Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

System Identification of Civil Engineering Structures using State Space and ARMAV
Models

Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

Publication date:
1996

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Andersen, P., Kirkegaard, P. H., & Brincker, R. (1996). System Identification of Civil Engineering Structures
using State Space and ARMAYV Models. Dept. of Building Technology and Structural Engineering, Aalborg
University. Fracture and Dynamics Vol. R9618 No. 78

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024


https://vbn.aau.dk/en/publications/46d181f0-7bfd-11dc-910b-000ea68e967b

i

'\\-‘“
2§

INSTITUTTET FOR BYGNINGSTEKNIK

DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING
AALBORG UNIVERSITET o AUC ) AALBORG ° DANMARK

Aalborg Universitetsbibliotek
530005830051

e e T

To be presented at ISMA21, Leuven, September 1996

P. ANDERSEN, P. H. KIRKEGAARD & R. BRINCKER
SYSTEM IDED’TTIFICATION OF CIVIL ENGINEERING STRUCTURES

USING STATE SPACE AND ARMAV MODELS
JUNE 1996 ISSN 1395-7953_R9618

b et e s e e e e R T = e e R i e e |




The FRACTURE AND DYNAMICS papers are issued for early dissemination of rese-
arch results from the Structural Fracture and Dynamics Group at the Department of
Building Technology and Structural Engineering, University of Aalborg. These papers
are generally submitted to scientific meetings, conferences or journals and should there-
fore not be widely distributed. Whenever possible reference should be given to the final
publications (proceedings, journals, etc.) and not to the Fracture and Dynamics papers.

Einted at Aalborg University




INSTITUTTET FOR BYGNINGSTEKNIK

DEPT. 'OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING
AALBORG UNIVERSITET ) AUC ° AALBORG o DANMARK

FRACTURE & DYNAMICS
PAPER NO. 78

To be presented at ISMA21, Leuven, September 1996

P. ANDERSEN, P. H. KIRKEGAARD & R. BRINCKER

SYSTEM IDENTIFICATION OF CIVIL ENGINEERING STRUCTURES
USING STATE SPACE AND ARMAYV MODELS

JUNE 1996 ISSN 1395-7953 R9618



System Identification of Civil Engineering
Structures using State Space and ARMAV Models

P. Andersen, P.H. Kirkegaard & R. Brincker
Aalborg University,
Department of Building Technology and Structural Engineering.
Sohngaardsholmsvej 57, DK-9000, Denmark.

ABSTRACT

In this paper the relations between an ambient excited structural system, represented by an
innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAYV) model
are considered. It is shown how to obtain a multivariate estimate of the ARMAYV model from output
measurements, using the non-linear prediction error method. The performance of this algorithm is
compared with two system realization estimators. These are the Matrix Block Hankel stochastic
realization estimator and the Stochastic Subspace Technique. The example shows that the use of the
non-linear prediction error method and the Stochastic Subspace Technique results in the most
accurate modal parameter estimates and spectral densities.

1. INTRODUCTION

For analysis of ambient excited civil engineering structures the univariate Auto-Regressive
Moving Average (ARMA) model has been used for many years, see Pandit et al. [1], Kozin et al.
[2]. The use of this model has, however, not directly provided mode shape information but only
revealed the eigen-frequencies and corresponding damping ratios. Recently, the interest has turned
to the multivariate Auto-Regressive Moving Average Vector (ARMAV) model, see Pandit [3],
Andersen et al. [4], Kirkegaard et al. [5], Piombo et al. [6]. The reason is that this model is directly
linked to the underlying multivariate continuous-time system, and for this reason, it is also possible
to extract mode shape information directly.

