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ON THE UNCERTAINTY OF IDENTIFICATION OF 
CIVIL ENGINEERING STRUCTURES 

USING ARMA MODELS 

P. Andersen, R. Brincker & P.H. Kirkegaard 
Department of Building Technology and Structural Engineering 

Aalborg University 
Sohngaardsholmsvej 57, 9000 Aalborg, Denmark 

ABSTRAGT 

In this paper the uncertainties of modal parameters 
estimated using ARMA models for identification of civil 
engineering structures are investigated. How to initialize 
the predictor part of a Gauss-Newton optimization 
algorithm is put in focus. A backward-forecasting 
procedure for initialization of the predictor is proposed. 
This procedure is compared with a standard prediction 
error method optimization algorithm in a simulation 
study. lt is found that the uncertainties can be reduced 
by a proper selection of the initial conditions for the 
predictor. 

NOMENGLATURE 
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A(q-1) 
C(q -1) 

Vector containing ARMA parameters 
Regression vector 
Gradient filter vector 
Available measurements vector 
Gradient of Iass tunetion 
Hessian matrix 
Measured output 
Predicted output 
Zero-mean Gaussian white noise 
Auxilliary sequence 
Prediction error 
Mean value, bisection factor. 
RMS measure 
Damping ratio of the jl:h mode 
Natura! eigen-frequency of the jl:h mode 
Sampling period 
Lass tunetion 
Forward shift operator 
Backward shift operator 
Auto Regressive polynomial 
Moving Average polynomial 

ai jl:h Auto Regressive parameter 
ci jl:h Moving Average parameter 
na Number of Auto Regressive parameters 
nc Number of Moving Average parameters 
t5 Starting time 
N Number of samples 
SNR Signal-to-noise ratio 
CV Goefficient of variation 
E[] Expected value 

n 

1. INTRODUGTION 

For several years much research on identification of 
linear civil enginesring structures using an Auto Regres­
sive Moving Average (ARMA) model has been perfor­
med, see e.g. Pandit et al. [1]. Several authors have 
shown that the ARMA model isable to give resonable 
modal parameter estimates and prediction of the re­
sponse. However, it is aften neglected that identification 
using ARMA models is a statistical method which allows 
not only the extraction of the modal parameters from a 
given measured output; but also estimation of their 
statistical errors as a measure of the uncertainty, see 
e.g. Jensen et al. [2]. The quantification of the uneerlain­
ties of the modal parameters is especially important if 
they are used in the field of e.g. vibrational-based 
inspection. In this case it is important to have an estima­
te of the uncertainties of the modal parameters, because 
only significant changes of the modal parameters are of 
interest, see e.g. Rytter [3], Brincker et al. [4] and 
Brincker et al. [5]. lt is well known that the uncertainties 
of the modal parameter estimates are dependent upon 
how the data have been sampled, i.e. the selection of 
sampling period T, see e.g. D'Emilia et al. [6] and Yao et 
al. [7]. Much research on the selection of an optimal 
sampling period that minimizes the uncertainties of the 
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modal parameters has been performed, see e.g. Kirke­
gaard [8], Ljung [9], Lee et al. [1 O] and Yao et al. [7]. The 
general assumption in these cases is that the estimator 
has asymptotically unbiased and efficient statistical 
properties, i.e. the estimator attains the Cramer-Rao 
lower bound of variance. This assumption is only valid if 
the amount of data is infinite. 

This paper concerns the problem that occurs when 
modal parameters are estimated using an ARMA model 
with only a limited amount of data. Especiaily the initiali­
zation of the predictor part of the identification procedure 
will be covered, because this can have significant effect 
on the estimator properties. 

lt will be shown how a proper initialization procedure can 
reduce the uncertainties. Two ditterent implementations 
of a nonlinear least-square PEM (Prediction Error 
Method) algorithm will be compared by a simulation 
study. The algorithm used as reference is the MATLAB 
[11] routine ARMAX.M which is base d o n the Gauss­
Newton optimization algorithm, see Ljung [12]. This 
routine can also work without external input, i.e. be used 
for ARMA models. The performance of this algorithm will 
be compared with ane basep on a backward-forecasting 
method which originally was developed for ARMAX 
models, where the external input is unknown backwards 
in time, see Knudsen [13]. This algorithm has proved to 
work very well on ARMA models as well. In the foliowing 
the MATLAB routine will be referred to as MAT and the 
backward-forecasting routine as BAG. 

