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Abstract 
The aim of this paper is to investigate and illustrate the 
possibilities of using correlation functions estimated by 
the Random Decrement Technique as a basis for param­
eter identification. A two-stage system identification 
method is used: first the correlation functions are esti­
mated by the Random Decrement technique, and then 
the system parameters are identified from the correla­
tion function estimates. Three different techniques are 
used in the parameter identification process: a simple 
non-parametric method, estimation of an Auto Regres­
sive (AR) model by solving an overdetermined set of 
Yule-Walker equations and finally least square fitting 
of the theoretical correlation function. The results are 
compared to the results of fitting an Auto Regressive 
Moving Average (ARMA) model directly to the system 
output . All investigations are performed on the simu­
lated output from a single degree-off-freedom system 
loaded by white noise. 

1. Introduction 

When loads acting on a system are measured together with 
the system responses, detailed information about system 
properties can be gained from the measurements. The prob­
lems of extracting information about physical properties 
from measurements are described in works about system 
identification, Ljung (1], Pandit and Wu (2], Soderstrom 
[3]. 

The system might be for instance an offshore structure 
loaded by sea waves and wind, and the responses might 
be accelerations in a number of selected points. In this 
case the system parameters describe structural properties 
like stiffness distribution, mass distribution and damping 
distribution. Using system identification for determination 
of physical properties of such structures can be advanta­
geous for collection of general knowledge about loading con­
ditions, for instance wave load spectra, and structural prop­
erties like the damping, but also for surveliance control of 
structural integrity. For instance, if a structural member 
is damaged, it will typically increase the damping and de­
crease the stiffness , and therefore structural damage can be 
estimated by system identification methods. 

Let the physical properties be described by a limited num­
ber of scalars 8; forming the vector ft = { 8;} and let the 
values ft*, ~ be the true value and the value estimated by 

system identification respectively. Since we are always deal­
ing with limited information, the estimated properties ft 
will not be identical to the true properties ft* . However we 
want the deviation to be as small as possible. Therefore the 
method of system identification should be chosen in such a 
way that the systematic errors E[ft- ft*] - also denoted bias 

• -T 
- and the elements of the covariance matrix Cov[ft ft J are 
minimum, Papoulos (4]. 

The time series formed by measuring loadings and responses 
of a system contains detailed information about the load­
ings and the system that cannot be fully represented by 
"interface functions" like spectral density estimates or cor­
relation function estimates. This means that using inter­
face functions usually will increase the covariance on the 
estimates, and if the interface functions are biased, bias 
will be introduced on the estimate of the system parame­
ters. However, if an unbiased technique for estimation of 
the interface functions is used, the gain in speed may in 
some cases justify a small increase in the covariences. The 
speed is increased mainly because the interface functions 
are described by a small number of data points compared 
to the original time series and because the system proper­
ties can be obtained from the interface functions by simple 
techniques like linear regression. 

There is only a limited number of techniques available for 
non-parametric estimation of interface functions. Fast Fourier 
Transform (FFT) spectral estimation is one possibility. How­
ever, such estimates will allways be biased, Brigham (5]. 
Another possibility is to use correlation functions. In that 
case the interface functions can be obtained by several un­
biased estimators: direct estimation (evaluating the cor­
relation integral) , the unbiased FFT correlation function 
estimator, Bendat and Piersol (7], Brincker et al (15] and 
finally different Random Decrement estimators, Brincker et 
al [15], Krenk and Brincker (14] . 

It has been shown however, Brincker et al (15] , that the 
Random Decrement (RDD) technique for correlation func­
tion estimation is much faster than the direct method and 
the unbiased FFT. For short correlation function estimates 
for instance, the RRD technique is about 100 times faster 
than the unbiased FFT. Furthermore, the RDD estimates 
are even more accurate than the unbiaseG! FFT for small 
damping. Therefore the RDD technique provides an ex­
cellent basis for a two-stage technique for identification of 
structural parameters. 
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In this paper a two-stage system identification technique 
based on using correlation functions estimated by RDD as 
interface functions is compared to fitting of Auto Regressive 
Moving Average (ARMA) models directly to the original 
time series. The auto correlation functions are estimated 
from the system output, and the system parameters are 
then identified from the auto correlation function estimates 
by three different techniques: a simple non-parametric tech­
nique, calibration of Auto Regressive (AR) models by solv-· 
ing the overdetermined set of Yule-Walker equations by lin­
ear regression and finally least square fitting of the theoret­
ical correlation function by non-linear optimization. 

