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System ldentification of Civil Engineering 
Structures using State Space and ARMAV Models 

P. Andersen, P.H. Kirkegaard & R. Brincker 
Aalborg University, 

Department of Building Technology and Structural Engineering. 
Sohngaardsholmsvej 57, DK-9000, Denmark. 

ABSTRACT 

In this paper the relations between an ambient excited structural system, represented by an 
innovation state space system, and the Auto-Regressive M o vin g Average V ector (ARMA V) model 
are considered. It is shown how to obtain a multivariate estimate of the ARMA V model from output 
measurements, using the non-linear prediction error method. The performance of this algorithm is 
compared with two system realization estimators. These are the Matrix BlockHankel stochastic 
realization estimator and the Stochastic Subspace Technique. The example shows that the use of the 
non-linear prediction error method and the Stochastic Subspace Technique results in the most 
accurate modal parameter estimates and spectral densities. 

1. INTRODUCTION 

For analysis of ambient excited civil engineering struerures the univariate Auto-Regressive 
Moving Average (ARMA) model has been used for many years, see Pandit et al. [1], Kozin et al. 
[2]. The use of this model has, however, not directly provided mode shape information but only 
revealed the eigen-frequencies and corresponding damping ratios. Recently, the interest has turned 
to the multivariate Auto-Regressive Moving Average Vector (ARMAV) model, see Pandit [3], 
Andersen et al. [4], Kirkegaard et al. [5], Piombo et al. [6]. The reason is that this model is directly 
linked to the underlying multivariate continuous-time system, and forthis reason, it is also possible 
to extract mode shape information directly. 

Because of the increased complexity of multivariate systems it is very appealing to 
represent such systems in state space. Using this approach the complexity is reduced to the 
manipulation of a few matrices. The use of stochastic state space formulations has also led to special 
system identification techniques that operate directly in state space. These techniques are referred 
to as system realization techniques. Same of the techniques are e.g. the Eigensystem Realization 
Algorithm, see Juang et al. [7], the Matrix BlockHankel method, see Hoen [8], and a fairly new 
technique referred to as the Stochastic Subspace Technique, see Van Overschee [9] . These 
techniques originate from system theory and statistics, see Aoki [lO] , and make use of numerical 
linear algebra. The parametrization is easy and the convergence is not iterative and therefore 
guaranteed. The methods do not rely on using non-linear least-squares . In contrast, the state space 
system can also be estimated using prediction error methods (PEM), see Ljung [11], which rely on 
non-linear optirnization. The reasons for using these techniques compared to those previously 
mentianed are the appealing asymptotical properties of the estimate. 

The aim of this paper is to compare the performance of the non-linear prediction error 
estimates of the ARMA V model with the performance o f two different system realization techniques 
for system identification of multivariate systems. The techniques are the Matrix Block Hankel 
(MBH) method and the stochastic subspace technique, denoted (N4SID) for Numerical algorithm 
for Subspace State Space System IDentification. The performance of the methods is evaluated by 



comparison of modal parameters and spectral densities. 
Section two consider how to represent a continuous-time second order structural system 

in state space, and how the sampled version of thi s system is represented in discrete time. It will also 
consider how to account for ambient excitation and the presence of disturbance. Section three 
describes the relationship between state space systems and ARMA V models. It also describes how 
to obtain the PEM estimate of the ARMA V model. Section four briefly introduces the MBH and 
N4SID estirnators. Section five is a simulated example that illustrates the performance of the three 
different algorithms. Finally, in section six, condusions will be made. 

2. STATE SPACE DESCRIPTION OF STRUCTURAL 
SYSTEMS 

In this seerion it will briefly be shown how a continuous-time structural system, deseribed 
by a second-order multivariate differential equation, can be converted to an equivalent discrete-tirne 
state space realization. It is also shown how to account for the presence of disturbance in the system, 
and the lack of known excitation. 