Because of the increased complexity of multivariate systems it is very appealing to
represent such systems in state space. Using this approach the complexity is reduced to the
manipulation of a few matrices. The use of stochastic state space formulations has also led to special
system identification techniques that operate directly in state space. These techniques are referred
to as system realization techniques. Some of the techniques are e.g. the Eigensystem Realization
Algorithm, see Juang et al. [7], the Matrix Block Hankel method, see Hoen [8], and a fairly new
technique referred to as the Stochastic Subspace Technique, see Van Overschee [9]. These
techniques originate from system theory and statistics, see Aoki [10], and make use of numerical
linear algebra. The parametrization is easy and the convergence is not iterative and therefore
guaranteed. The methods do not rely on using non-linear least-squares. In contrast, the state space
system can also be estimated using prediction error methods (PEM), see Ljung [11], which rely on
non-linear optimization. The reasons for using these techniques compared to those previously
mentioned are the appealing asymptotical properties of the estimate.

The aim of this paper is to compare the performance of the non-linear prediction error
estimates of the ARMAYV model with the performance of two different system realization techniques
for system identification of multivariate systems. The techniques are the Matrix Block Hankel
(MBH) method and the stochastic subspace technique, denoted (N4SID) for Numerical algorithm
for Subspace State Space System IDentification. The performance of the methods is evaluated by
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comparison of modal parameters and spectral densities.

Section two consider how to represent a continuous-time second order structural system
in state space, and how the sampled version of this system is represented in discrete time. It will also
consider how to account for ambient excitation and the presence of disturbance. Section three
describes the relationship between state space systems and ARMAV models. It also describes how
to obtain the PEM estimate of the ARMAYV model. Section four briefly introduces the MBH and
N4SID estimators. Section five is a simulated example that illustrates the performance of the three
different algorithms. Finally, in section six, conclusions will be made.

2. STATE SPACE DESCRIPTION OF STRUCTURAL
SYSTEMS

In this section it will briefly be shown how a continuous-time structural system, described
by a second-order multivariate differential equation, can be converted to an equivalent discrete-time
state space realization. It is also shown how to account for the presence of disturbance in the system,
and the lack of known excitation.

2.1  Continuous-time state space systems

Consider a multivariate continuous-time civil engineering second order structural system
with ny degrees of freedom. The system is described by an ny x ny positive definite diagonal mass
matrix M, an ny x ny symmetric semi-definite viscous damping matrix C, and an ny X ny symmetric
positive definite stiffness matrix K. The system is excited by an input u(z), of dimension nu x 1,
through a selection matrix S of dimension ny x nu. Let the displacements, velocities and
accelerations be described by the ny x 1 vectors z(#),Z(#),Z(¢)respectively. A state space realization
of this system is

(1) 0 I z(1) z(1)
= o+ 5 = I O
[i(t)] -M'K -M'C i(t)l M'S u(r) .y = | ]L(t)J o

The system output of the state space system can be observed through an ny x 1 observation vector
¥(2). The output depends on the type of measurements and the process to be measured. In the present
case the output will be displacements z(f). Compactly the system can be written as

X(t) = Fx(¢) + Eu(r) , y(1) = Cx(1) (2)

The n x 1 vector x(¢) is the state vector, F is the n x n state matrix, C is the observation matrix, and
the n x nu matrix E is the input matrix. Equation (2) can be solved by supplying an initial state
vector x,. By solving it, the system output can be obtained as

x(1) = " x(1y) + [e"IEu(s)ds ,  y(1) = Cx(p) 3)

fo

This equation provides a complete description of the output of the system due to any excitation.



2.2 Sampling of the state space system

Let T denote the sampling interval, and define the following #,=kT and t=(k+1)T, where
k is an integer. Inserting this into (3) yields

k+1)T
x((k+1DT) = eFTx(kT) + f eFEDT-Ey(s)ds , y(kT) = Cx(kT) 4)
kT

This is now a discrete-time state space system, which can be written compactly as

x(tk+1) = AX(tk) * Bu(tk) ’ .Y(tk) = Cx(tk) (5)

with A being the discrete-time state matrix or transition matrix, and with #,,; being equal to time step
(k+))T. The excitation u(f) has been assumed constant during the interval between two samples, and
a zero-order hold approximation has been applied. By using this approximation the input matrix is
defined as B=F'(A-I)E, which is approximately true if the sampling interval is sufficiently small.

