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THEO RY OF COV ARIANCE EQUIV ALENT ARMA V MODELS 
OF CIVIL ENGINEERING STRUCTURES 

P. Andersen, R. Brincker & P.H. Kirkegaard 
Department of Building Technology and Structural Engineering 

Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

ABSTRACT 

In thispaper the theoretical background for using covariance 
equivalent ARMA V models in modal analysis is discussed. l t is 
shown how to obtain a covariance equivalent ARMA model for 
a univariate linear second arder continuous-time system excited 
by Gaussian white noise. This re sult is generalized for multi
variate systems to an ARMA V model. The covariance equiva
lent model structure is also considered when the number af 
channels are different from the number af degrees offreedom 
to be modelled. Finally, it is reviewed how to estimate an 
ARMAV modelfrom sampled data. 

NOMENCLATURE 

m Diagonal mass matrix 
c Syrnroetric damping matrix 
k Syrnroetric stiffness matrix 
T Sampling period 
g Modal weight of impulse response 
d Modal weight o f the covariance matrix 
y Lagged covariance matrix o f response process 
a/ Covariance of a Gaussian white noise process x 
y(t) Continuous-time system response 
u(t) Continuous-time Gaussian white noise 
x(t) Continuous-time state vector 
h( r) Impulse response fimetion 
A Continous-time state space matrix 
B Continuous-time excitation matrix 
b Continuous-time excitation vector 
m; Scaled modeshape 
M Eigenvectors of A 
11 Eigenvalues of A 
Il Diagonal matrix of eigenvalues J..l ; 
Y, Discrete-time system response 
a, Discrete-time Gaussian white noise 
X, Discrete-time state vector 
Gk Green ' s function 
Q> Discrete-time state space matrix 
e Discrete-time excitation matrix 
L Eigenvectors of Q> 
l; Scaled modeshapes 
Å Eigenvalues of Q> 
Å Diagonal matrix of eigenvalues Å; 
Q>; Auto-regressive polynomial coefficients 
e; Moving-average polynomial coefficients 

l. INTRODUCTION 

The use of non-parametric FFT-based methods has for many 
years been one o f the most popular tools in modal analysis, but 
recently the interest in using parametrical models as the basis 
for modal analysis has increased. Since, the usual way of 
obtaining information about a structure is through sampling, all 
parametrical models are in some sense discrete equivalents to 
the continuous system. There are several methods for dis
cretization. Some of these are approximation using pole-zero 
mapping, see Åstri:im et al. [1], and approximation by hold 
equivalence techniques, see Safak [2]. But perhaps the most 
used approximation is the covariance equivalence technique, see 
Bartlett [3], Kozin et al. [4] and Pandit et al. [5] . In thispaper 
the theoretical background for using covariance equivalent auto
regressive moving-average vector (ARMA V) models in modal 
analysis of civil engineering structures will be discussed. This 
is done by showing that a second order linear continuous-time 
system can be modelled by an ARMA V model. The results can 
irnroidiately be used as an effective simulation tool in case of 
white noise excitation, but can also be used for identification o f 
structural systems from sampled data. 

The theoretical considerations of thispaper have been used in 
Kirkegaard et al. [6] for identification of the skirt piled Gullfaks 
C gravity platform, and in Brincker et al. [7] for identification 
of a multi-pile offshore platform. 

In section two it will be shown how to obtain a covariance 
equivalent univariate (single channel) ARMA model of a 
single-degree o f freedom system. Section three generalizes these 
results to a multivariate ARMA V model for a multi-degree o f 
freedom system. The fourth section explains how to obtain a 
covariance equivalent univariate ARMA model for a multi
degree of freedom system. Finally, in the fifth section, it is 
deseribed how these models can be calibrated to sampled data. 

