 
problem may also be based on the system reliability. Then, the system reliability index is used 
instead of the element reliability index in (2). I 

I 



4 P.H. Kirkegaard, J.D. S~rensen & R. Brincker 

The probability of failure Pp in (3) is calculated using the first-order reliability methods. The 
failure function, related to e.g. fatigue, is written 

g(N,m,z,p,x,s) = o (7) 

where the realizations x of the random vector X describe uncertainties, such as those arising 
from inherent variabilities, which are irreducible by measuring the structural response. Uncer­
tainties which are reducible, such as those from estimation error, are described by realizations 
8 of the random vector S . The distribution of S depends on m. I.e. it is assumed that 
uncertainty of the statistical information may be described by the number of sample records. 
This problem is discussed in the following example. 

Modelling of the Cost Function 

One of the main difficulties with the above optimization problem is knowledge of C F and CM. 

When a structure fails one needs to pay various costs such as repair costs, reconstruction costs, 
clean up costs, loss of income, costs due to loss of social prestige and possible deaths. The total 
cost of failure Cp may range from e.g. 2 to 5 times the initial costs for an offshore structure, 
see e.g. Marshall [8] 

The costs of obtaining the new information CM is to cover not only the sample records but also 
the costs of statistical analysis of the information and an appropriate share of costs of planning. 
A simple and useful function for the cost of a measuring program is CM= Go+ C1m + C2N. 
C0 may be interpreted as representing the costs of the instrumentation and planning. C1 may 
be interpreted as an additional cost per sample record and C2 is the cost of an additional 
sensor. In some cases a more complicated cost function can be used, e.g. when a learning 
effect is introduced in the statistical analysis. 

3. EXAMPLE WITH A RANDOMLY VIBRATING BEAM 

In this example, the proposed optimization procedure is used in an example where a simply 
supported vibrating plane, continuous elastic steel beam model subjected to random transverse 
loading is considered. 

In this example a measuring program which only consists of one sensor, N=l, is considered. 
Le m is the only optimization variable. The measuring point is placed at L/2 where L is 
the length of the beam. Optimization of the number of sensors and sensor locations is not 
taken into account because it is assumed that a solution of the full optimization problem (3)­
(6) will result in unacceptable long computation time. Therefore an implementation of the 
optimization problem for solving the problem of optimal sensor lay-out is disregarded. If this 
simplified approach should be used to estimate the optimal number of sensors, the optimization 
problem in (3)-(6) can be solved sequentially for varying N where the optimal locations of the 
N measuring points are estimated by using a simple method for optimal sensor location, see 
e.g. Shah et al. [3]. 

Further, it should be emphasized, that the errors considered in this example are only the 
statistical sampling errors inherent in analysis of finite amounts of data. Beyond the errors of 
finite samples are a multitude of other potential errors that may have accumulated during the 
data acquisition. It is assumed that such errors have been controlled and that the time history 
records received for analysis accurately represent the physical phenomenon of interest. 
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Structural Model of Vibrating Beam 

The beam considered is subjected to a distributed tranverse loading represented by P(z, t) per 
unit length of the simply supported beam. We assume that its equation of motion is given by 

EIEJ4y(z, t) C oy(z, t) Mo2 y(z, t) = P( ) 
· oz4 + d 8t + Ot2 z, t (8) 

where y(z, t) is the deflection of the beam at time t and distance z from its end. M is its 
mass per unit length, Cd is the viscous damping coefficient per unit length and El is the 
bending stiffness of the beam. We also assume that P(z, t) is a zero-mean stationary Gaussian 
stochastic process with a covariance function given by 

(9) 

where 6 is Dirac's delta function and ,P is the intensity of random fluctuations of the loading. 
What we have assumed is that the stochastic load is white noise with respect to both the time 
and the space parameter. 

Modelling of the Failure Function 

The failure function in (7) is modelled as a fatigue failure element by using the Palmgren-Miner 
rule in combination with SN- curves. Then the accumulated fatigue damageD can be written, 

see Wirsching[9] 

(10) 

where TL is the expected lifetime. Here we use TL =25 years. as is the standard deviation of 
the stress process and To is mean period of a stress cycle. The stress process is assumed to 
be zero-mean Gaussian narrow-banded. r( ·) is the gamma function. k and K are parameters 
in the SN-curves. Here k is modelled as a constant, k=3, and K is modelled as a random 
variable. Stress concentration is neglected. Now the fatigue failure function can be written for 

a given location 

g(N, m, z,p, x, s) = -ln(D) = -ln(TL) + ln(To) + ln(K) 
k 

- kln(2J2) - ln(f(1 + 2)) - kin( as) (11) 

As as and To shall correspond to the measured response at the N locations the two quantities 

are functions of N, m, z, p, x and s 
Now, we define an identified auto-spectral density of the stress process s;:en(w) at L/2 where 
Lis the length of the beam. I.e. we consider the fatigue failure at L/2. The superscript !den 
indicates an indentified spectrum which corresponds to information achieved from a measuring 
program. Once the spectrum of the stress process has been estimated, variance and mean 
period of a stress cycle can easily be calculated by 

(12) 
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Modelling of Measured Spectral Estimates 

Now, we assume that we have measured the structural response at L/2. The connection 
between the identified auto-spectral density s;:en( w) of the stress process and the assumed 
measured spectral estimates of the response process is established in the following way. 

