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IDENTIFICATION OF THE SKIRT PILED GULLFAKS C GRAVITY
PLATFORM USING ARMAYV MODELS

P.H. Kirkegaard, P. Andersen & R. Brincker
Aalborg University
Department of Building Technology and Structural Engineering
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

ABSTRACT

This paper presents the results from the system identification of
the Gullfaks C gravity offshore platform excited by natural loads.
The paper describes how modal parameters and mode shapes can
be estimated by use of ARMAV models. The results estimated by
an ARMAV model are compared with results estimated by an
ARV model which can be interpreted as a truncated ARMAV
model. The results show the usefulness of the approaches for
identification of offshore structures excited by natural excitation.

NOMENCLATURE

Mass matrix

Stiffness matrix

Damping matrix

Displacement vector

State vector

Time

State transition matrix

Input matrix

Damping ratio of the jth mode
Natural angular eigen-frequency of the jth mode
Sampling period

Continuous-time eigenvector matrix
Continuous-time eigenvalue matrix
Discrete-time system response
Auto-regressive matrices
Moving-average matrices
Discrete-time white noise
Discrete-time state vector
Discrete-time state space matrix
Discrete-time excitation matrix
Discrete-time eigenvector matrix
Discrete-time eigenvalue matrix
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1. INTRODUCTION

Since the end of the sixties the interest in the system identifica-
tion based on time domain models has increased, and now
literature on system identification is very much dominated by
time domain methods. In Ljung [1] and Séderstrom et al. [2] the

basic features of system identification based on time and frequen-
cy domain approaches are highlighted. For many years the
identification techniques based on scalar auto-regressive moving
average (ARMA) models in the time domain have attracted
limited interest concerning structural engineering applications. A
factor contributing to this situation is that ARMA models have
been developed primarily by control engineers and applied
mathematicians. Further, ARMA models have been primarily
developed concerning systems for which limited a priori
knowledge is available, whereas the identification of structural
systems relies heavily on understanding of physical concepts.
The structural time domain identification techniques using
ARMA representation have been compared with frequency
domain techniques in e.g. Davies et al. [3]. In this and other
papers it has been documented that these ARMA time domain
modelling approaches are superior to Fourier approaches for the
identification of structural systems since e.g. leakage and
resolution bias problems are avoided. These founds make
identification techniques utilizing ARMA algorithms interesting
for modal parameter estimation. Especially, with respect to
damage detection where modal parameters are used as damage
indicators. However, in recent years the application of scalar
ARMA models as well as a vector ARMA models (ARMAYV) to
the description of structural systems subjected to ambient
excitation has become more common, see e.g. Gersch et al. [4],
Pandit et al. [5], Hac et al. [6], Kozin et al. [7], Jensen [8], Safak
[9], Hamamonton et al. [10], Li et al. [11], Hoen [12], Langen
[13], Prevosto et al. [14], Pi et al. [15], Piombo et [16] and
Andersen et al. [17]. Some of these references have considered
identification of offshore structures using different implementa-
tion approaches of the ARMA models such as the Modified
Yule-Walker approach, see e.g. Hamamonton et al. [10] and Li
et al. [11], and the Instrumental Variable approach, see e.g.
Prevosto et al. [14] and Hoen [12]. These approaches imply that
the identification is based on estimating the autocovarinace
functions. However, in this paper the idea is to estimate the modal
parameters and mode shapes by calibrating multivariate ARMAV
and ARV models directly to the measured response data.

2.THEORY

This section describes the relationship between an Auto-Regres-
sive Moving-Average Vector model (ARMAY) and the govern-
ing differential equation for a linear n-degree of freedom elastic
system. Further, it is described how an ARV model can be
interpreted as a truncated ARMAYV model.