The system output is simulated as the output from a single 
degree-of-freedom (SDOF) system loaded by white noise 
using an ARMA (2,1) model. 

The accuracy of the techniques are compared estimating 
the variance and the bias of the estimated system parame­
ters for different lengths of the correlation function, differ­
ent samling times and for different damping ratios of the 
system. 

2. Simulation of System Response 

In this paper autocorrelation functions are estimated for 
the response of a single degree-of-freedom (SDOF) system 
loaded by stationary Gaussian white noise. The response 
X(t) is the solution to the second order differential equation 

X+ 2(w0 X + w~X = Q(t) (1) 

where w0 is the undamped natural angular frequency, ( is 
the damping ratio and Q(t) is stationary zero mean Gaus­
sian white noise. For this case the normalized (correspond­
ing to variance one) autocorrelation function for positive 
time lags is given by, Crandall and Mark [8] 

Rxx(r) 

where Wd is the damped natural frequency Wd = wo ~· 
The most accurate way to perform simulations of a system 
formulated in continuous time, is to transform the system 
model to the discrete time space. This can be done by using 
an ARMA model. It can be shown, Pandit and Wu [2] , that 
a second order system formulated in continuous time may 
be represented in the discrete time space by a (2,1) ARMA 
model given by 

where m is the discrete time (tm = m6.t), .Pll !P2 are the 
Auto Regressive (AR) parameters, 8 is the Moving Aver­
age (MA) parameter and am is a time series of independent 

Gaussian distributed numbers with zero mean and variance 
er~. The model is denoted (2, 1) since it has 2 AR param­
eters and 1 MA parameter. If the ARMA parameters are 
chosen as 

q>l = 2exp( -(wo6.t) cos(wd6.t) (4.a) 

!P2 = - exp( -2(wo6.t) ( 4.b) 

e = -P± VP2 -1; 181 < 1 ( 4.c) 

where 

p = Wd sinh(2u)- (wo sin(2v) 

2(wo sin( v) cosh( u) - 2wd sinh( u) cos( v) 

u = (iwi6.t and v = Wdi6.t, then the ARMA model given by 
eq. (3) is the representation of the continuous system given 
in eq. (1) in the discrete time space. It can be shown, Pan­
dit and Wu [2], that the discrete autocorrelation function 
of the time series Xm is equal to the sampled autocorrela­
tion function of the continuous process X(t). Therefore, 
the expectation of unbiased auto correlation function esti­
mates obtained from the simulated time series will be equal 
to the theoretical auto correlation function, and a basis for 
unbiased estimation of system properties from simulations 
is established. 

All simulations were performed using the AT version of the 
MATLAB software package, (17] . 

3. Estimation of Correlation Functions 

Correlation functions are estimated using the Random Decre­
ment (RDD) technique which is a fast technique for esti­
mation of correlation functions for Gaussian processes by 
simple averaging. The RDD technique was developed at 
NASA in the late sixties and early seventies by Henry Cole 
and eo-workers [9-12] . 

The basic idea of the technique is to estimate a eo-called 
RDD signature. If the time series x(t), y(t) are given, then 
the RDD signature estimate Dxy(r) is formed by averaging 
N segments of the time series x(t) 

1 N 
Dxy(r) = N 2:: x(r + ti)l Cy(t;) (5) 

i=I 

where the time series y( t) at the times t i satisfies the trig 
condition Cy(t; )• and N is the number of trig points. In eq. 
(5) a cross signature is estimated since the accumulated 
average calculation and the trig condition are applied to 
two different time series . If instead the trig condition is 
applied to the same time series as the data segments are 
taken from, an auto signature is estimated. 