Sections 2 and 3 deal with the faundation of the ARMA 
model and the PEM method while section 4 concerns 
the backward-forecasting method. In section 5 an 
example based on a simulation study is given. 

2. ARMA MODEL 

l f an ARMA(2n,2n-1) model is used for a stationary 
Gaussian white noise excited linear n-degree of freedom 
system it can be shown that the covariance of the 
response due to the ARMA model and that of the white 
noise excited structure will be identical, see e.g. Kozin et 
al. [14]. Given a measured response y(t) the 
ARMA(n8 ,nc) model is defined as 

y( t) • a1 y(t-1) • ... • an. y(t-n8 ) = 

e {t) • c1 e (t -1 ) • .. . • en. e (t- n c> 
(1) 

where y(t) is obtained by filtering the Gaussian white 
noise e(t) through the filter deseribed by the Auto 
Regressive polynomial, consisting of na parameters ai, 

and the Moving Average polynomial, consisting of nc 
parameters ci. By introducing the foliowing polynomials 
in the backward shift operator q·t, defined as q·i y(t) = 
y( t-j) 

eq.(1) can be written in a more campaet form as 

y{t) = C(q-1) e{t) 
A(q-1) 

(2) 

(3) 

The roots of A( q -t; are the poles of the model whereas 
the roots of C(q -t; are the zeroes. Assuming that the 
model is stable the poles are in camplex conjugated 
pairs. The relationship between the poles pi and the 
modal parameters is given by 

j = 1 ... na (4) 

where ~ and t;j are the natura! eigen-frequency and 
damping ratio of the fth mode. T is the sampling period. 
lt is seen that each camplex conjugated pair of poles 
corresponds to a simple-damped oscillator, see Safak 
[15]. 

Setting Jii = In( pi ) the modal parameters are obtained 
from the foliowing equations 

(5) 

where 11 de notes the modulus and Re the real part of the 
camplex number J!i. 

3. OPTIMIZATION PROCEDURE 

The parameters of the ARMA model are estimated by 
minimizing a quadratic error tunetion V also denoted the 
loss function. lntroducing the vector {8} consisting of the 
ARMA parameters 

(6) 
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V(B) is defined as 

N 

V(S) = 1-1- L E(t,8)2 

2N- f5 +1 1-1, 

N 

= ..!__1_ L <r<t> - .Y <t.B>>2 
2N- f5 +1 1 - 1, 

(7) 

where e(t,B) is the prediction error, j (t,B) is the predicted 
response and t5 = max(n8 ,nc)+1. The optimal one-step 
predictor is given by Ljung [9] 

9(t,8) = {<Pf{S} (8) 

where {<p} is defined as 

{<P} = {-y(t-1), ... ,-y(t- n8 ),E(t-1), ... ,E(t-nc)f (9) 

Eq. (8) can be obtained from eq. (3) and (6) by adding 
the noise term. To calculate the right-hand side af eq. 
(8) measurements af y(t) from time t-1 and back to the 
infinite past are necessary. In this case, i.e. the statio­
nary case, e(t,B) equals the Gaussian white noise e(t) 
and the predictor is really optimal in the least square 
sense. To calculate a parameter estimate a numerical 
minimization method must be chosen. The method 
which will be used is based an the Gauss-Newton 
algorithm, defined as 

(1 O) 

where f./ is a bisection factor and k is the iteration 
number. The Hessian matrix [H(8k)] and gradient af the 
Iass tunetion {'V(8k)} are defined as 

(11) 

and the regression filter {4J(t,8k)} as 

(12) 

The main difference between the two routines is the 
procedure for initialization af e( t, B) for t =t5-1 to t

5
-nc. in 

eq. (9). The MAT routine uses a direct start procedure 
and sets these missing values to zero , i.e. the direct 
start can be interpreted as the unconditional expectation 
for these missing values. The BAC routine, an the other 
hand, uses a conditional expectation for these missing 
noise values, see Knudsen [13]. This problem concer­
ning initialization af the predictor has been recognised 
for many years, see Ljung [18]. Especially, a system with 
a high arder C(q) polynomial having weakly damped 
zeroes close to 1 will give a transient, see e.g. Box et al. 
[16], Saric et al. [17] and Knudsen [13]. This behaviour 
will introduce bias and increase the uncertainties of the 
modal parameters. 