2.1 Continuous Time Model

In the continuous time domain an n-degree linear elastic viscous
damped vibrating system is described to be a system of linear
differential equations of second order with a constant coefficient
given by a mass matrix M (n x n), a damping matrix C (n x n),
a stiffness matrix K (n x n), an input matrix S (n x r ) and a force
vector f(t) (r x 1). Then the equations of motion for a linear
multivariate system may in the time domain be expressed as

ME(r) + CE() + Kx(1) = Sf(f) (€8]

x(1) is the displacement vector. By introducing the state vector

z(t)

x(1)

Z(r) (1)

2

the dynamic equation (1) can be written into the state-space
model in the following way

(1) = Ax() + Bf() 3)

where the system matrix A and the input matrix B are defined by

0 I B 0
T|-M'K -M"'c B = -M"1s )

The solution of the above equation (1) is now given by

4

z(f) = e*z(0) + f eAIBf(T)dt (5)

0

It is assumed that the matrix A can be eigenvector-eigenvalue
decomposed as

A =UpU™! (6)
| By u,,
g = T 7R TH 75 ™)

u = diag [u] , i=1,2,..2n (8)

® is the matrix which columns are the scaled mode shapes ¢; of
the ith mode. O is the continuous time diagonal eigenvalue
matrix which contains the poles of the system from which the
natural frequency w; and the damping ratio {; of the ith mode can
be obtained for under damped systems from a complex conjugate
pair of eigenvalues as

okt = - * mivl—cl? )

The solution (5) can now be written

() = Ue"U™'x(0) + [Ue*™OU~'Bfz)dx (10)
0

2.2 Discrete Time ARMAYV Model

For multi variate time series, described by an m-dimensional
vector X;, an ARMAV(p,q) model can be written
with p AR-matrices and ¢ MA-matrices

X+ iAinz-i = il:B;ak-j ta 11)
P =

where the discrete-time system response is Xy = [Xi1, Xiz ... Xl -
A;is an m x m matrix of auto-regressive coefficients and B;is an
m x m matrix, containing the moving-average coefficients. a, is
the model residual vector, an m-dimensional white noise vector
function of time. k=t/A where A is the discrete sampling interval.
Theoretically, an ARMAYV model is equivalent to an ARV model
with infinite order. However, if the high order parameters are very
small, and they can be neglected, a truncated ARV (p) model can
be used to approximate the ARMAV model

X+ gAer-i =a, 12)

The ARV is often preferred because of the linear procedure of
the involved parameter estimation. The parameter estimation of
the ARMAYV model is a non-linear least squares procedure and
requires some skill as well as-large computation effort, see e.g.
Pandit et al. [5].




A discrete state-space equation for equations (11) or (12)
obtained by uniformly sampling the structural responses at time
k is given by

Zy =FZ, + W, 13)

with the state vector

T T T T
Z, = (Xp Xooy g o Xipu)T (14)

and the discrete system matrix is

p-1 P

I 0 .. 0 0
F=lo0 I .. 0 0 15)

0 0 I 0

W, includes the MA terms for the ARMAYV model and the white
noise terms for the ARV model, respectively. Assuming Z; =Z,
and W, = 0 for k = 0 implies that the solution of (13) is given by

k-1
Z, = F*z, + ) Fiw,
oy (16)
= LML'Zy + Y LNL'W,

j=0

where it is assumed that F' can be modal decomposed as

F = EAL a7)

A = diag [A.,.] , i=1,2,....pm (18)

-1 -1 -1
LR LA . L
R LT L AR

L - ! (19)

pm

The discrete state space model can now be used to identification
of modal parameters and mode shapes as follows. First, the
discrete system matrix F is estimated by calibrating (13) to
observed data. Next the discrete eigenvalues of F are estimated by
solving the eigen-problem det(F-AI) = O which gives the pm
discrete eigenvalues A;. The continuous eigenvalues can now be
obtained by A;= e*? which implies that the modal parameters
can be estimated using (9). The mode shapes are determined
directly from the columns of the bottom m x pm submatrix of L.
It is seen that the number of discrete eigenvalues in general are
larger or different from the number of continuous eigenvalues.
Therefore, only a subset of the discrete eigenvalues will be
structural eigenvalues. This means that the user has to separate
the physical modes from the computational modes. The
computational modes are related to the unknown excitation and
the measurement noise processes. The separation can often be
done by studying the stability of e.g. frequencies, damping ratios
and mode shapes, respectively for increasing AR model order.
Often, it is also possible to separate the modes by selecting
physical modes as the modes with corresponding damping ratios
below a reasonable limit for the modal damping ratios.
However, satisfactory results obtained using ARMAV or ARV
models for system identification require that appropriate models
are selected and validated. Model selection involves the selection
of the form and the order of the models, and constitutes the most
important part of the system identification. Model validation is
to confirm that the model estimated is a realistic approximation
of the actual system. Model validation is the final stage of the
system identification procedure. Since the system identification
is an iterative process various stages will not be separated: models
are estimated and the validation results will lead to new models