2.1 Continuous-time state space systems 

Consider a rnultivariate continuous-time civil engineering second order structural system 
with ny degrees of freedorn. The systern is deseribed by an ny x ny positive definite diagonal mass 
matrix M, an ny x ny symmetric serni-definite viscous damping matrix C, and an ny x ny syrnmetric 
positive definite stiffness matrix K. The systern is excited by an input u(t), of dimension nu x l, 
through a selection matrix S of dimension ny x nu. Let the displacernents, velocities and 
accelerations be deseribed by the ny x l vectors z (t), i( t ),Z'( t) respectively. A state space realization 
of this systern is 

[i(t)l [ O I ][z(t)l [ O l 
Z'( t) = - M- 1K - M- 1C i( t) + M- 1S u(t) [

z( t )l 
y( t) = [I O) . 

z( t) 
(l) 

The systern output of the state space system can be observed through an ny x l observation vector 
y( t). The output depends on the type of rneasurernents and the process to be measured. In the present 
case the output will be dispiacements z(t). Cornpactly the system can be written as 

i(t) = Fx(t) + Eu(t) , y(t) = Cx(t) (2) 

The n x l vector x(t) is the state vector, F is the n x n state matrix, C is the observation matrix, and 
the n x nu matrix E is the input matrix. Equation (2) can be solved by supplying an initial state 
vector x0. By solving it, the systern output can be obtained as 

l 

x(t) = e 0 x(t
0

) + e -s Eu(s)ds , F(t-t) J F(t ) y(t) = Cx(t) (3) 

This equation provides a cornplete description of the output of the system due to any excitation. 



2.2 Sampling of the state spacesystem 

Let T denote the sampling interval, and define the foliowing t0=kT and t=(k+ l) T, where 
k is an integer. Inserting this into (3) yields 

(k+l)T 

x((k+1)T) = eFTx(kT) + J eF((k•l)T-s>Eu(s)ds, y(kT) = Cx(kT) (4) 

k T 

This is now a discrete-time state space system, which can be written compactly as 

(5) 

with A being the discrete-time state matrix or transition matrix, and with tk+i being equal to time step 
(k+j)T. The excitation u(t) has been assumed constant during the interval between two samples, and 
a zero-order hold approximation has been applied. By using this approximation the input matrix is 
defined as B=F" 1(A-l)E, which is approximately true if the sampling interval is sufficiently smal!. 

The system in (5), however, does not account for disturbance that affects the structural 
parameters describing the system. This disturbance affects the states and can e.g. be enviromental 
variations, such as the temperature causing changes of the stiffness of the structure. This disturbance 
is termed process noise and is denoted w(tJ. Further, when a system is sampled there will most 
certainly be introduced some measurement noise v(tJ, due to the lirnited measurement accuracy. 
Both w(tJ and v(tJ will be deseribed by sequences of independen t identically distributed stochastic 
variables. 

In some cases only the output y(tk) is known. This is the typical case in system 
identification of ambient excited civil engineering structures. If the system that gavems this output 
is deseribed by a rational transfer function and excited by an independent identical distributed 
stochastic process, then the stochastic process y( t k) is termed an Auto-Regressive Moving Average 
Vector (ARMA V) process. This process can also be represented using the state space form, by 
ornitting the term that ineludes u(tk). 

By adding the noise terms w(tk) and v(tk) to the state space equation and the observation 
equation, respectively, and at the same time ornitting the input term, the state spacesystem looks as 
follows 

(6) 

The measurement noise v(tk) will in the general case be correlated with the process noise w(tk), see 
Hannan et al. [12] and Ljung [11]. 

2.3 Innovation state space formulation 

In arder to use (6) for system identification, the predictor of the system output j( t k) needs 
to be defined. Provided that the noise terms are Gaussian distributed stochastic processes, the 
conditional expectation of y(tk), given y(t,), u(t,), s< k, is given by, see Hannan et al. [12], 

(7) 



l 
l 

where the matrix K is the Kaiman gain. The prediction errors e( t k) =y( t k) -C i( t k) in the state 
equation of (7) amount to the part of y(tJ that eannot be predicted from the past data. For this reason 
e(tk) are also called the innovation. Inserting e(tk) into (7) yields 

(8) 

which is the state space innovation form. The innovations are assumed to be independent identically 
distributed with covariance matrix A They should be taken as an unknown stochastic excitation of 
the system. For this reason (8) is also termed a stochastic state space system. 