It was shown by Vandiver et al, [13], who used the so­
called level crossing trig condition Cx(t) : X(t) = a and 



defined the RDD auto signature as the conditional expec­
tation Dxx(t + r) = E[X(t + r)l X(t) =a], that for the 
level crossing condition applied to a Gaussian process, the 
RDD signature is simply proportional to the auto correla­
tion function 

Dxx(r) E[X(t + r)l X(t) =a] 

where a is the trig level and a3c is the variance of the 
process. This result has been generalized by Krenk and 
Brincker, [14], who shoved that 

Dxy(r) E[X(t + r)l Y(t) =a, Y(t) = v] 

Rxy(r) Rxy(r) 
2 a- 2 v 

O"y O"y 

(7) 

where Rxy ( r) is the derivative of the correlation function 
and where a~ is the variance of the derivative proces Y(t), 

for a Gaussian proces given by a~ = -Ryy(O). From this 
fundamental solution it is possibfe to explain the meaning 
of the RDD signature for several trig condition of practical 
interest 

A: J:'"(t) =a '* Dxy(r) ex Rxy(r) 
B: Y(t) =V '* Dxy(r) ex Rxy(r) 
C: Y(t) = 0, J:'"(t) >a '* Dxy(r) ex Rxy(r) 
D: Y(t) = 0, Y(t) >V '* Dxy(r) ex Rxy(r) 

(8) 

The result for trig condition A is found using that the dis­
tribution of Y(t) for a Gaussian process is symmetrical and 
independent of Y(t). The last term in eq. (7) will therefore 
vanish, and the result becomes proportional to the correla­
tion function. The result for condition B is obtained by a 
similar argument, and the results for the conditions C and 
D follows directly from eq. (7). 

The RDD estimates are "born" unbiased but the way the 
trig condition is implemented or the way trig points are 
selected from the time series might introduce either "win­
dow" bias or "trig point selection " bias, Brincker et a! 
(16]. If, however the RDD auto signature is forced to be 
symmetric by taking the even part, and normalized to one 
for r = 0, then the signature will be an unbiased estimate 
of the auto correlation function for the output normalized 
to unit variance, Krenk og Brincker (14]. 

Rxx(r) = Dxx(r) + Dxx( -r) 
2Dxx(O) 

(9) 

In the following all correlation function estimates are ob­
tained by using eq. (9) with the trig condition given by eq. 
(8c) X(t) = 0, X(t) >a, where a is taken as a= ax. 
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Figure 1. la: a typical auto correlation function estimated 
by the Random Decrement technique for A1 = 50, f:lt = 
O.lT and ( = 0.01. o: RDD estimate, solid line: exact 
solution. lb: estimation of the extreme values (valyes and 
peaks) and crossing times on the auto correlation function 
and the crossing times of the derivative. 

4. Identification of System Parameters 

After the response has been simulated and auto correlation 
functions has been estimated by the RDD technique, the 
parameter estimate ft = [T (] are obtained from the auto 
correlation estimates. A typical RDD auto correlation es­
timate is shown in figure la. 

In this section three methods of identifying system prop­
erties from correlation function estimates are described: a 
simple non-parametric technique, estimation of AR models 
by linear regression and fitting of the theoretical auto cor­
relation function by non-linear optimization. · Finally it is 
described how system parameters can be estimated directly 
from the original time series by calibration of an ARMA 
model. 



A Simple Non-Parametric method 

In the non-parametric method denoted RDD-NP the damp­
ing and the eigen period are found simply by estimating 
crossing times and the logarithmic decrement. 

First all the extremes r; - both peaks and valleys - on the 
correlation function are found. The logarithmic decrement 
{j can then be expressed by the initial value r 0 of the cor-· 
relation function and the i'th extreme 

~ln(~) 
i jr;j 

(10) 

The logarithmic decrement and initial value of the corre­
lation function can then be found by linear regression on 
i{j and 2ln(jr;j), and the damping ratio are then, Thomson 
[6}. 

(11) 

A similar procedure was adopted for determination of the 
eigen period. The estimated times corresponding to the es­
tremes and the zero crossing times of the correlation func­
tion forms an number of time points T; equally spaced by 
a quarter of the damped eigen period. The damped eigen 
period Td and the time shift (should be zero) of the corre­
lation function can then be found by linear regression on 
the crossing times T;, and the eigenperiod is then given by 

(12) 

The extreme values and the corresponding times were found 
by closed form expressions using 2. order polynomium in­
terpolation, fig lb. The crossing times of the correlation 
function itself were found by linear interpolation, figure lb. 