2. UNIV ARlA TE MODEL - SDOF SYSTEM 

There are two eriterions that must be satisfied in order to make 
an ARMA model covariance equivalent to an SDOF 
continuous-time linear system. Firstly, the modal properties 
must be equal, i.e. eigenfrequency and damping ratio must be 
the same. Secondly, the discrete-time autocovariance function 
of the system response must in some sense be equal to the 
continuous-time autocovariance function. The derivation 
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therefore starts by considering a second order continuous-tirne 
systern deseribed by the differential equation 

mji(t) + C)i(t) + ky(t) = u(t) (1) 

where m, c and k are the mass, damping and stiffness terms. y(t) 
is the response of the system, and u(t) is an independent 
distributed Gaussian white noise excitation with zero-rnean and 
the variance a/, It is realized that the white noise approxirna
tion rnay not provide a very good approxirnation of non-white 
excitation, but it sirnplifies the autocovariance function and 
thereby also the resulting ARMA model. In section six, it will 
be explained how to deal with non-white excitation. 

In continuous-tirne state s pace (l) is deseribed by 

i(t) = Ax(t) + bu(t) (2) 

where x(t)=[y(t) , y(t)f , and 

o o 
A k c b 

m m m 

The solution of (2) is given by 

x(t) = eA 1x(O) + f eAU -s>bu(s)ds 

o 

(3} 

(4) 

and the response is the top half o f x (t). In order to simpli fy ( 4) 
the continuous-tirne modal matrix A is decornposed 

M "[~, :,] 
(5) 

fJ = diag [f.!;] , i= 1,2 

where fJ is a diagonal matrix of distinct eigenvalues, and M is 
a Vandermande matrix containing the corresponding eigen
vectors . It is the eigenvectors that control the structure of A , 
whereas the eigenvalues contro l the values of the battom ro w o f 
A. 

Inserting the decornposed modal matrix in to ( 4) yields 

x( t) =M e 11'M- 1 +f M e JJ(r -.' >M- 1 b u(s)ds 

o 

=Me 11'M- 1+ fh(t-s)u(s)ds 
o 

(6) 

where h( -r)= M e 11 .' M- 1 b is the irnpulse response function o f 
the state space system. The first part of (6) is the deterministic 
or transient part, and the last is the stochastic part. 

From h( r) the irnpulse response of y( t) can be extracted . 
Den o ting this irnpulse response by h''( r) yields 

(7) 

where the g c;' s aremodal weights. Assuming stationary condi
tions, i.e. initial values x( O) = O and l,ul < O for both eigenvalues, 
the autocovariance function o f (l) is defined as 

Yc('t') a: fhY(t)h Y(t+'t')dt 
o 

= d e flt' + d e fl2' .,. > O 
cl c2 ' ' -

where the dc,'s also aremodal weights, defined as 

2 
2 gel 2 gel ge2 -a--- au---
u 2 f.l, f.l, + fl2 

(8} 

(9} 

Now tuming to discrete time, it will now be shown that an 
ARMA(2,1) model with two auto-regressive pararneters and one 
moving-average pararneter is an adequate model. Defining the 
discrete response, Y< as y(kT), where T is the sampling period, 
the ARMA(2,1) model is given by 

where <j> 1, <!>2 are the auto-regressive parameters, and ~ is the 
moving-average parameter. a, is an independent distributed 
Gaussian white noise with zero-mean and variance a} . Repre
senting (10) in discrete-tirne state space yields 



X, Q>X, _1 + ea, 

The solution o f (Il) is given by 

t 

x, = Q>'X0 + L qiea,_j 
j=O 

(11) 

(12) 

(13) 

and the response Y, is the top half of X, The discrete-time modal 
matrix, Q>, can be decomposed in the foliowing way 

Q> = LÅC 1 

(14) 

where Å is a diagonal matrix of distinct eigenvalues, and L is a 
Vandermande matrix containing the corresponding eigen
vectors . Again, it is the eigenvectors that control the struerure 
of Q>, and the eigenvalues that contro l the values of the top row 
of Q>. 