2.4 Modal parameters and spectral density 

Loaking only at the eigenvihrations of the stochastic state spacesystem in (8), the modal 
parameters can be determined from the foliowing eigenvalue problem 

(111
1

- A)'l'1 , «1>1 = C'l'1 , }=1, 2, ... , n (9) 

where ':P1 is the jth eigenvector of the system, and ~ is the corresponding eigenvalue. The ny x l 
vector «1>1 is the observed part of the eigenvector, and referred to as the scaled mode shape. For a 
stable underdamped system all structural modes are represented by camplex conjugated pairs of 
eigenvalues and corresponding mode shapes. The camplex conjugated pair of eigenvalues { f.11,fl *J+I} 
can be equivalently expressed in terms of the eigenfrequency h and the damping ratio (1 of the mode, 
by converting each of them to continuous-time eigenvalues 'A1= log(f.J.)/T, resulting in 

r;-;:7. I'A.I -Re('A) 
{ \•'Aj.+J} = -21tfj(j ± i21tfjyl-(j , fj = 

2
1t1 

, (10) 
21tfj 

The frequency response of the system can be calculated by applying the z-transform to (8) 
giving z[y(t)] = C(lz-A r 1Kz[e(t)], where z[ ] is tb e z-transform operator and z is a camplex 
variable. The spectral density of the output SYY(j) is then given by 

(Il) 

with z equal to e;2"fT and H denating conjugate-transpose. If only the modal parameters are of interest 
the pair {A, C} provides the necessary information. However, if the spectral density is desired, the 
triple {A, C, K} and the innovation covariance matrix A must be provided. 

3. ARMAV MODELS FOR DISCAETE-TIME SYSTEMS 

This section describes how to represent the state space system, deseribed by the innovation 
form (8) , by an ARMA V model. lt is also deseribed how to estimate this model from measured 
output data, and finall y, how the estimated ARMA V model can be converted into the irmavation 
state space form. 



3.1 Converting the state space system to an ARMAV model 

Assume that (8) is an m-dimensional minimal state space realization, having ny observed 
outputs . In the foliowing it will also be assumed that the observation matrix C is regular, which 
essential means that all rows of C must be independent, see Gawronski et al. (13]. The observability 
index associated with a regular observation matrix is denoted n. For C to be a regular observation 
matrix the condition n-ny= m must be fulifilled. Note that the observation matrix defined in the 
previous section regular. 

The first step of the conversion scheme is to transform the state space system to 
observability canonical form, deseribed by the trip le {Aob' Cob' Kob}, see Aoki (l 0]. To do this, the 
state vector transformation i ob(tk) = Q :i( t k) will be applied resulting in the foliowing innovation 
state space system 

A = QAQ- 1 C = CQ- 1 K = QK ob ' ob ' ob 

(12) 

The distribution of the innovations e( t J is unaffected bythis linear transformation , which means that 
they are still deseribed by the covariance matrix A. The m x m non-singular transfonnation matrix 
Q =[er (CAl .. (CAn-llYis equal to the observability matrix of the state spacesystem to be 
transformed with observability index n, see Gawronski et al. (13] . 

The transformation leads to the observability canonical state space realization, with Aob 
defined as 

o I o o 
o o o o 

Aob (13) 

o o o I 

-A -A n-1 -A2 -Al n 

which implies that there aren auto-regressive coefficient matrices A;. These coefficient matrices can 
be extracted using the relation [An An-l .. A 2 A 1] =CA nQ- 1 . lt is seen that the observability 
index n associated with the observation matrix C controls the order of the ARMA V model. The 
moving average parameters C; can be extracted from K"& using the foliowing relation 

cl I o o o Al 

c 2 Al I o o A2 
K ob + (14) 

c An -l A n-2 Al I A n n 

resulting in n moving average coefficient matrices . The ARMA V model wiU then given by 
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- LA;y(tk_;) + e(tk) +L C;e(tk-i) (15) 
i= l i= l 

The dimension of the state space system, and therefore also the order of the ARMA V 
model, is dependent upon the condition of the output measurements y( t k), the number of observed 
outpots of the system, and the total number of degrees o f freedom present in the system. Also, the 
actual excitation of the structure, and the type o f noise present in the system p la y an important ro le. 

3.2 System identification using ARMAV models 

In this section the estimation procedure will be a non-linear prediction error method, 
operating on the ARMA V model, defined in (15). The PEM estimate of the model is calculated by 
rninirnizing a quaciratic loss function V of the prediction errors e(tk), giving 

where W is a weight matrix, and N is the number o f output measurements. y( t kitk-l) is the ane step­
ahead predictor of the model, see Ljung [l l] 

11 n 

L A ;Y(tk_;) + L c i e(tk-i) = <V(tk) 8 (17) 
i = l i = l 

cV (t k) is the multivariate regression matrix of dimension ny x 2n-ny 2 

where I is an ny x ny identity matrix, and ø is the Kronecker produet The 2n·ny 2 x l parameter 
vector 8 contains the stacked autoregressive coefficient matrices A; and moving average coefficient 
matrices C;, in the foliowing way 8 =col([A 1 ... A

11 
C1 ... C

11
]). Here col(·) means stacking of all 

columns of the argument matrix on top of each other. The numerical search procedure is the damped 
Gauss-Newton, see Ljung [11], defined as 

8(i•l) = 8<i) + 11[l.t_ 'ljl(tk)w-'wTcrk)]-'[l.t_ 'ljl(tk)w-'e(tk)] (19) 
Nk=l Nk=i 

where the superscript UJ denates iteration number and 11 is a bisection constant. W is taken as the 
covariance matrix A of the previously estimated prediction errors. 'ljl(tk) is the gradient of the 
predictor y(tkitk_ 1). 