The system in (5), however, does not account for disturbance that affects the structural
parameters describing the system. This disturbance affects the states and can e.g. be enviromental
variations, such as the temperature causing changes of the stiffness of the structure. This disturbance
is termed process noise and is denoted w(z,). Further, when a system is sampled there will most
certainly be introduced some measurement noise v(#,), due to the limited measurement accuracy.
Both w(z,) and v(z,) will be described by sequences of independent identically distributed stochastic
variables.

In some cases only the output y(z,) is known. This is the typical case in system
identification of ambient excited civil engineering structures. If the system that governs this output
is described by a rational transfer function and excited by an independent identical distributed
stochastic process, then the stochastic process y(z,) is termed an Auto-Regressive Moving Average
Vector (ARMAV) process. This process can also be represented using the state space form, by
omitting the term that includes u(z,).

By adding the noise terms w(z,) and v(z,) to the state space equation and the observation
equation, respectively, and at the same time omitting the input term, the state space system looks as
follows

x(t,,) = Ax(1) + w(t) , ¥(5) = Cx(z) + ¥(1,) ©6)

The measurement noise v(t,) will in the general case be correlated with the process noise w(z,), see
Hannan et al. [12] and Ljung [11].

2.3 Innovation state space formulation
In order to use (6) for system identification, the predictor of the system output y(z,) needs

to be defined. Provided that the noise terms are Gaussian distributed stochastic processes, the
conditional expectation of y(z,), given y(t,), u(z,), s < k, is given by, see Hannan et al. [12],

#(t,,) = AR1) + K{y(1) - C2(1)), 3(z) = CE(z,) (7



where the matrix K is the Kalman gain. The prediction errors e(z,) =y(z,) -C¥(z,)in the state
equation of (7) amount to the part of y(z,) that cannot be predicted from the past data. For this reason
e(t,) are also called the innovation. Inserting e(r,) into (7) yields

£(1,,,) = A%(1) + Ke(r) , ¥(1) = CE(1,) + e(1) )

which is the state space innovation form. The innovations are assumed to be independent identically
distributed with covariance matrix A. They should be taken as an unknown stochastic excitation of
the system. For this reason (8) is also termed a stochastic state space system.

2.4 Modal parameters and spectral density

Looking only at the eigenvibrations of the stochastic state space system in (8), the modal
parameters can be determined from the following eigenvalue problem

Uy, - A, ® =C¥,, j=1,2 .,n (9)

J !

where ¥ is the jth eigenvector of the system, and | is the corresponding eigenvalue. The ny x 1
vector @; is the observed part of the eigenvector, and referred to as the scaled mode shape. For a
stable underdamped system all structural modes are represented by complex conjugated pairs of
eigenvalues and corresponding mode shapes. The complex conjugated pair of eigenvalues {p;,u’;,,}
can be equivalently expressed in terms of the eigenfrequency f; and the damping ratio (; of the mode,
by converting each of them to continuous-time eigenvalues A;= log(j,)/T, resulting in

, _ - Al -Re(h,)
{A'j,}"jﬂ} = ‘271:];(]- ax 127'[_]3. I—CJ ) f_; = E ) W (10)
o

The frequency response of the system can be calculated by applying the z-transform to (8)
giving z[y(¢)]=C(Iz-A)'Kz[e(t)], where z[ ] is the z-transform operator and z is a complex
variable. The spectral density of the output S, (f) is then given by

S, (N = CUe™ T -A)KAK" (I T -A)HCH (11)

with z equal to ¢?™" and ¥ denoting conjugate-transpose. If only the modal parameters are of interest
the pair {4, C} provides the necessary information. However, if the spectral density is desired, the
triple {A, C, K} and the innovation covariance matrix A must be provided.