- etc. One of the dilemmas in the model validation is that there are

many different ways to determine and compare the quality of the
estimated models. First of all, the subjective judgement in the
model validation should be stressed. It is the user that makes the
decision based on numerical indicators. The variance of the
parameter estimates can be such an indicator. It is also important
to check whether the model is a good fit for the data recording to
which it was estimated. Simulation of the system with the actual
input and comparing the measured output with the simulated
model output can also be used for model validation. One can also
compare the estimated transfer function with one estimated by
FFT, Statistical tests of the prediction errors are also typically
used numerical indicators in model validation. A throughout
description of the problem of model selection and validation is
given in e.g. Ljung [1] and Séderstrom [2]. It should be mentio-
ned that a covariance equivalent model is obtained, if the model
section and validation show that an ARMAYV (2r,2r-1) model is
appropriated, see e.g. Andersen et al. [17], where r =n/m, i.e. ris
equal to the degree of freedom divided by number of channels.




3. EXAMPLE

In this section the ARMAY and the ARV system identification
techniques are used to identify the Gullfaks C platform. Imple-
mentation of the computational aspects was done in MATLAB,
see PC-MATLAB [18]. These aspects are described in details in
Andersen et al. [17]

3.1 Description of The Gullfaks C Gravity Platform

Figure 1: Elevation of the Gullfaks C Platform, Hoen [12].

The considered platform, figure 1, was installed in May 1989 on
220 meters water depth in the North Sea, and was so far the
largest and heaviest offshore gravity base concrete structure in the
world. The platform was equipped with an extensive instrumenta-
tion system for structural, foundation and environmental
monitoring, see e.g. Myrvoll [19]. The dynamic motions were
measured by means of 15 extremely sensitive linear and angular
accelerometers. 13 of the accelerometers are located in the so-
called utility shaft at different levels as indicated in figure 1. Two
accelerometers recording accelerations in X and Y direction are
placed at mudlevel (P1), at cell top level (P2), at the midpoint of
the utility shaft (P3) and at the top of the utility shaft (P4),
respectively. Further, two angular accelerometers are placed at
location P3 and P4, respectively. The accelerations were sampled
at 8 Hz during 20 minutes recording periods, giving time series
of 9600 samples for each channel. In this paper 3 recording
periods have been considered

A :891226-0100,Hs=7.8 m, Tp=11.7s.
B : 900101-0840, Hs = 3.8 m, Tp = 20.5 s.
C:900108-0540, Hs=4.3 m, Tp=9.6 s

The description of recording period A shows that the data were
sampled December 26 1989 where the waves had a significant
wave height Hs=7.8 m and a wave peak period Tp = 11.7 s.

In order to investigate the frequency content in the measured time
series the FFT autospectrum of the time series has been consi-
dered. Figure 2 shows an FFT autospectrum of a time series from
recording period A.

1
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Figure 2: FFT autospectrum with 95% confidence levels

Figure 2 does not show any significant dynamically amplified
response above 2 Hz. The same conclusion can be done for the
other time series from recording periods A, B and C, respectively.
Therefore, prior to the system identification, the data were
resampled to 4 Hz. Before the decimation the record was
low-pass filtered beyond the new Nyquist frequency. In the
following only the two time series from the linear accelerometers
at location P2, P3 and P4, respectively, have been used for the
identification, i.e. 6 time series have been considered.

3.2 Determination of model order

The order of the ARMAYV and ARV models, respectively were
selected by incorporating the so-called FPE criteria, see e.g.
Ljung [1]. Figure 3 shows the FPE criteria obtained by using the
ARMAYV and the ARV models on the six selected channels from
recording period A.
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Figure 3: FPE criteria for ARMAV and ARV models

From figure 3 it is seen that only small improvements in the FPE
criteria are obtained for an ARMAV(6,5) model with 6 AR terms
and an ARV(8) with 8 AR terms. This means that the 36 eigenva-
lues will be estimated by the ARMAV(6,5) and 48 by the ARV
(8), respectively. However only a subset of these eigenvalues
belongs to physical modes. Therefore, these have to be separated.
The separation can often be done by studying the stability of e.g.
frequencies, damping ratios and mode shapes, respectively, for
increasing AR model order. Figures 4 and 5 show stabilization




diagrams obtained by the ARV and ARMAYV models used on data
from recording period A. These diagrams show all the frequencies
estimated for increasing AR model order (¢). Further, stabilized
frequencies, i.e. frequencies with a relative change below 2 per
cent from one estimation to another are shown (+). Additionally,
the frequencies with a corresponding damping ratio below 10 per
cent are presented (o). The stabilization of the mode shapes have
not been considered.
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Figure 4: Stabilization diagram for ARV model.
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Figure 5: Stabilization diagram for ARMAV model