Inserting the decomposed modal matrix in to ( 13) yields 

Similar to the continuous-time case the frrst part of (15) is the 
deterrninistic or transient part, and the last is the stochastic part. 

In order to make the ARMA model covariance equivalent, the 
continuous-time system and the discrete-time system must be 
equal at all discrete time steps k, such that t= kT, for k = O, .. , ""· 
The deterrninistic parts in (6) and (15) must therefore be equal. 
This is accomplished i f ). k = e pkT, or equivalently if Å. = e~'r 
for all eigenvalues. The result that can be drawn from this is that 
a stable underdamped continuous-time SDOF system with two 
complex conjugated eigenvalues, also has two complex conju
gated eigenvalues in discrete time. This is the reason for why it 
is necessary to have two auto-regressive parameters. So, at this 
point, the auto-regressive part of (lO) cail be constructed on the 
basis o f the continuous-time modal matrix A in (3 ). Deterrnine 
the eigenvalues, f.l; and the eigenvectors M. Calculate the 
discrete eigenvalues, Å;, by using the identity Å. = e11r. Finally, 
calculate the discrete-time modal matrix, Q>, using the sirnilarity 
transformation in (14) . The auto-regressive parameters will then 
be given by Q> 1 = -Å.1 - Å.2 and Q>2 = Å.1Å.2• 

However, the present auto-regressive model is not covariance 
equivalent, which is why it is necessary to add the moving
average. The reason for adding only one moving-average 
parameter can be seen by looking at the autocovariance fimetion 
o f (l 0). In orde r to calculate the autocovariance function, i t is 
assumed that the initial values, Xm and a,, for t< O, are zero. By 
applying the modal deearnposition o f ( 14) to (13), the respons e 
c an be expressed in terms o f the scalar Green ' s function , see 
Pandit [8] as 

t 

Y, = L Gjar-j 
j =O 

where the Green's function is defined as 

). I + e I . ).2 + e I . 
--=--~).l + ).! 
).! - ).2 I ).2 - ).! 2 

j ~ o 

= O, j< o 

(16) 

(17) 

and the g;' s are modal weights . Based o n ( 16) and (17) the 
autocovariance function o f ( 10), see Pand i t et al. [5) , is 

~ 

Y.r = a~ L GjGj .,· 
j =O 

The modal weights in ( 18) are defined as 

2 
2 g2 

+a-
a l - ).2 

2 

(18) 

(19) 

To make the ARMA model covariance equivalent, the d; 's must 
be specified. This is done by using two initial conditions. 
However, one condition must always hold namely by the 
autocovariance at time lag zero, given by 

(20) 

Hence, only one initial condition remains to be specified, which 
is done by requiring one moving-average parameter. A method 
for calculation of e and a 2 that easily conform to multivariate 
systems, is to exp:ess th; autocovariance fimetion implicitly 
using (10) and (17) as, see Pandit [8] , 



' 
' l 

l i 
i l 

o $ k $l (21) 

O, k > l 

Using (21) for k=l and k=2, and that G1 =8 1 -<!> 1 gives the 
foliowing second degree polynornial in e, 

where 

2 ( k
0 J e- - +<!> e+ 1 =o 

l k l l 
l 

k0 = Y c( O) + <!> 1 Y/T) + <!>2 Y/2T) 

k1 = Y/T) + <!> 1 Y/0) + <!>2 Y/T) 

(22) 

(23) 

In (23) it is required that yk = Y/k1), and at the same time 
u s ed that y k = y -k . For each o f the solutions o f e 1 in (22) 
corresponds a variance a}. This variance is deterrnined by the 
foliowing expression 

(24) 

From (22) it is seen that there is in faet two covariance equiva
lent ARMA(2,1) models possessing the same modal properties. 