3. ARMAV MODELS FOR DISCRETE-TIME SYSTEMS

This section describes how to represent the state space system, described by the innovation
form (8), by an ARMAYV model. It is also described how to estimate this model from measured
output data, and finally, how the estimated ARMAYV model can be converted into the innovation
state space form. '



3.1  Converting the state space system to an ARMAV model

Assume that (8) is an m-dimensional minimal state space realization, having ny observed
outputs. In the following it will also be assumed that the observation matrix C is regular, which
essential means that all rows of C must be independent, see Gawronski et al. [13]. The observability
index associated with a regular observation matrix is denoted n. For C to be a regular observation
matrix the condition n°ny =mmust be fullfilled. Note that the observation matrix defined in the
previous section regular.

The first step of the conversion scheme is to transform the state space system to
observability canonical form, described by the triple {4,,, C,,, K,,}, see Aoki [10]. To do this, the
state vector transformation £ ,(z,) = Q*(z,)will be applied resulting in the following innovation
state space system

fab(tk*-l) = Aobfab(tlc) % Kobe(tk) E y(tk) = Cobfob(tk) ¥ e(tk)
(12)
Aab = QAQ_I 2 Cab = CQ_] 2 Knb = QK

The distribution of the innovations e(%,) is unaffected by this linear transformation, which means that
they are still described by the covariance matrix A. The m x m non-singular transformation matrix
Q=[CT (CA)T . . (CA" " [ is equal to the observability matrix of the state space system to be
transformed with observability index n, see Gawronski et al. [13].

The transformation leads to the observability canonical state space realization, with A,
defined as

0
A, =| - : 8 = 3 ] (13)
0 o .. 0 I
A, A, A, -4,

which implies that there are n auto-regressive coefficient matrices A, These coefficient matrices can
be extracted using the relation [A, A, . . A, A ]=CA"Q".Itis seen that the observability
index n associated with the observation matrix C controls the order of the ARMAYV model. The
moving average parameters C,; can be extracted from K, using the following relation

o I 0] A, ]
c,| |4 I .0 0 A,

_ K, - (14)
Cn An—l An—Z Al 1 An

resulting in » moving average coefficient matrices. The ARMAYV model will then given by



y) = _ZAiy(tk—i) + e(1,) +Zcie(tk-i) (15)
i=1 i=1

The dimension of the state space system, and therefore also the order of the ARMAV
model, is dependent upon the condition of the output measurements y(z,), the number of observed
outputs of the system, and the total number of degrees of freedom present in the system. Also, the
actual excitation of the structure, and the type of noise present in the system play an important role.

3.2 System identification using ARMAV models

In this section the estimation procedure will be a non-linear prediction error method,
operating on the ARMAYV model, defined in (15). The PEM estimate of the model is calculated by
minimizing a quadratic loss function V of the prediction errors £(1,), giving

N

Z Tt )W 'e(1,) =

N
T SIECARIOUR] L MENEREUAR] Bt

k=

N | =
2

1
NE

N | —

where W is a weight matrix, and N is the number of output measurements. y(z,lz,_,)is the one step-
ahead predictor of the model, see Ljung [11]

y ) = Z A () + Z Cie(r,) = ¢T(tk)e (17)

i=1

$7(z,) is the multivariate regression matrix of dimension nyx2n-ny?

oTt)=@Ttpel ,  @T(t) =y, . . ¥ €7 ) . T )T (18)

where I is an ny x ny identity matrix, and @ is the Kronecker product. The 2n-ny?x 1 parameter
vector O contains the stacked autoregressive coefficient matrices A; and moving average coefficient
matrices C, in the following way 6 =col([A, ... A, C, .. C,]). Here col(-) means stacking of all
columns of the argument matrix on top of each other. The numerical search procedure is the damped
Gauss-Newton, see Ljung [11], defined as

N o
il = 80 + p IkZ:lIJ(tk)W_IIIIT(Ik)} %E ‘p(tk)w_le(fk)] (19)
-t k=1

where the superscript ©” denotes iteration number and p is a bisection constant. W is taken as the
covariance matrix A of the previously estimated prediction errors. {r(z,) is the gradient of the
predictor y(z,lz, ).