To ensure global convergence a good initialestimate af 
{<p} must be provided. Both algorithms use the same 
procedure for establishing the initial estimate. First a 
high-order AR model is applied to the response y(t). The 
prediction error e(t) af this model is used as external 
input in an ARX model. The estimated parameters of 
this model will then be the initial estimate,see Ljung [9] 
and Ljung [12]. In Ljung [9] it is shown that this will lead 
to global convergence for the ARMA model optimization 
procedure. 

4. BACKWARD-FORECASTING 

In the BAC routine the calculation af the missing initial 
noise values af the predictor is based an the foliowing 
conditional expectation 

(13) 

given available measurements {W}. Using this conditio­
nal expectation, the transient will disappear, see Knud­
sen [13]. The index c is used to distinguish this conditio­
nal expectation from the ane step predictor. To calculate 
the conditional expectation given by eq. (13) an auxiliary 
sequence w(t) is introduced 

w(t) = A(q -1)y(t) (14) 

This sequence can be calculated for t =t5 to N. Combi­
ning eq. (3) with eq. (14) it follows that w(t) is an MA(nc) 
process with the forward model defined as 

w(t) = C(q-1)e(t) (15) 



and the backward model defined as 

w(t) = C( q) e b( t) (16) 

where the superscript b stands for backwards. Notice 
that e(t) and ~(t) are two different white noise sequen­
ces. Also notice that C(q) is now a polynomial in the 
forward shift operator q, defined as qi y(t) = y(t+j). 

The development of the backward-forecasting method 
is basedon eq. (15) and (16), and therefore it is suffici­
ent to define the available measurements as the known 
part of w(t), i.e. 

{~ = {w(t5 ), ... , w( N)} (17) 

Taking conditional expectation on both sides of eq. (16) 
yields 

(18) 

lt follows from eq. (17) that wc(t) = w(t), for t= t. to N. 
Thus e/(t) can be calculated backwards for t=Nto t. by 

(19) 

Starting this filter from t=N requires the initial conditions 
{ e/(N+t), ... , e/(N+nj }. These areset to zero and the 
resulting transient is assumed to have faded out before 
t. is reached. Because e/(t) is a zero-mean Gaussian 
white noise the conditional expected value E[e/(t)I{W}] 
is equal to zero, i.e. e/(t) =O for t< t •. Using thisand eq. 
(18) it is now possible to predict w/ (t) for t< t •. 

Taking the conditional expectation on both sides of eq. 
(15) and seperating ec{t}1 yields 

(20) 

Because wc(t)= O for t< t.-nc it follows from eq. (20) that 
ec(t) =O for t< t. -nc. lnserting wc(t) for t= t.-nc to t.-1 eq. 
(20) the initial conditions { ec(t.-1 ), ... , ec(t.-nj} can be 
calculated. Using these initial conditions it is straightfor­
ward to calculate the loss tunetion V in eq. (7) for a 
specified value of {8} . 

l n Knudsen [13] it is show n that the initial val u es of the 
regression filter in eq. (12), for t = t.-nc to t.-1 can be 

obtained as 

{ljJ (t)} = _ de c (t) 
d{8} 

(21) 

These initial values can be calculated by differentiating 
eq. (14)- (16) and eq. (18)- (20) with respect to {8}, see 
Knudsen [13]. 