3. MULTIVARrATE MODEL· MDOF SYSTEM 

Now consider an MDOF continuous-time linear system. Such 
a system can be modelled by an ARMA V model. In order to 
make this model covariance equivalent, the same requirements 
as for the ARMA model must be imposed on it. In this section 
the procedure of the previous section will be generalized. 
Consider a system with n degrees o f freedom, deseribed by an 
n x n diagonal mass matrix m, an n x n symmetric damping 
matrix c, and an n x n symmetric stiffness matrix k. It is 
assumed that the system is excited in all degrees of freedom by 
an independent distributed Gaussian white noise u(t) with 
covariance a/, Denoting the n x l response vector by y( t), the 
continuous-time state space description o f this system is 

:i(t) = Ax(t) + Bu(t) (25) 

where x( t)= [y( t), y( t) f, and 

(26) 

In (26) I is an n x n identity matrix. The modal deearnposition 
of A is given by 

A = MJ.IM- 1 

M [ m, 
= f.l,m, m, l 

f.l 211 m:: (27) 

J.1 = diag [ f.l;] ' i= 1,2, ... ,2n 

where J.l is a diagonal matrix of 2n distinct eigenvalues. M is a 
matrix containing the corresponding eigenvectors. Them;' s are 
scaled modeshapes. It is again the eigenvector and thereby the 
scaled modeshapes that control the structure of A. The eigen
values controls the values of the last n rows of A. 

Assurning zero initial conditions, the response y(t) o f (25) is 

y(t) [hY(t -s)u(s)ds 

o 

2n T 
"m .m j ~, = L.- _J_ e J 

j=, sj 
(28) 

where hY(t-s) is the n x n impulse response function, the matrices 
g ejaremodal weights, and Sj are the corresponding scalar modal 
masses, see Meirovitch [9]. Assurning stationary conditions the 
n x n lagged covariance function of the response is given by 

y c("t) = f h Y( 't) a~hYT(t +'t )dt 

o 

where the modal weights d ej are defined as 

(29) 

(30) 

The resemblance between (8) and (29) is obvious. Turning to 
discrete time, it will now be shown that in the multivariate case, 
the ARMA(2,l) model expands to an ARMAV(2,1) model. 
Denoting Y k as y(kn, the ARMA V(2, l) model is defined as 



------------------------- -- ----- -

(31) 

where <j>,, <1>2 are the n x n auto-regressive matrices, and e, is an 
n x n moving-average matrix. The n x l vector a1 is an inde
pendent distributed Gaussian white noise with zero-mean and 
covariance matrix a/. Representing (31) in discrete-time state 
space yields 

The modal deearnposition of <j> yields 

<j> = LJ...C 1 

Å = dia g [ !.-;] , i = l, 2, ... ,2n 

(32) 

(33) 

(34) 

where Å is a diagonal matrix of 2n distinct eigenvalues. L is a 
matrix containing the corresponding eigenvectors, and the l;' s 
are the scaled modeshapes. As for the continuous-time case, the 
only task for the eigenvectors and thereby the scaled mode
shapes are to control the structure of <j>. If the first n rows of <!> 
were interchanged with the last n rows the s trueture o f <j> would 
be similar to the structure of A, i.e. the auto-regressive matrices 
would be in the n last rows and flipped in left and right direc
tion. Because this is so, it can be verified that the scaled 
modeshapes o f <j> and A are equivalent. 

2n 

Gi =L g!.! l l' 
j <: o 

i= l 

= O, j < o (35) 

gi = l.Li(IJ... + e,) 
l l 

where Li is the ith row of the left 2n x p submatrix of i . By 
using (35) the lagged covariance matrix can be defined in a 
similar manner as in the scalar case as 

~ 

Y.,. = L G1 a~GJ~s 
j =O 

2n 

="d J... ·~· s=O, l , 2, ... L..J J J 
}=I 

(36) 

2n g .a2gr L J a t 

i=I [-)}; 

On the basis of (35) and (36) it can be shown again that 
covariance equivalence can be obtained using only one moving
average matrix e,. Foliowing the approach in the scalar case for 
calculation of e, and a/, the multivariate equivalent to (21) is 
given by 

o ~ k ~l (37) 