First, we identify the structure from the measured spectral densities by fitting a model to the 
assumed measured spectral densities. Secondly, by using the fitted model , we estimate the 
measured stress spectrum which we have defined above. 

We define the measured auto-spectral density of the response process by 

S Mea(- - ) 5Mod(- - ) YY p,x•,s,,w, = YY p,x',wt Si (13) 

where St is a realization of a random variable St modelling the statistical uncertainty of the 
spectral estimates at the l'th angular frequency w,. X' is realizations of a random vector X' 
containing parameters describing the system, e.g. damping, mass etc. The random vector X' 
describes the inherent uncertainty. The elements in X' and the variable K in the fatigue model 
form the random vector X . The superscript Mod indicates that it is a response spectrum based 
on a model. 

Using the modal spectral analysis method, see e.g. Lin [10], the spectral density of the response 
process St: od(p, x•, w, ), can be estimated. Because of the statistical uncertainty there is an 
error € between measured and the theoretical spectral densities estimates. l.e 

(14) 

where 7J is a vector containing the identified model parameters. It is noticed that it is the same 
theoretical model which is used for calculation of st:od(p,7J,w) and s:-:od(p,x•,w). The 

spectrum S!!en(w) is then found as S{!en(w) = s:-:od(p, 8, w, )T where T is a constant. It 

is assumed that a best estimate of the parameters 7J can be obtained by minimizing the total 
sum of squared errors Err2 , given by 

NR 

Err2 = :2)€(wk))2 (15) 
k=l 

where N R are the number of spectral estimates. An equation for the total squared error is 
obtained by introducing the error, defined by re-arranging (14), into equation (15). 

The optimization problem in (15) is solved using the NLPQL algorithm which requires the 
gradients of the objective function. Here the gradients of the objective function are numerically 
calculated . The optimization variables 7J, which describe the theoretical model, are mass per 
unit length M, the intensity of random fluctuations '1/; of the loading and the modal damping 
ratio ( 1 of the first mode . For simplicity we only take one mode into account. 

Modelling of the Uncertain Quantities 

In this example we have 10 random variables. No model uncertainty is considered. 

The fatigue strength random variable K is modelled as LN(6400MPa, 1024MPa) where 
LN signifies a log-normal distribution. 
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The statistical uncertainty of the theoretical response spectrum, see (13), is modelled by six 
random variables, i.e. that the S-vector contains six independent random variables. The 
statistical error of the spectral estimates, from finite Fourier transforms, consists of a bias and 
a random error. -Here, for simplicity, we only consider the random error. The random error is 
reduced by computing an ensemble of estimates from m different subrecords and averaging the 
results to obtain a final smooth estimate of the spectrum. Spectral estimates of a stationary 
Gaussian white noise process are X~m distributed with 2m degrees of freedom. The coefficient 
of variation f of a estimate is f = 1/ .JTii ,i.e. the six random variable in the S-vector are 
modelled using a mean value equal to one and a coefficient of variation f. In Bendat et al. [11] 
the properties of statistical uncertainty of spectral estimates are discussed in details . 

The uncertainties of the parameters describing the system are modelled by three independent 
random variables M, 1/; and (I whose statistical characteristics are shown in Fig. 1. fa priori 

is a coefficient of variation which describes the uncertainty of the apriori information before 
the measuring program is performed. t'.inherent is a coefficient of variation which describes the 
inherent uncertainty in the random variables based on our judgement. The response spectrum 
in (13) is calculated by using this coefficient of variation. We assume that the expected values 
are the same before and after the measuring program has been performed. The sensitivity of 
the measuring program design to variation of the assumed mean values after performing the 
measuring program will be considered in the example. 

Variable Distribution Mean Value fa priori t'.inherent 

M N 1.0 0.10 0.05 

1/J N 1.0 0.20 0.15 

(I LN 1.0 0.30 0.15 

Fig. 1: Statistical characteristics in SI units. (N: normal , LN: lognormal ). 

In the calculations the mean values (1.0) are multiplied by values corresponding to a lightly 
damped system, the modal damping ratio of first mode is 0.04, and the mass, length and 
bending stiffness are modelled so the frequency of the first mode is 0.4 Hz . 

Gradients of the Cost Function 

As mentioned above the NLPQL algorithm is used to solve the optimization problem (3)-(6) 
for N =1. The NLPQL algorithm requires the gradients of the cost function (3). The derivative 
with respect to the optimization variable m is 

8C 8( -/3) ~ 8( -/3) 8ai 
-
8 

~ cp(-/3) 
8 

Cp + c1 = cp(-!3) L....J 
8 

. -8 Cp + c1 
m m i=l a, m 

(16) 

where <p is the standard normal density function. As the standard deviation of si is CTj = Tm 
the derivative a~:::) = -t(m)-It. n 8 is the number of random variables inS 

The derivative a~-:,~) are estimated from , see Madsen et al. [6] 

(17) 

where the * indicates values at the design point . 
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Results 

The optimal solution of m for a measuring program with one sensor placed at L/2 is estimated. 
It is assumed th_at the cost function can be modelled as 

C0 = 106 DKK., C1 = 500 DKK., C2 = 105 DKK., CF = 109 DKK. (19) 

In Fig. 2 the objective function C and the number of sample records m are shown as functions 
of number of iterations. As starting point m = 10 is used. 