5. EXAMPLE 

The significance of different initialization procedures is 
highly dependent upon the chosen model order. A first 
order ARMA model will not show any particular differen­
ces, see Knudsen [13]. In this section an ARMA(10,9) 
model will be used. This model is the covariance equiva­
lent to a linear 5-degree of freedom uncoupled system 
excited by a Gaussian white noise. The natural eigenfre­
quencies ~and the corresponding damping ratios (j are 
seen in table 1. In table 2 the parameters of the corre­
sponding ARMA model are listed. In fig. 1 the poles and 
zeroes of the ARMA model are plotted. The zeroes are 
seen to be close to the camplex unit circle indicating that 
a large transient can be expected. The system has been 
simulated using a sampling frequency equal to 75 Hz. 

The example consists of four ru ns. In table 2 the number 
of simulations N51m and the amount of data N of each run 
are shown. In the table the signal-to-noise ratio SNR of 
each run is also shown. The SNR is defined as the ratio 
between the standard deviation of the simulated respon­
se and the added Gaussian white noise. 

For comparison, two RMS measures {~1} and {~a. 
defined as 

1 N. 

{[3J = -L «f}i - <f} l2 
N_ 1.1 

(22) 

1 N. 

{[3~} = "N L «Ol- <0>2 
- /-1 

are introduced. {~1} and W~} are the RMS-values of the 
differences between estimated and model values of the 
natural eigen-frequencies and damping ratios respecti­
vely. 

The standard deviation of the prediction error for ru ns 1 
and 4 is shown in figs. 1 and 2 at each time step as 
examples. lt should be noted how the standard devia-

l 
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tions in the transient parts are reduced using the BAC 
routine. In tables 4 to 7 the mean value, the coefficient 
of variation and the RMS of the estimated modal para­
meters are listed. lt is seen that in every run the results 
obtained from using the BAC routine regarding the 
natura! eigen-frequencies are superior to the results 
obtained from the MAT routine. The results regard~ng 
the damping ratios are on the ether hand not so good for 
either of the routines . 

6. CONCLUSION 

In this paper it is shown that the uncertainties and the 
bias of the modal parameters, applying an ARMA model 
to a smal! amount of data, can be reduced by a proper 
initialization of the predictor part of the optimization 

. algorithm. One way of making this reduction is using a 
backward-forecasting procedure to predict the un-known 
initial values. The results have been verified by a simula­
tion study comparing an ordinary optimization algorithm 
with one using the backward-forecasting approach. 
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[ Mode l ~ [Hz] l ~ [%] 

1 2 0.1 

2 4 0.5 

3 8 0.1 

4 16 5 

5 32 10 

Tab/e 1. The modal parameters of the 
linear structural system. 

l l A(lt2 l C(g_·t2 

1 -4.493 -3.239 

2 8.581 4.599 

3 -8.584 -3.601 

4 3.808 1.656 

5 1.085 -0.547 

6 -2.010 0.326 

7 -0.368 -0.039 

8 2.311 -0.316 

9 -1.832 0.231 

10 0.509 

l 

l 

Tab/e 2. The ARMA model that corresponds 
to the linear system. 

l Run l SNR% l N l 
1 5 200 

2 20 200 

3 5 1000 

4 20 1000 

NsltiJ 

500 

500 

250 

250 

Tab/e 3. The tour simulation runs dependence on 
SNR, N and Ns;m· 

l 

_j MAT BAC 

fJ cv /3 fJ cv /3 

f t 2.06 0.053 0.122 2.05 0.052 0.120 

f2 3.91 0.100 0.400 3.91 0.087 0.352 

f3 8.04 0.041 0.328 8.04 0.038 0.306 

f4 16.55 0.115 1.974 16.31 0.109 1.800 

r~ 31.55 0.093 2.956 31 .12 0.095 3.080 

~ 0.052 0.957 0.071 0.056 1.010 0.079 

<; 0.108 1.132 0.160 0.112 1.270 0.180 

(s 0.030 2.545 0.083 0.064 2.750 0.185 

(s 0.114 1.165 0.148 0.109 1.270 0.151 

(. 0.041 1.690 0.091 0.051 1.267 0.081 

Tab/e 4. Resulfs of run 1. Mean value J.l, coefftctent of 
variation CV and RMS measure /3 of the modal 
parameters ~ and (j. 