=O, k> l 

which provides the foliowing second degree matrix polynomial 
in e, 

As in the scalar case i t is possible at this stage to determine the where 
auto-regressive part o f (31) o n the basis o f the continuous modal 
matrix A, defined in (26) . The calculations follow the scalar ko Y c( O) + <!>,Y J Tl + <!>2 Y J2T)T 
case. Convert eigenvalues using the identity A. = e~'r. Calculate (39) 
<j> using a similarity transformation, keeping in mind that the k 1 Y c( T) + <l> 1 Y c( O) + <!>2 Y c( Tl 
scaled modeshapes m; and l; are equivalent. 

The lagged covariance matrix Y s of (31) can be expressed using 
the n x n matrix Green's fimetion G. At a given time step j, Gi 
is defined using 2n modal weights gi as 

In (39) i t is required that y k = y JkT). Purther i t is used that 
y [ = y -k , and that the lagged covariance matrix is real. The 
solutions of e, in (38) can be found using matrix polynomial 
techniques. It can be shown that there exist K(2n,n) solutions. 
For each o f these solutions correspond a covariance matrix aa 2, 

which is deterrnined by 

2 a-lk aa = v, l (40) 



l 

l 

So again there are several covariance equivalent ARMA V 
models possesing the same modal properties . 

4. UNIV ARlA TE MODEL - MDOF SYSTEM 

In both cases considered until now the number of channels have 
been equal to the number o f degrees o f freedom. This approach 
has provided the maximum modal information, i.e. eigen
frequencies, damping and scaled modeshapes. In this section the 
covariance equivalence between a univariate ARMA model and 
a continuous-time multi-degree of freedom system, will be 
considered. The !imitations of this approach are, that only 
eigenfrequencies and damping ratios can be deterrnined. 

If only one forcing function and output response for an MDOF 
system are considered, then (28) can be written as 

y(t) =Ja ThY(t-s)bu(s)ds 

o 
(41) 

where y(t) and u(t) are scalars. The n x l vector b is filled with 
zeroes except at the element that corresponds to the forcing 
fimetion u(t). The n x l vector a is also filled with zeroes except 
the element that corresponds to the output response y(t). 
Laplace transforming ( 41) yields 

Y( z) = H( z) U( z) 

2n a Tg .b =L C) 

j=l z -f.lj 

2n 2n 
(42) 

L a T gci II ( z - J.lk) 
j=l k=l,hj 

where Y(z) and U(z) are the Laplace transformed of y(t) and 
u(t), respectively, and z is any complex number. The last 
equation in (42) is in faet a scalar rational polynornial. The 
order of the de norninator polynornial is 2n, whereas the order of 
the numerator polynornial is 2n-2. Applying the inverse Laplace 
transform to this rational polynornial yields a differential 
equation o f 2n ord er o f the foliowing form 

(D z n + azn - l D zn - l + .. . + a o) y( t) 

(43) 

where D is a differential operator. The coefficients a; and /3; can 
be calculated explicitly from the last equation in (42). The 
differential equation of (43) can be reduced to state spaceform 
by defining the state vector x (t) = [y( t) D y (t) .. . D 2"-

1y(t) f, 

and excitation vector u(t)=[u(t) Du( t) ... D 2" - 2u(t) Of, 
and 

o o 
o o o 

A 

-ao -az - a 2n- I 

(44) 
o o o o 
o o o o 

B 

Po P z Pzn - 2 o 

The resemblance with the SDOF state space formulation in (2) 
should be noted. By foliowing the procedure used for univariate 
SDOF systems, the modal matrix A can easily be converted to 
a discrete modal matrix <j> . This matrix will also be of the 
dimension 2n x 2n, i.e. corresponds to an ARMA model with 2n 
auto-regressive parameters. 