Because of the complexity of the ARMA V model it is vital that 'ljl(tk) is calculated in a 
recursive man n er. The jth element of 'ljl(tk) is obtained by differentiating ( 17) with respect to the jth 
element of 8, and can be formulated as a multivariate autoregressive processin the moving average 



coefficient matrices as 

a§(rkitk-l) 

ae1 

Principally, for each element of 8 there is a corresponding multivariate autoregressive filter. But in 
practice there will only be 2ny. The reason forthis is, that the gradients of the elements of A;+ I and 
C;+I• are the gradients of the elements of A; and C; at the previous time step. 

The iterative search for a lower value of the loss function in (16) is started by supplying 
initial values to 8 and A. The initial values are, in the present case, constructed using a two-stage 
iterative linear least-squares algorithm, see Piombo et al. [6]. In each iteration the prediction errors 
and gradients ljT(tk) are calculated, and the parameter vector 8 is updated. The search gradient is 
bisected up to ten times in order to find a lower value o f V. At the end of each iteration the prediction 
error covariance matrix A is updated, so it corresponds to the new prediction errors. The iterations 
stop s w hen i t is impossible to find a lower value of V, or if the maximum number of iterations is 
exceeded. 

3.3 Converting the ARMAV model to state space 

In order to use (lO) and (11) for the calculation of the modal parameters and the spectral 
densities, it is necessary that the estimated ARMA V model is converted to innovation state space 
form. The multi-step predictor j(tk•mltk) of the ARMAV model can be written in the foliowing 
recursi ve form 

(21) 

where h(m) is the impulse response function of the model at time step m. A special case of this 
equation is the one-step ahead predictor, which is obtained by setting m to zero and keeping in mind 
that §(t k l t k)= y( t k). However, the predictor can also be expressed in terms of the auto-regressive 
coefficient matrices as 

11 

-L A;§(tk+m-iitk-l) + h(m)e(tk) 
i= l 

(22) 

Define the state vector i( t k) in terms of the predictor §( tk•m i t k-l), for m=O to n-1, see Hannan et al. 
[16], as 

Let the system output be y(tJ . The one-step ahead prediction c an be extracted from the firs t element 
of i(tk), giving rise to the foliowing observation equation 

(24) 



with C being the observation matrix. By combining (21) and (22), with increasing prediction 
horizon, the foliowing set of equations is obtained 

j(tk+1,tk) = j(tk+1,tk-1) +h( l) 

j(tk+2,tk) = j(tk+2,tk-1)+h(2) 

j(tk+n-1itk) = j(tk+n-1itk-1) +h(n-1) 

j(tk+nitk) = -A1j(tk+n-1itk-1)- ··· -Anj(tkitk-1) +h( n) 

which in matrix notation is equal to 

x(tk. 1) = A.i(tk) + Ke(tk) 

(25) 

(26) 

with A defined as in (13) and the Kaiman gain K=[hT(l) hT(2) ... hT(n-1) hT(n)Y, defined in terms 
of the impulse response matrices for k = l to n. Regarding the innovations, they are of course 
unaffected of the conversion and are still deseribed by the covariance matrix A. 

4. SYSTEM REALIZATION TECHNIQUES 

This section briefly presents two state space system identification techniques which can 
be used to identify a system only from output measurements. The durability of these techniques for 
system identification of civil engineering struerures are evaluated in Kirkegaard et al. [14]. The 
techniques rely on system realization theory and compared with ARMA V identification they have 
some computational advantages since solutions are found using numericallinear algebra, see e.g. 
Aoki [10], Van Overschee et al. [9] and Juang [7]. The results of the estimation techniques are the 
innovation state space triple {A, C, K} and the innovation covariance matrix A, from which the 
modal parameters and the spectral densities can be obtained using (lO) and (11). 