_j MAT BAC 

Il cv {3 fJ cv /3 

f t 2.05 0.052 0.120 2.05 0.048 0.110 

f2 3.80 0.117 0.483 3.91 0.097 0.387 

f3 8.07 0.057 0.464 8.05 0.058 0.467 

f4 17.27 0.126 2.492 16.88 0.125 2.295 

'" 
30.95 0.099 3.228 30.80 0.096 3.178 

~ 0.069 1.011 0.097 0.067 1.033 0.096 

<; 0.197 1.117 0.215 0.156 1.061 0.223 

(s 0.050 2.066 0.113 0.060 2.541 0.162 

(s 0.115 1.392 0.171 0.131 1.273 0.186 

~ 0.040 1.427 0.083 0.045 1.428 0.084 

Tab/e 5. Resulfs of run 2. Mean va/ue J.l, coefftctent of 
variation CV and RMS measure /3 of the modal 
parameters ~ and (j. 



_j MAT BAC 

f./ cv /3 f./ cv /3 

f l 2.03 0.033 0.075 2.01 O.Q18 0.037 

f2 4.08 0.081 0.338 4.04 0.059 0.241 

f3 7.97 0.059 0.470 7.99 0.023 0.185 

f4 16.63 0.119 2.064 16.52 0.088 1.690 

f. 31.83 0.107 3.579 30.56 0.094 2.975 

(y 0.044 1.189 0.068 0.027 1.271 0.042 

.;; 0.118 1.394 0.199 0.053 1.837 0.108 

(3 O.Q18 5.783 0.105 0.100 2.337 0.253 

~ 0.118 1.304 0.168 0.081 1.356 0.113 

{. 0.032 1.266 0.079 0.031 1.183 0.077 

Tab/e 6. Resulfs af run 3. Mean value Jl, coefficient af 
variation CV and RMS measure f3 af the modal 
parameters ~ and (j. 

f l 

f2 

f3 

f4 

f. 

(1 

.;; 
(; 

~ 

{. 

Tab/e 7. 

MAT BAC 

u CV 8 u cv /3 

2.05 0.044 0.104 2.04 0.038 0.084 

4.10 0.094 0.382 4.08 0.051 0.222 

8.08 0.048 0.203 8.02 0.025 0.394 

17.51 0.137 2.405 16.53 0.108 2.300 

31.29 0.106 3.524 30.58 0.097 3.095 

0.057 1.174 0.088 0.057 1.163 0.087 

0.151 1.478 0.258 0.059 1.563 0.105 

0.024 4.687 0.112 0.091 2.660 0.258 

0.135 1.611 0.232 0.327 1.036 0.435 

0.046 1.414 0.084 0.046 1.834 0.100 

Results af run 4. Mean value Jl, coeffic1ent af 
variation CV and RMS measure f3 af the modal 
parameters ~ and (j. 

Polol•nd:z.ro. 

•.. 
0.6 o 

x 

o 

x 

o 

Fig 1. Po/es (x) and zeroes (o) af system. 

1_5 ,----,---,----"S.C:Ioo.:.::;do:.:.:•d;...:D:.::.:e'.:.::iol.:.::;io nc:...:oe:__l ;.:-P':..::'d:::.:.ic l:::.:.ion:_::E.:::"";:..-' _-_:::MA::._T ----,,.-----

1 l t~~~~~~tf~niL~~w~vv~vv~r'\r~JrJ~~~---- · 
D l l l l i v 
D 0 .5 ----l--- -------·---~----···-··-!-------· ·---~--- -- - --·---4. - - --··--g l l l i i 
iii ' ' ! . i 

o ···-· 
o 0.5 1.5 

Time [s ec.} 

2.0 

1 _ 5,--_,-..=:S I:::.:.oo~do~·d~D:_:evi~o l:::.:.io n:_::o~l P~<e~dic~h~on_::E •~•o:__• -:.._· ~BA~C ---~ 

g ! l ] ! 1 

~ ~~~rW\/fvf~vrw~~~~VV<wvvt~M~fl\l~----- --- -
0 0 .5 -·- ____ _ _j_ _________ j_ ___ ____ ___ j_ _________ j ________ ___ _ l .. - .. ·- ···· 
~ l l l l l 
~ i i i i ; 

Fig2. 

c 
o 

~ 
o 
o 
D 

o 
D 
c 
o 
;;. 

c 
o 
o 
-~ 
o 
D 

o 
D 
c 
o 

"' 

Fig3. 