The multivariate model (25) does not have derivatives of the 
forcing function on the right-hand side. Looking at the uni
variate model in (43), which is restricted to only one of the 
elements of the multivariate vector, i t is seen that i t does have 
derivatives of the forcing fimetion on the right-hand side. 
Because the basic model is of second order, it can be verified 
that the derivative of the right-hand side never will exceed 2n-2. 
Now, this result, of course, also holds for a univariate SDOF 
system, i.e. for n= I. In section two, i t was shown that the 
covariance equivalent ARMA model of an SDOF system was an 
ARMA(2,1) . So, by extending this result, the covariance 
equivalent model for an n-degrees o f freedom univariate system 
is evidently an ARMA(2n,2n-l). 

The result is not restricted for multivariate to univariate models. l 

Consider an n/m-variate system with n degrees o f freedom. The 1 

covariance equivalent ARMA V model o f such a system will 
then be an ARMAV(2m,2m-l). As an ex-ample, consider a 
system with two channels and four degrees of freedom. This 
system can be modelled by an ARMAV(4,3) model. 

6. IDENTIFICA TION 

In the previous sections it has been shown that it is possible to 
model any linear second order continuous-time structural system 
excited by Gaussian white noise using the ARMA V model. This 
result is usefull by itself, because it provides a very fast and 
easy simulation tool knowing m, c, k, a/ and T. The result can 1 

on the other hand also be used to model a discretely sampled 
system. Consider a structural system without disturbance. 
Knowing that the sampled system contains n degrees of freedom , 
in p channels the covariance equivalent ARMA V model is an 
ARMAV(2nlp,2nlp-l). In the case of disturbance, e.g. non- I 

white excitation o f the structural system i t may be necessary te 



increase the arder of the model. By doing so, the non-white 
excitation is modelled as a part of the resulting model. The 
actual physical system can then be extracted from the model 
afterwards. This can be done using e.g. partial fraction expan
sion. 

A wetl-known method for identification of a structural system 
is by applying the Ieas t square method to the ARMA V model. 
Consider a p-variate ARMA V(n,m) and a p x N matrix o f 
samples y,. A least-square eriterion for such a model is typical 
o f the foliowing form, see L j ung [l O] 

N 

V(e) =_!__!_L e;(e)A- 1e,(e) 
N21=I (45) 

where V(e) is the loss function, and e, is the prediction error. 
The p x p matrix A 1 weights together the relative importance o f 
the components o f e,. j l( e) is the predictor o f the model, 
defined as 

f
1
(e) = <t>;e 

e = col(<l>,<l>z···<l>n,eiez· ··em) (46) 

where e is an (n+m)p1 x l parameter vector obtained by 
stacking all columns of the auto-regressive and moving-average 
matrices on top of each other. 

The (n+m)p1 x p regression matrix <!>, is obtained as the 
Kronecker produet between a p x p identity matrix IP' and the 
(n+m)p x l regression vector q>,, defined as 

(47) 

The parameters of the estimated model are the ones that 
minimize the loss function V(e). In arder to perform this 
minimization a numerical search procedure like the Gauss
Newton or the Levenberg-Marquardt is needed. In anycase the 
numerical minimization will be non-linear because the predic
tion error e, depends on the estimated parameters. However, it 
is also possible to use linear multi-stage search procedure, see 
e.g. Piombo et al. [Il]. 

7. CONCLUSION 

In t~is paper the theoretical background for using covariance 
e_qmvalent ARMA V models as a discrete equivalent of the 
ltnear second order continuous-time system, excited b 
Gaussian white noise, has been discussed. The correspondenc~ 
between the number of channels of response, the number of 
degrees o f freedom in the system, and the ord er o f the ARMA v 
mod~! has been shown. The results have shown that i t is actually 
poss1ble to model a continuous-time system explicitl · 
d

. . . Y m 
1screte time m a reasonable manner. It has also been consid-

ered ho_w to identify structural system from sampled data using 
a non-hnear least-square criterion. 
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