Because of the complexity of the ARMAV model it is vital that {i(z,) is calculated in a
recursive manner. The jth element of Y(z,) is obtained by differentiating (17) with respect to the jth
element of B, and can be formulated as a multivariate autoregressive process in the moving average



coefficient matrices as

ay(e,lt,. l) n e by ) L . 9C
(t = il - O —8 &0 t +
W(t,) =5 2 % ;%%yug 2 55 &) (20)

¥

Principally, for each element of 6 there is a corresponding multivariate autoregressive filter. But in
practice there will only be 2ny*. The reason for this is, that the gradients of the elements of A,,, and
C,,,, are the gradients of the elements of A; and C; at the previous time step.

The iterative search for a lower value of the loss function in (16) is started by supplying
initial values to 0 and A. The initial values are, in the present case, constructed using a two-stage
iterative linear least-squares algorithm, see Piombo et al. [6]. In each iteration the prediction errors
and gradients {i(z,) are calculated, and the parameter vector 0 is updated. The search gradient is
bisected up to ten times in order to find a lower value of V. At the end of each iteration the prediction
error covariance matrix A is updated, so it corresponds to the new prediction errors. The iterations
stops when it is impossible to find a lower value of V, or if the maximum number of iterations is
exceeded.

3.3 Converting the ARMAV model to state space

In order to use (10) and (11) for the calculation of the modal parameters and the spectral
densities, it is necessary that the estimated ARMAYV model is converted to innovation state space
form. The multi-step predictor y(t,,, 1t,) of the ARMAV model can be written in the following
recursive form

k+m

Yt 8) = ¥ 0t,) + k(m)e(t,) 21)

where h(m) is the impulse response function of the model at time step m. A special case of this
equation is the one-step ahead predictor, which is obtained by setting m to zero and keeping in mind
that y(z,1z,) =y(z,). However, the predictor can also be expressed in terms of the auto-regressive
coefficient matrices as

Pt ZAyum.kJ+an0) | (22)

Define the state vector X(#,)in terms of the predictor y(z,, I, ), for m=0 to n-1, see Hannan et al.
[16], as

x(t,) = fT(tkltk-l) jT(tkdItk—l) v fT(tk+n—2ltk-1) yT(tkm-lltk-l)]T (23)

Let the system output be y(¢). The one-step ahead prediction can be extracted from the first element
of ¥(t,), giving rise to the following observation equation

y(t) =[I 0 . . 0}&z,) + e(t,) = Ci(r) + e(t) (24)




with C being the observation matrix. By combining (21) and (22), with increasing prediction
horizon, the following set of equations is obtained

J”\(tkqltk) = f([kqltk-l)"'h(l)
Y(t.o11) = F(h,lh ) +h(2)

- A (25)
Y tna 1) = Yty 18,2)) +h(n-1)
Yt ) =-A Y, ) - —A Y e, ) +h(n)
which in matrix notation is equal to
#(1,,,) = A%(1,) + Ke(1,) (26)

with A defined as in (13) and the Kalman gain K=[h"(1) h’(2) ... K"(n-1) h"(n)]", defined in terms
of the impulse response matrices for k = 1 to n. Regarding the innovations, they are of course
unaffected of the conversion and are still described by the covariance matrix A.

4. SYSTEM REALIZATION TECHNIQUES

This section briefly presents two state space system identification techniques which can
be used to identify a system only from output measurements. The durability of these techniques for
system identification of civil engineering structures are evaluated in Kirkegaard et al. [14]. The
techniques rely on system realization theory and compared with ARMAYV identification they have
some computational advantages since solutions are found using numerical linear algebra, see e.g.
Aoki [10], Van Overschee et al. [9] and Juang [7]. The results of the estimation techniques are the
innovation state space triple {A, C, K} and the innovation covariance matrix A, from which the
modal parameters and the spectral densities can be obtained using (10) and (11).