0 ·-L _ _L __ _L __ _L __ _L _ _ _L ____ 

o 0.5 1.5 2.5 

Tim e [sec } 

Standard deviation af prediction error using 
the simulations af Run 1. 

Standord Deviati on ol Predir.: tion Error - BAC 

! i i ' i . 4 _ __ l __ _ _j__ _ ____ __ L ___ __ L_ __ ____ _L ______ .L_ _________ _ 

~~-~~~\;~~~~~~~~I""!I/J/vt<l~f,I\J~:~~-11\I-IM1~>1f1~tJ..iM\ l 
2 ·- ·- ·+·--·- -j-·----- l---·-··- ·t-·-·- ··-t-- ···-··- t-··- ·-··- 1 

l i i i i i i l 
O l l l l l 

IO t Z 14 

Time (ser: ] 

4 
Standord Deviatio n of Prediclion Error - BAC 

IO 12 14 

Time (:;ec] 

Standard deviation of prediction error using 
the simulations af Run 4. 

l 

l 

j 



FRACTURE AND DYNAMICS PAPERS 

PAPER NO. 28: Rune Brincker, Steen Krenk & Jakob Laigaard Jensen: Es­
timation of Correlation Functions by the Random Decrement Technique. ISSN 
0902-7513 R9041. 

PAPER NO. 29: Poul Henning Kirkegaard, John D. Sørensen & Rune Brincker: 
Optimal Design of Measurement Programs for the Parameter Identification of Dy­
namic Systems. ISSN 0902-7513 R9103. 

PAPER NO. 30: L. Gansted & N. B. Sørensen: Introduetion to Fatigue and Frac­
ture M echanics. ISSN 0902-7513 R9104. 

PAPER NO. 31: R. Brincker, A. Rytter & S. Krenk: Non-Param etric Estimation 
of Correlation Functions. ISSN 0902-7513 R9120. 

PAPER NO. 32: R. Brincker, P. H. Kirkegaard & A. Rytter: Identification of 
System Parameters by the Random Decrement Technique. ISSN 0902-7513 R9121. 

PAPER NO. 33: A. Rytter , R. Brincker & L. Pilegaard Hansen: Detection of 
Fatigue Damage in a Steel M ember. ISSN 0902-7513 R9138. 

PAPER NO. 34: J. P. Ulfkjær, S. Krenk & R. Brincker: Analytical Model for 
Fictitious Crack Propagation in Concrete Beams. ISSN 0902-7513 R9206. 

PAPER NO. 35: J. Lyngbye: Applications of Digital Image Analysis in Experi­
mental M echanics. Ph.D.-Thesis. ISSN 0902-7513 R9227. 

PAPER NO. 36: J. P. Ulfkjær & R. Brincker: Indirect Determination of the f7- w 

Relation of HSC Through Three-Point Bending. ISSN 0902-7513 R9229 . 

PAPER NO. 37: A. Rytter , R. Brincker & P. H. Kirkegaard: An Experimental 
Study of the Modal Parameters of a Damaged Cantilever. ISSN 0902-7513 R9230 . 

PAPER NO. 38: P. H. Kirkegaard: Cost Optimal System Identification Experiment 
Design. ISSN 0902-7513 R9237. 

PAPER NO. 39: P. H. Kirkegaard: Optimal Selection of the Sampling Interval for 
Estimation of Modal Parameters by an ARMA-Model. ISSN 0902-7513 R9238. 

PAPER NO. 40: P. H. Kirkegaard & R. Brincker: On the Optimal Location of 
Sensors for Parametric Identification of Linear Structural Systems. ISSN 0902-
7513 R9239. 