The extremes are a part of the envelope of the auto correla­
tion function . The envelope only depends on the damping, 
and therefore even though the technique might seem sim­
ple, it provides a direct way of separating the problems 
of estimation of the damping and the eigen period. This 
observation is still true even when nonlinear damping is 
active, and therefore the simple non-parametric technique 
might be especially usefull in situations where the other 
techniques break down. 

The simple non-parametric algorithm for estimation of the 
damping ratio and the eigen period of the auto correlation 
function was programmed in the C programming language 
and linked to the MATLAB environment by the MATLAB 
user function interface, [17}. 

Auto Regressive (AR) Model Estimation 

For a SDOF system loaded by white noise the stationary 
output in discrete time space is given by eq. (3). Using 
the white noise assumption E[a;aj} = a~{jii where {jii is 
the Kronecker delta and the definition of the auto corre­
lation function Rxx(r) = E[X(t + r)X(t)}, a difference 
equation for the autocorrelation function can be obtained 
by multiplying both sides of eq. (3) by Xm-k and then take 
the expectation. If the estimated auto correlation function 
is substituted for the theoretical auto correlation function 
then the result becomes ' 

(13) 

where tm = mL::.t, 1 < m < M and where M is the num­
ber of points in the estimated one-sided auto correlation 
function. This is a system of linear equations in the Auto 
Regressive (AR) Parameters .P1, .P2 often referred to as the 
Yule-Walker equations. When the number of equations are 
larger than the number of parameters to be estimated, the 
system becomes overdetermined, and the equations have no 
solution. For such situations however, standard methods 
exist for determination of approximate solutions. One pos­
sibility is to solve the system of equations by least square 
linear regression. In that case the estimate ~I, cl> 2 is called 
an overdetermined Yule-Walker estimate, Soderstrom [3}. 

From the estimates ~I, ~2 found by linear regression cal­
ibration of the AR model, the eigen period and damping 
ratio are found using the inverse closed form solutions given 
by eq. ( 4a) and ( 4b ). The method of estimating the system 
parameters by AR calibration is denoted RRD-AR. 

All the estimations were performed using the standard esti­
mation function for the AR model in the MATLAB system 
identification toolbox, [17}. 

Fitting the Theoretical Correlation Function 

Since we know that we are dealing with a SDOF system, the 
form of the auto correlation function is known. An obvious 
way of estimating the system parameters D. is therefore to 
minimize the difference between the theoretical auto corre­
lation function Rxx(D., mL::.t) given by eq. (2) and the esti­
mated auto correlation function Rxx(mt.t). Using a least 
square approach, the method is denoted RDD-FIT and the 
parameter estimate & = [T (] is found as the solution to 
the following set of nonlinear equations 

a M 
.2::::: (Rxx(D., mL::.t)- Rxx(m6.t))2

• = 0 (14) 
88; m=l 



Typically the error function has many local minima, and 
therefore to prevent false solutions (not corresponding to 
the global minimum) a good initial estimate is essential. 
The nonlinear set of equations were solved using a quasi­
Newton algorithm with a safeguarded mixed quadratic and 
cubic interpolation and extrapolation line search and using 
the parameter estimate from the non-parametric method as 
initial values. 

All the estimations were performed using the standard op­
timization function FMINU in the MATLAB optimization 
toolbox, [17]. 

Identification on the Original Time Series 

From the simulation it is known that the true model is an 
ARMA (2,1) . The ARMA models were calibrated using 
a predictor error method, Ljung, [1], and all estimations 
were performed using the standard calibration function in 
the MATLAB system identification toolbox. 

5. Results 

The accuracy of the techniques were investigated by iden­
tifying the system parameters for different sampling times 
D..T, different length's M of the auto correlation function 
estimate and for different damping ratios(. 

For each combination 20 time series of 4000 points each 
were simulated, the parameters were estimated from each 
of the time series as explained in the preceeding sections, 
and the coeffient of variation std[B;]/B;' and the empirical 
bias E[B; - Bi]/B;' were calculated for the eigenperiod and 
the damping ratio, where std[ J is the empirical standard 
deviation and E[] is the empirical expectation. The results 
are shown in figure 2, 3 and 4. 