The stabilization diagrams in figures 4 and 5, respectively show
two physical modes just below 0.4. Physical modes are also
indicated at approximately 0.5 Hz, 0.6 Hz, 1.0 Hz, 1.26 Hz, 1.4
Hz and 1.6 Hz, respectively. By comparing figures 4 and 5, it is
also seen that the ARV and ARMAV models, respectively ,
estimate the same physical modes. The stabilization diagrams also
give an important indication about the order of the models to be
used for the parameter estimation process. Based on the results in
figures 3, 4 and 5, respectively an ARV(12) and an
ARMAV(6,5) are found to be appropriated. The higher order of

the ARV model is selected based on the results presented in
figure 4. Here it is seen that the stable frequencies at approxima-
tely 0.6 Hz are indentified for an ARV(12) model.

After the models are selected the next step is to check the validity
of the models. The match of the power spectrum obtained by an
FFT and the spectrum obtained from the ARMAV model and the
ARV model, respectively ,could be used. Another possiblity is to
investigate the residuals. In order to have a valid identification,
the residuals should be a white-noise sequence. The plot of the
spectrum and autocorrelation of the residual time series from cne
channel are shown given in figure 6 for the ARV model,
respectively.

Auto Spectral Density - Prediction Error

10
10°)
107}

10° : : : : >

05f"

05
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Figure 6: Autospectrum and correlation function of the residuals
from one channel estimated by an ARV(12) model.

Visual inspection of the spectrum in figure 6 suggests that the
residuals are close to a white-noise sequence, since the peaks are
distributed in all frequencies. A more accurate check is to test the
autocorrelation of the residuals Two straight lines in figure 6
show the 99% confidence level. For model validity, i.e. whiteness
of residuals, the autocorrelation should not exceed these lev?ls,
except at zero lag. Figure 6 shows that the autocorrelation
remains, for the most part, within the limits, and therefore
validate the model. The same conclusions have been stated for all
the time series form recording periods A,B and C, respectively.As
a final test for model validity, a comparison of model output with
recorded output could be performed. This is a more strict test than
the previous ones. However, due to space this is not shown here.

3.3 System Identification Results

In this section the estimated modal parmaters and mode shapes
are presented and discussed for the first 6 modes. The selected
modes are selected based on the conclusions in section 3.2. By
comparing stabilization diagrams from all the recording periods
the mode with a frequency at approximately 1.0 Hz has been
considered to be too unstable to be characterized as a physical
mode. Figures 7 and 8 present the estimated modal parameters,
respectively, while the figures 9 and 10, respectively , present the
magnitude and phase of the mode shapes




Mode A B c
1 f (Hz) 0.333 0.331 0.330
(%) 0.015 0.013 0.021

2 f (Hz) 0.368 0.371 0.369
(%) 0.014 0.014 0.013

3 f (Hz) 0.486 0.497 0.491
(%) 0.033 0.036 0.027

4 f (Hz) 0.572 0.586 0.589
¢ (%) 0.049 0.054 0.065

8 f (Hz) 0.599 0.622 0.599
¢ (%) 0.060 0.065 0.075

6 f (Hz) 1.266 1.273 1.266
¢ (%) 0.018 0.012 0.017

Figure 7: Estimated frequencies and damping ratios using an
ARV (12) for recording periods A,B and C, respectively.

Mode 1a B c
1 fHz) | 0336 0332 0332
(@ | 0021 0.016 0.013
2 fHz) | 0371 0373 0371
(@ | oo14 0.014 0.015
3 f(Hz) | 0.482 0.498 0.493
{® | 0045 0.025 0.024
4 fHz) | 0556 0.580 0.580
(@ | 0091 0.088 0.049
5 fHz) | 0.602 0.618 0.59
(@ | 0083 0.091 0.104
6 fHz) | 1.260 1272 1.260
%) | 0024 0.014 0.016

Figure 8: Estimated frequencies and damping ratios using an
ARMAV(6,5) for recording periods A,B and C, respectively.