PAPER NO. 41: P. H. Kirkegaard & A. Rytter: Use of a Neural Network for 
Damage Detection and Location in a Steel M ember. ISSN 0902-7513 R9245 

PAP ER NO. 42: L. Gansted: A nalysis and Description o f High- Cycle Stochastic 
Fatigue in Steel. Ph.D.-Thesis. ISSN 0902-7513 R9135. 

PAPER NO . 43: M. Krawczuk: A New Finite Element for Siatic and Dynamic 
A nalysis o f Cracked Composite Beams. ISSN 0902-7513 R9305. 



FRACTURE AND DYNAMICS PAPERS 

PAPER NO. 44: A. Rytter: Vibrational Based Inspection of Civil Engineering 
Structures. Ph.D.-Thesis. ISSN 0902-7513 R9314. 

PAPER NO. 45: P. H. Kirkegaard & A. Rytter: An Experimental Study of the 
Modal Parameters o f a Damaged Steel M as t. ISSN 0902-7513 R9320. 

PAPER NO. 46: P. H. Kirkegaard & A. Rytter: An Experimental Study of a Steel 
Lattice M as t under N atural Excitation. ISSN 0902-7513 R9326. 

PAPER NO. 47: P. H. Kirkegaard & A. Rytter: Use of Neural Networks for 
Damage Assessment in a Steel Mast. ISSN 0902-7513 R9340 . 

PAPER NO. 48: R. Brincker , M. Demosthenous & G. C. Manos: Estimation 
of the Coefficient of Restitution of Roeking Systems by the Random Decrement 
Technique. ISSN 0902-7513 R9341. 

PAPER NO. 49: L. Gansted: Fatigue of Steel: Constant-Amplitude Loadon CCT­
Specimens. ISSN 0902-7513 R9344. 

PAPER NO. 50: P. H. Kirkegaard & A. Rytter: Vibration BasedDamage Assess­
ment o f a Cantilever using a N eural N etwork. ISSN 0902-7513 R9345. 

PAPER NO . 51: J. P. Ulfkjær, O. Hededal, I. B. Kroon & R. Brincker: Simple 
Application o f Fictitious Crack M odel in Reinforced Concrete Bea ms. ISSN 0902-
7513 R9349. 

PAPER NO. 52: J. P. Ul:fkjær, O. Hededal, I. B. Kroon & R. Brincker: Simple 
Application o f Fictitious Crack M odel in Reinforced Concrete Bea ms. Analys is 
and Experiments. ISSN 0902-7513 R9350. 

PAPER NO. 53: P. H. Kirkegaard & A. Rytter: Vibration Based Damage As­
sessment of Civil Engineering Structures using Neural Networks. ISSN 0902-7513 
R9408. 

PAPER NO. 54: L. Gansted, R. Brincker & L. Pilegaard Hansen: The Fracture 
M echanical M arkov Chain Fatigue M odel Compar-ed with Empirical Data. ISSN 
0902-7513 R9431. 

PAPER NO. 55: P. H. Kirkegaard, S. R. K. Nielsen & H. I. Hansen: Identifica­
tion of Non-Linear Structures using Recurrent Neural Networks. ISSN 0902-7513 
R9432. 

PAPER NO. 56: R. Brincker, P. H. Kirkegaard, P. Andersen & M. E. Martinez: 
Damage Detection in an Offshore Structure. ISSN 0902-7513 R9434. 

-
PAPER NO. 57: P. H. Kirkegaard, S. R. K. Nielsen & H. I. Hansen: Struc-
tural Identification by Extended Kalman Filtering and a Recurre.nt Neural Network. 
ISSN 0902-7513 R9435. 

PAPER NO. 58: P. Andersen, R. Brincker, P. H. Kirkegaard: On the Uncertainty 
o f Identification o f Civil Engineering Structures using ARMA M od els. ISSN 0902-
7513 R9437. 

Department of Building Technology and Structural Engineering 
Aalborg University, Sohngaardsholmsvej 57, DK 9000 Aalborg 
Telephone: +45 98 15 85 22 Telefax: +45 98 14 82 43 