Figure 2 shows the identification results as a function of the 
sampling time D..t for ( = 0.001 and M = 50. As it appears 
from the results the optimal samling time is relatively close 
to the Nyquist frequency D..T = T /2. The most surprising 
results however seem to be the small differences between 
the four identification techniques. If the sampling time be­
comes to long then the RDD-NP technique becomes more 
unreliable than the other techniques. There is a tendency 

for all the methods to over-estimate the damping, propably 
this is due to insufficient information in the relatively short 
time series. 

Figure 3 shows the identification results as a function of 
the number of points M in the one-sided auto correlation 
function estimate for D..t = 0.4T and ( = 0.001. Again 
there is only a small difference in accuracy, allthough there 
is a tendency for the RDD-AR and ARMA estimates to be 
more accurate for short correlation function estimates. The 
RDD-AR estimates are very close to the ARMA estimates, 
figure 3a, 3b and 3d. For short auto corelation function es­
timates the NP estimates seem to be biased, and because of 
problems with formulating a flexible termination criterion 
for the nonlinear optimization this affects the RDD-FIT 
estimates through the initial values. 

Figure 4 shows the results as a function of the damping 
ratio (. As expected small damping ratios give a large co­
efficient of variation on the damping estimates, and a small 
coeficient of variation on the eigen period estimates. For 
small damping ratios all damping estimates seems to be bi­
ased. This is propably due to limited information about 
the damping in the time series - propably the time series 
becomes to short measured in correlation times. Again it 
appears from the results, that there is only a marginal dif­
ference between the accuracy of the four investigated tech­
niques. For large damping ratios, the ARMA and the RDD­
AR estimates are systematic better than the RDD-NP and 
RDD-FIT estimates, but for damping ratios in the struc­
tural range ( E [0.01; 0.001] there seem to be no big differ­
ence. 

Figure 5 shows the estimation times as a function of the 
length M of the correlation functions estimates. The de­
pency of M is small compared to mutual differences. In 
round figures the estimation times for the ARMA calibra­
tion was about 30 s, for the RDD-FIT technique about 1 -
2 s (10- 20 iterations), for the AR estimation about 0.3 s 
and for the simple non-parametric technique about 10 - 20 
ms. 

The time for RDD estimation of the auto correlation func­
tion on a similar computer is about 0.1 s, Brincker et al 
[15]. This means that the total estimation times for the 
two-stage techniques are about 1-2 s for the RDD-FIT tech­
nique, about 0.4 s for RDD-AR estimation and about 0.1 s 
for the RDD-NP technique. 
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6. Conclusions 

On the basis of the results from the investigation of tech­
niques for two-stage system parameter identification, the 
following conclusions can be drawn: 

If a two-stage system identification technique is used where 
sufficiently long correlation function estimates are used Cl.? 

interface functions, then the use of interface functions only 
result in a relativity small loss of information. In this in­
vestigation about 50 points in the auto correlation function 
estimates was enough to ensure about the same estimation 
uncertainties as an effective one-stage technique (ARMA 
calibration). 

If an unbiased correlation function estimator like the Ran­
dom Decrement technique is used for interface function esti­
mation, then the observed empirical bias on the parameter 
estimates are small compared to random errors in the most 
cases. When bias is observed, it seems to be introduced by 
limited information in the relatively short time series used 
in the investigation. 

Three techniques was used for identification of system prop­
erties from the auto correlation function estimates: a simple 
non-parametric technique, calibration of Auto Regressive 
models and finally least square fitting of the theoretical 
auto correlation function. The three techniques did not 
differ very much in accuracy, allthough a detailed exami­
nation shows that AR estimation is the most accurate and 
the most reliable of the three techniques. 

However the three techniques showed a significant differ­
ence in speed, the fit technique being slowest with about 1-
2 s per estimation and the non-parametric being the fastest 
with about 10-20 ms per estimation. 

The technique of fitting the theoretical auto correlation 
function cannot be recommended for future use. It was 
slow and unreliable compared to the other two techniques. 

The simple non-parametric technique can be recommended. 
It is extremely fast and pretty reliable. Since the technique 
is based directly on the envelope of the correlation func­
tion, the technique might be especially usefull in cases with 
nonlinear damping where the parametric linear response 
models will break down. 

Calibration of an AR model by solving the overdetermined 
set of Yule-Walker equations by least square linear regres­
sion seems to be a fast, accurate and reliable technique. It 
is nearly as accurate as calibration of an ARMA model di­
rectly on the original time series. It can be recommended 
for future applications. 
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