4.1 Matrix BlockHankel stochastic realization estimater 

The Matrix BlockHankel stochastic realization estimator is a covariance driven estimation 
technique. The present algorithm is basedon Aoki [10], whereas the name of the technique is due 
to Hoen [8]. Basedon (8), the covariance function of the output :Ek=E[y(ti)yT(ti+k)] at time lag k is 

where P is the covariance matrix of the state vectors E[x(tk)xT(tk)], and M=APCT +KAis the cross­
covariance E[x(tk+1)yT(tJ]. In the following, the state matrix A is assumed to be stable, which implies 
that x( t J is covariance stationary, i.e. that P is constant. In this case P satisfies the Ricatti equation, 
see Aoki [10] 

P = APA T + KAKT = APA T + (M -APCT)(:E
0 
-cpcTr1CM -APcTl (28) 

where the definitions of M and 2:0 in (27) have been used to express K and A. This irhplies that 



having estimated the triple {A, C, M} the Kaiman gain matrix K and the innovation covariance 
matrix A can be detennined from the positive definite solution of the Riccati equation. In order to 
solve the equation it is required that A has to be positive definite. 

The estimation of the triple {A, C, M} is basedon a deearnposition of a blockHankel 
matrix of the form 

:Ep :Ep+! I;p+k- I 

Hj/P) 
:Ep+! :Ep+2 :Ep+k 

(29) 

I;p+j- I .Ep+j :Ep+j+k-2 

which for p= l is the produet of the observability matrix 01 and another matrix called Qk, defined 
respecti vel y as 

Oj =[er (CAl (CA 2l .. (CAj-IlY 1\ Qk =[M AM A 2M .. Ak-IM] (30) 

Firs t the singular val u e deearnposition U SV" of the Hankel matrix H1k(l) is calculated. In thi s matrix 
the theoretical covariance matrices :Ek of (27) have been replaced by sampled covariance matrices . 
By a proper choice of coordinate system an internal balanced estimate of the triple is then obtained 

The constants j and k will in general be equal to the state space dimension divided by the number 
of observed outputs. For minimal systems the estimates are unique, because the Gramians 0/01 and 
OJ)/ are non-singular. What remains, in arder to obtain a complete estimate of the triple {A, C, K} 
and the innovation covariance matrix A, is to estimate K and A by the solution of the above Riccati 
equation. The minimality of the realization should always be checked, by verifying that the 
realization is both observable and reachable. It should also be checked that A has full rank and is 
positive definite. If thi s is not the case or if the realization is non-minimal, the state space dimension, 
and therefore also j and k, should be reduced. The spectral densities and the modal parameters can 
then be deterrnined using (10) and (11). 

4.2 Stochastic Subspace Technique 

Subspace algorithms for identification of linear dynamic systems have recently been 
considered in a number of papers, see Van Overshee et al. [9] and DeMooret al. [15]. The main 
theorem of the subspace theory demoostrates how the Kaiman filter states can be obtained from 
input-output data using linear algebra tools (QR and SYD). Once these states are known, the 
identification problem becomes a linear least-squares problem in the unknown matrix pair {A, C} 
in (6) . If the external input is unknown, a stochastic subspace technique (N4SID) is used to 
deterrnine the system matrices. Compared to the stochastic realization methods in the previous 
section, the N4SID is data driven instead of covariance driven, sothat the explicit fonnation of the 
covariance matrix is avoided. In the foliowing the N4SID is briefly deseribed based on Van 
Overschee et al. [9] and De Moor. [15] . 

In arder to use the N4SID it is assumed that (27) is fulfilled and that the system in (6) is 
observable. The N4SID relies on output blockHankel matrices of the form · 



l 
' l ::l 

y(O) y(I) y (j -l) 

YOii-1 

y(l) y(2) y (j) 
(32) 

y(i-1) y(i) y(i+j-2) 

where the first subscript denates the time index of the upper left element, while the second subscript 
is the time index of the battorn left element. For all output block Hankel matrices, the nurnber of 
columns will be j and for all theoretical derivations, i t isassurned thatj- co . 