4.1 Matrix Block Hankel stochastic realization estimator

The Matrix Block Hankel stochastic realization estimator is a covariance driven estimation
technique. The present algorithm is based on Aoki [10], whereas the name of the technique is due
to Hoen [8]. Based on (8), the covariance function of the output Z,=E[y(z,)y’(t,,,)] at time lag k is

2, = CA'PCT+CA* 'KA = CA¥'M, k>0 A 3, = CPCT+A, k=0 (27)

where P is the covariance matrix of the state vectors E[x(z,)x’(z,)], and M=APC"+KA is the cross-
covariance E[x(z,,,)y"(z)]. In the following, the state matrix A is assumed to be stable, which implies
that x(z,) is covariance stationary, i.e. that P is constant. In this case P satisfies the Ricatti equation,
see Aoki [10]

P = APAT + KAK" = APAT + (M-APCT)(Z,-CPCT)"\(M -APCT)" (28)

where the definitions of M and X, in (27) have been used to express K and A. This implies that



having estimated the triple {A, C, M} the Kalman gain matrix K and the innovation covariance
matrix A can be determined from the positive definite solution of the Riccati equation. In order to
solve the equation it is required that A has to be positive definite.

The estimation of the triple {A, C, M} is based on a decomposition of a block Hankel
matrix of the form

B, By s B
I T
Hyp)=| " 70 (29)
\ Bogs By -« Boga

which for p=1 is the product of the observability matrix O; and another matrix called €2, defined
respectively as

0, =[cT €A €AY . . A A Q, =[M AM AM . . A¥'M] (30)

First the singular value decomposition USV” of the Hankel matrix Hj(1) is calculated. In this matrix
the theoretical covariance matrices X, of (27) have been replaced by sampled covariance matrices.
By a proper choice of coordinate system an internal balanced estimate of the triple is then obtained

A =S"UTH,()VS™, C=H,W)VS™*, M =S"“UTH,1) (31)

The constants j and k will in general be equal to the state space dimension divided by the number
of observed outputs. For minimal systems the estimates are unique, because the Gramians 0,"0; and
Q.Q," are non-singular. What remains, in order to obtain a complete estimate of the triple {4, C, K}
and the innovation covariance matrix A, is to estimate K and A by the solution of the above Riccati
equation. The minimality of the realization should always be checked, by verifying that the
realization is both observable and reachable. It should also be checked that A has full rank and is
positive definite. If this is not the case or if the realization is non-minimal, the state space dimension,
and therefore also j and k, should be reduced. The spectral densities and the modal parameters can
then be determined using (10) and (11).

4.2 Stochastic Subspace Technique

Subspace algorithms for identification of linear dynamic systems have recently been
considered in a number of papers, see Van Overshee et al. [9] and De Moor et al. [15]. The main
theorem of the subspace theory demonstrates how the Kalman filter states can be obtained from
input-output data using linear algebra tools (QR and SVD). Once these states are known, the
identification problem becomes a linear least-squares problem in the unknown matrix pair {4, C}
in (6). If the external input is unknown, a stochastic subspace technique (N4SID) is used to
determine the system matrices. Compared to the stochastic realization methods in the previous
section, the N4SID is data driven instead of covariance driven, so that the explicit formation of the
covariance matrix is avoided. In the following the N4SID is briefly described based on Van
Overschee et al. [9] and De Moor. [15]. '

In order to use the N4SID it is assumed that (27) is fulfilled and that the system in (6) is
observable. The N4SID relies on output block Hankel matrices of the form '




y©)  y@ . . yG-1

1 2) ..y
y1)  y@2) y() (32)

oli-1

yi-1) y@ . . y(+-2)

where the first subscript denotes the time index of the upper left element, while the second subscript
is the time index of the bottom left element. For all output block Hankel matrices, the number of
columns will be j and for all theoretical derivations, it is assumed that j - .

An orthogonal projection Z; of the row space of Y;,;, (the future) onto the row space of

Yy.; (the past) is introduced
Z = Yy
12i-1 / v (33)

0li-1

By singular value decomposition of this projection it can be proved that

z,=0X, (34)

which is the product of the extended observability matrix Q; and X’iz [£G) £G,.;) f(ti_j_l)],
which is the Kalman state sequence. Further, it can be proved that another projection Z,,, is defined
as

Zisy = Y
1 112 l/Y (35)

Oli

implying that

A

Z, = 0, X, (36)

From (34) and (36) the Kalman states can be obtained from output data using singular value
decomposition techniques which means that the matrix pair {A, C} can be estimated from the
following set of linear equations

Pw
J (37)

where the last term concist of residual matrices. A numerically efficient way to solve this set of linear
equations is described in Van Overschee et al. [9]. This algorithm also gives an estimate of M from
which estimates of K and A can be obtained by the solution of the Riccati equation (28). The spectral
densities and the modal parameters can then be calculated using (10) and (11).