Mode A: Mag.(Phase) | B:Mag. (Phase) | C: Mag. (Phase) ]
1-P4-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0) ||
1-P4-X 0.111 (177.1) 0.061 (-133.2 0.078 (214.3) II
1-P3-Y 0.375 (-0.07) 0.374 (0.3) 0.375 (0.263)
1-P3-X 0.032 (175.5) 0.019 (-98.1) 0.022 (235.1)
1-P2-Y 0.098 (181.1) 0.097 (-178.9 0.096 (181.0)
1-P2-X 0.006 (171.2) 0.004 (-106.8) 0.005 (231.2)
2-P4-Y 0.064 (-68.9) 0.034 (-38.4) 0.072 (-6.3)
2-P4-X 1.000 (0.0) 1.000 ( 0.0) 1.000 (0.0)
2-P3-Y 0.023 (-91.6) 0.008 (-97.1) 0.014 (-16.7)
2-P3-X 0.398 (-0.4) 0.397 (-0.3) 0.397 (0.4)
'2-P2-Y || 0.007 (96.2) 0.002 (105.9) 0.005 (170.9)
2-P2-X || 0.089 (-1.8) 0.091 (-1.4) 0.088 (1.4)
3-P4Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
3-P4-X || 0.067 (-86.6) 0.027 (-67.18) 0.029 (-206.5)
3-P3-Y 0.951 (-9.1) 0.955 (1.2) 0.963 (3.6)
3-P3-X 0.148 (-134.3) 0.009 (-168.1) 0.112 (-208.1)
3-P2-Y 0.585 (182.7) 0.587 (-174.8) 0.550 (-172.2)
3-p2-X 0.045 (-140.4) 0.021 (-134.7) 0.045 (-201.1)
4-P4-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
4-P4-X || 0.136 (123.9) 0.237 (-202.3) 0.342 (-255.3)
4-P3-Y || 0.270 (134.7) 0.253 (-211.8) 0.094 (-211.7)
4-P3-X |1 0.111 (88.5) 0.083 (-167.3) 0.086 (-214.4)
4-P2-Y 0.459 (-21.9) 0.397 (-9.0) 0.416 (-5.9)
4-P2-X 0.050 (118.3) 0.049 (-57.3) 0.081 (-134.2)
5-P4-Y 0.914 (-194.1) 0.130 (259.0) 0.522 (-279.0)
5-P4-X 1.000 (0.0) 0.693 (170.9) 1.000 (0.0)
5-P3-Y 0.172 (-23.1) 0.255 (77.7) 0.064 (-189.6)
5-P3-X 0.476 (-220.8) 1.000 (0.0) 0.371 (-90.6)
5-P2-Y 0.292 (-180.5) 0.129 (239.8) 0.228 (-288.4)
5-P2-X 0.627 (-202.9) 0.735 (2.625) 0.462 (-135.4)
6-P4-Y 0.822 (2.2) 0.857 (0.277) 0.830 (-1.2)
6-P4-X 0.101 (-289.4) 0.057 (189.5) 0.098 (-113.0)
6-P3-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
6-P3-X || 0.157 (49.5) 0.046 (204.2) 0.127 (-93.4)
6-P2-Y || 0.038 (-141.9) 0.025(159.1) 0.034 (-214.5)
6-P2-X__|| 0.008 (13.5) 0.002 (232.6) 0.005 (-63.5)

Figure 9: Magnitude and phase (Deg.), of mode shapes (ARV)