1.2 
X1()6 

E 30 
rll 

u 1.18 'E25 
0 ..... u 

rll iU 

8 1.16 .... 20 
iU 

~ -a 
~ 1.14 - E 15 

CO 
Clj 

1.120 2 4 6 8 100 2 4 6 8 
Iteration Iteration 

Fig. 2: Iteration history. (Optimal values m = 27.37, C = 1124597 DKK.) 

It is seen that convergence is obtained after 7 iterations. The computer time used on a VAX-
8700 was 1098 sec. 

The optimal solution of m for various values of cost of failure CF and estimates of the inherent 
uncertainty is shown in Fig. 3 and Fig.4, respectively. In Fig. 4 optimal solutions of m to 
different estimates of the expected value of the modal damping J.l.(1 are considered. 

CF (DKK.) PF C (DKK.) CM (DKK.) m 
105 5.6510 3 1101123 1100555 1.11 
106 9.0310-4 1102624 1101720 3.44 
107 1.6410-4 1105097 1103455 6.91 
108 3.7110-5 1110538 1106825 13.65 
109 1.0910-5 1124597 1113685 27.37 

Fig. 3: The optimal solution of m for various values of cost of failure CF. 

f.l.(t PF C (DKK.) CM (DKK.) m 
0.030 1.1110 2 2255887 1145095 90.19 
0.035 4.6610-4 1165738 1119130 38.26 
0.040 3.7110-5 1110538 1106825 13.65 
0.045 1.1210-5 1105082 1103955 7.91 
0.050 6.1510-6 1103416 1102800 5.60 

Fig. 4: The optimal solution of m for various values of J.l.(1 , (CF = 108 DKK.). 

It is seen, as expected, that m increases when CF increases, which means that acquisition of 
more information is of course more relevant when cost of failure increases. Further, it is seen 
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from Fig. 4 that an optimal solution of m actually depends not only on the actual values which 
are presumably known (here deterministic values) but also on the value of the parameter 1-'(t 

which is to be identified. 

In Fig. 5 we have shown an example of the objective function C and the reliability index f3 for 
various values of m. In this case J..l(1 = 0.04 and CF = 108 DKK. It is seen that the apriori 
information, f3apriori = 2.93, corresponds approximately to two sample records and that the 

value of m = 13.65 found by (3) seems to correspond to the minimum of C. Further, it is 
seen that the value of additional information which can be achieved by the measuring program 
is bounded by the reliability index corresponding to perfect information, f3perfect = 4.4 7 for 

m---+ oo. 

5.----.----.-----.----.--~ 
~ 
>< 
0 

"84 ...... 
>. ..... 

;.::: 
:.03 
~ ...... 

~ 

f3perfect -----------------------

----- f3apriori 

1.8 X1()6 

u ..... 1.6 
<I) 

8 
-1.4 s 
0 

E-< 1.2 -

20~--~--~----~--~--~ 
20 40 60 80 100 

Sample records m 

1o~~2~0~~40~--60~--~80--~100 
Sample records m 

Fig. 5: Values of C and f3 to variations of m. 

Now, the value of perfect information is defined as 

(V /)perfect= (cfl( -/3apriori) _ cfl( -f3perfect))CF (20) 

(V I) per feet is simply the difference between the total expected cost of failure corresponding to 
apriori information and perfect information, respectively. This value of information represents 
the maximum cost that may be allowed for acquisition of additional information. According 
to (20), the value of information from performing a measuring program is 

V J = ( cfl(- {3apriori) - cfl(-{3) )C F (21) 

where the reliability index f3 corresponds to the optimal measuring program. If V I exceeds 
the cost of the measuring program CM it should be performed. 

Here, e.g. for CF = 108 DKK., the value of information V I = 165790 DKK. which is less 
than the cost of the optimal measuring program CM = 1106825 DKK., see Fig. 3. I.e. no 

measurings should be performed. 

It is noticed that the expected cost of failure C FPF corresponding to apriori information is 
169500 DKK. I.e. by considering the reliability level of the structure it is also possible to get 
a conditional answer to the question, "Should additional information be obtained"?. 

Additional information is also uninteresting if the number of sample records corresponding to 
apriori information exeeds the number of sample records m estimated from the optimization 

problem. 
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4. CONCLUSIONS 

Design of an optimal measuring program is formulated as an optimization problem to mini­
mize the total expected costs due to failure costs and costs of the measuring program. All 
the calculations are based on the apriori knowledge of the data properties and engineering 
judgement. Tentative results from an example with a simply supported plane vibrating beam 
indicate that the method works. However, to prove the pratical value of this approach, more 
complex examples should be investigated. Such examples are currently under the authors' 
consideration. 
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