5. EXAMPLE

In the following example the performance of the ARMAV prediction error estimator is
compared with the performance of the two system realization estimators, described in the previous
section. The reference system is a 4-DOF linear system excited by Gaussian white noise. The
estimated modal parameters of all structural modes, and the autospectral densities of the estimates,
will be compared with the ones of this reference system.

The reference system has been converted, using a sampling interval of 0.015 seconds, from
a continuous-time description to a covariance equivalent discrete time ARMAV model, see Andersen
et al. [4], from which 4000 samples have been simulated. Gaussian white noise has been added to
the output of the system amounting to 10 % of the mean of the standard deviations of the simulated
output. The eigenfrequencies and damping ratios of the system are listed in the second and third
column of table 1, respectively.

The optimal ARMAYV model has two autoregressive coefficient matrices and two moving
average coefficient matrices. This model order is equivalent to a state space dimension of 8, which
is also the optimal state space dimension for the N4SID estimator. However, the optimal state space
dimesion for the MBH estimator is 12. This dimension results in the estimation of some spurious
modes, which are not presented in the following.

The estimated eigenfrequencies and damping ratios are shown in columns four to nine in
table 1. Both the eigenfrequencies and the damping ratios has been identified very well. Especially
the ARMAYV and the N4SID estimates are very close to the modal parameters of the reference
system.In figure 1, the autospectral densities of all outputs of the three estimates are plotted together
with the FFT autospectral densities of the simulated output measurements. It is seen that the spectral
densities of the ARMAYV and the N4SID estimates agrees very well, whereas the FFT and MBH
spectral densities diviates. In each plot the peak around the first eigenfrequency has been zoomed
in. In these plots the agreements between ARMAYV and N4SID becomes even more clear.

All three estimators returns agreeable results. Especially the results obtained from the
ARMAY and the N4SID estimators are of high quality. However, it should be noted that the analysis
is based on simulated data. When used on real data the ARMAYV prediction error estimator returns
the most accurate results of these two estimators, see Kirkegaard et al. [14]. In this case the estimates
obtained from the N4SID can be applied as excellent initial estimates for the PEM estimator.

6. CONCLUSION

In this paper it has been shown how to represent a multivariate second-order ambient
excited structural system as a discrete-time innovation state space system. Based on this system it
has then been considered how to represent it using an Auto-Regressive Moving-Average Vector
(ARMAYV) model.

The formulation of this model has provided an efficient recursive approach for the
calculation of predictor gradient for use in a non-linear multivariate prediction error method (PEM).
It has briefly been adressed how to estimate multivariate ambient excited systems directly in state
space. Two estimators has been presented; the Matrix Block Hankel (MBH) stochastic estimator, and
the stochastic subspace technique (N4SID).

The performance of the three multivariate estimators has been compared in a simulated
example. The results of this example shows agreement of the modal parameter estimates of the three
estimators. Especially the PEM and the N4SID algorithms reveals a high degree of agreement with
the modal parameters of the reference system.
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Reference ARMAV MBH SST
Mode Ji Ci J; G Ji Ci J; Ci
1 6.9553 4.37 6.9648 4.77 6.9387 311 6.9624 4.73
2 13.2298 8.31 13.2449 7.57 13.2687 w&iD 13.2517 7.52
3 18.2093 11.44 18.1630 11.03 17.8075 10.99 18.1810 11.22
4 21.4063 13.45 21.5220 13.05 21.3812 13.06 21.4724 12.77

Table 1: Reference and estimated natural eigenfrequencies f, [Hzl, and damping ratios ¢, [%].
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