An orthogonal projection Z; of the row space of f;12;. 1 (the future) onto the row space of 
Y01 ;. 1 (the past) is introduced 

By singular value deearnposition of this projection i t can be proved that 

Z;= Q,X; 

(33) 

(34) 

which is the produet of the extended observability matrix Q; and X;= [i(t) i(t;. 1) : .. i(t;_
1

_1)], 

which is the Kaiman state sequence. Further, it can be proved that another projection Z;+ J is defined 
as 

(35) 

implying that 

(36) 

From (34) and (36) the Kaiman states can be obtained from output data using singular value 
deearnposition techniques which rneans that the matrix pair {A, C} can be estirnated from the 
foliowing set of linear equations 

(37) 

where the last term concis t o f residual matrices. A nurnerically efficient way to sol ve thi s set of linear 
equations is deseribed in Van Overschee et al. [9]. This algorithrn also gives anestimate of M from 
which estimates of K and A can be obtained by the solution of the Riccati equation (28). The spectral 
densities and the modal pararneters can then be calculated using (l O) and (Il) . 



5. EXAMPLE 

In the foliowing example the performance of the ARMA V prediction error estimator is 
compared with the performance of the two system realization estimators, deseribed in the previous 
section. The reference system is a 4-DOF linear system excited by Gaussian white noise. The 
estimated modal parameters of all structural modes, and the autospectral densities of the estimates, 
will be compared with the ones of this reference system. 

The reference system has been converted, using a sampling interval of 0.015 seconds, from 
a continuous-time description to a covariance equivalent discrete time ARMA V model, see Andersen 
et al. (4], from which 4000 samples have been simulated. Gaussian white noise has been added to 
the output of the system amounting to l O % of the mean of the standard deviations of the simulated 
output. The eigenfrequencies and damping ratios of the system are Iisted in the second and third 
column of table l, respectively. 

The optimal ARMA V model has two autoregressive coefficient matrices and two moving 
average coefficient matrices. This model order is equivalent to a state space dimension of 8, which 
is also the optimal state space dimension for the N4SID estimator. However, the optimal state space 
dimesion for the MBH estimator is 12. This dimension results in the estimation of some spurious 
modes, which are not presented in the following. 

The estimated eigenfrequencies and damping ratios are shown in columns four to nine in 
table l. Both the eigenfrequencies and the damping ratios has been identified very well. Especiaily 
the ARMAV and the N4SID estimates are very close to the modal parameters of the reference 
system. In tigure l, the autospectral densities o f all outputs o f the three estimates are plotted together 
with the FFT autospectral densities of the simulated output measurements. It is seen that the spectral 
densities of the ARMA V and the N4SID estimates agrees very well, whereas the FFT and MBH 
spectral densities diviates. In each plot the peak around the first eigenfrequency has been zoomed 
in. In these plots the agreements between ARMA V and N4SID becomes even more clear. 

All three estimatars returos agreeable results. Especiaily the results obtained from the 
ARMA V and the N4SID estimatars are of high quality. However, i t should be noted that the analys is 
is based on simulated data. When used on real data the ARMA V prediction error estimator returos 
themost accurate results of these two estimators, see Kirkegaard et al. [14]. In this case the estimates 
obtained from the N4SID can be applied as excellent initial estimates for the PEM estimator. 

6. CONCLUSION 

In this paper it has been shown how to represent a multivariate second-order ambient 
excited structural system as a discrete-time innovation state space system. Based on this system it 
has then been considered how to represent i t using an Auto-Regressive Maving-A verage Vector 
(ARMA V) model. 

The formulation of this model has provided an efficient recursive approach for the 
calculation of predictor gradient for use in a non-linear multivariate prediction error method (PEM). 
It has briefly been adressed how to estimate multivariate ambient excited systems directly in state 
space. Two estimatars has been presented; the Matrix B Jock Hankel (MBH) stochastic estimator, and 
the stochastic subspace technique (N4SID). 

The performance of the three multivariate estimatars has been compared in a simulated 
example. The results of this example shows agreement of the modal parameter estimates of the three 
estimators. Especiaily the PEM and the N4SID algorithms reveals a high degree of agreement with 
the modal parameters of the reference system. 
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Reference ARMAV MBH SST 

Mode /; (; /; (; /; (; /; (; 

l 6.9553 4.37 6.9648 4.77 6.9387 5.11 6.9624 4.73 

2 13 .2298 8.31 13.2449 7.57 13.2687 7.75 13.2517 7.52 

3 18.2093 11.44 18.1630 11.03 17.8075 10.99 18.1810 11.22 

4 21.4063 13.45 21.5220 13.05 21.3812 13.06 21.4724 12.77 

Tab le l: Reference and estimated natural eigenfrequencies /;, [Hz], and damping ratios (;. [%]. 
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Figure l: Autospectral densities o f all Jour output. The legends a re: 
FFT: [ ___ ], ARMAV: [ _. _. _ ], MBH: [ ____ ],and SST: [ ..... ]. 
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