Mode A: Mag. (Phase) B: Mag. (Phase) C: Mag. (Phase)
1-P4-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
1-P4-X 0.147 (173.3) 0.085 (128.5) 0.027 (163.7))
1-P3-Y 0.375 (-0.2) 0.378 (-0.2) 0.372 (-0.2)
1-P3-X 0.046 (172.1) . 0.029 (103.8) 0.003 (53.7)
1-P2-Y 0.099 (180.8) 0.097 (-181.1) 0.096 (180.1)
1-P2-X 0.009 (167.3) 0.006 (111.7) 0.001 (46.9)
2-P4-Y 0.074 (-40.1) 0.037 (-17.7) 0.095 (4.0)
2-P4-X 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
2-P3-Y 0.021 (-6.3) 0.004 (-60.4) 0.022 (6.9)
2-P3-X 0.398 (-0.279) 0.397 (-0.3) 0.398 (-0.3)
2-P2-Y 0.007 (126.6) 0.002 (-221.8) 0.008 (182.1)
2-P2-X 0.089 (-1.7) 0.090 (-1.3) 0.089 (-1.3)
3-P4-Y 1.000 (0.0) 0.916 (-14.2) 0.980 (-7.5)
3-P4-X 0.344 (-181.6) 0.147 (36.5) 0.115 (-188.7)
3-P3-Y 0.927 (-4.5) 1.000 (0.0) 1.000 (0.0)
3-P3-X 0.143 (-189.1) 0.050 (16.1) 0.065 (-198.5)
3-P2-Y 0.476 (-183.4) 0.639 (177.8) 0.586 (-174.1)
3-P2-X 0.064 (-194.5) 0.013 (180.4) 0.034 (-189.2)
4-P4-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
4-P4-X 0.094 (116.7) 0.108 (143.5) 0.378 (-263.5)
4-P3-Y 0.412 (221.7) 0.195 (188.6) 0.164(-198.3)
4-P3-X 0.200 (85.7) 0.064 (44.2) 0.071 (-190.6)
4-P2-Y 0.524 (21.7) 0.369 (-0.7) 0.423 (0.2)
4pP2-X 0.104 (110.5) 0.029 (4.8) 0.111(-115.2)
5-P4-Y 1.000 (0.0) 0.235 (-290.9) 0.686 (-86.6)
5-P4-X 0.942 (-273.5) 1.000 (0.0) 1.000 (0.0)
5-P3-Y 0.022 (-141.1) 0.048 (21.4) 0.061 (77.2)
5-P3-X 0.301 (-171.8) 0.376(-168.0) 0.571 (217.4)
5-P2-Y 0.412 (-0.8) 0.082 (-205.8) " 0.296 (-102.8)
5-P2-X 0.474 (-118.7) 0.583(-176.2) 0.879 (201.6)
6-P4-Y 0.822 (-6.9) 0.851(0.2) 0.836 (-8.5)
6-P4-X 0.185 (-93.7) 0.084 (185.3) 0.064 (93.7)
6-P3-Y 1.000 (0.0) 1.000 (0.0) 1.000 (0.0)
6-P3-X 0.067 (-76.5) 0.076 (194.2) 0.066 (72.0)
6-P2-Y 0.035 (-207.9) 0.027 (158.5) 0.029 (-127.6)
6-P2-X 0.015 (-46.1) 0.003 (239.8) 0.001 (10.1)

Figure 10: Magnitude and phase (Deg.) of mode shapes (ARMAV)

The estimated natural frequencies and damping ratios presented
in figures 7 and 8, respectively, show only a slightly deviation
between the two identification approaches. However, the damping
ratios are generally lower for the ARV model than for the
ARMAYV model. The figures also show that the results for modes
4 and 5, respectively, are not as stable as the three other modes.
[t can also be seen from the stabilization diagrams.

The mode shape results shown in figures 9 and 10, respectively,
also show that the results for modes 4 and 5 are not so reliable as
those obtained for the other modes. The results for modes 1,2 and
6, respectively are very well identified for all the three recording
periods. Modes 1 and 6 are seen to be bending modes close to the
Y-direction while mode 2 is a bending mode close to the X-
direction. Modes 4 and 5 which are more unstable seem to be
bending modes in Y-direction and X-direction, respectively.
Mode 3 is the first torsional mode about the vertical axis which
is found by investigating the time series from the angular
accelerometer about the the vertical axis. A closer investigation
of how complex mode shapes can be interpreted as damped mode
shapes could be done as proposed in Hoen [12]. It is shown that
the damped mode shapes at an arbitrary position of a structure
may be described by the product of an exponentially decaying
function and an ellipse. In Hoen [12] the Gullfaks C structure has
also been identified using a Markow Block Hankel matrix
factorization method. The results from this paper and Hoen [12]
correspond very well.

4 CONCLUSIONS

This paper has considered use of the multivariate ARMAYV and
ARV models for system identification of an offshore structure
under natural random excitation. The estimated natural frequen-
cies, damping ratios and mode shapes show only a slightly
deviation between the two identification approaches. However,
the damping ratios are generally lower for the ARV model than
for the ARMAYV model. Further, the ARMAV model also seems
to give more stable mode shapes estimates for higher modes.
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