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Abstract 

In the present investigation, multi-channel response 
measurements on an offshore platform subjected to 
wave loads is analysed using Auto Regressive Moving 
Average (ARMA) models. Two different estimation 
schemes are used and the results are compared . In 
the first approach, a scalar ARMA model is used to 
estimate the poles ( eigenfrequencies and damping ra
tios), and then the mode shapes are found by fltting 
an analytical form to the empirical estimates of the 
covariance functions using the estimated poles. In 
the second approach, a full vector model is used, and 
the poles and mode shapes are estimated in one step 
by solving an eigenvalue problem. Both of the models 
assume 14 modes, some of them are considered non
physical. Results for the 8 most significant modes in 
the estimations are compared. 
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Integer, number of modes 
Continuous time 
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AR and MA parameters 
Discrete response time series 
Standard deviations of responses 
White noise time series 
Pol es 
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Covariance matrix 
Continuous covariance furretion 
Covariance weight factors 
Modal Participation factors 
Discrete covariance furretion matrix 

y( k), e( k) 
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1/J; 
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Vectors of response and load 
State vectors of response and load 
Eigenvectors of state-space model 
Covariance weight mat ri ces 

Introduetion 

For offshore platforms and other st ructures subjected to 
natura! loads like wave and wind, the loads are usually 
unknown, and thus, a traditional modal analysis based 
on frequency response functions, Ewins (1], eannot bee 
performed. Usually, the analysis must be basedon mea
surements of the response only. A review of the problems 
of identifying the dynamic properties of offshore struc
tures is given in Jensen (2]. 

It is usually assumed t hat the loads might be modelled as 
stationary whit e noise. This assumption however, does 
not imply any serious !imitations. lt is possible to show, 
Ibrahim et al. (3], t hat if the load p rocess is not white 
noise, but might be modelled by a set of second order 
differential equations, i.e. modelled as the response of 
a mechanical system loaded by white noise, then the 
structure might be identified using an oversized model to 
incorporate the non-physical modes describing the load 
process . T his idea is used in the present analysis. 

Auto Regressive Moving Average (ARMA) models have 
been used mainly in electrical engineering, Ljung (4], 
Soderstrom, & P. St oica (5] and in economics, Harvey 
[6]. In the last decade, however, t he use of ARMA mod
els for identification of structural systems has become 
more common, P iombo et al. (7], Kozin & Natke [8], 
Safak [9]. The main advantages of these techniques are 
that they are accurate for extracting information from 
noisy signals, that estimation of the parameter covari
ance matrix is a natura! part of the estimation, and that 
they can be formulated as exact covariance equivalent 
discrete time domain models of a set of second order 
differential equations, Pandit (10], Andersen et al. (ll]. 

The main aim of this investigat ion is to illustrate the 
applicability of ARMA models on a real case: a multi-



channel measurement of the response of a wave loaded 
offshore structure. The analysed time series are rela
tively short, and thus, the modeiling of the noise is es
sential for extracting reliable information about modal 
parameters. 

Two approaches are presented and used for estimation of 
modal parameters. First, a scalar ARMA model is used 
to estimate eigenfrequencies and damping ratios. Then 
this information is used for titting an analytical form 
of the covariance functions to the empirically estimated 
covariance function to obtain the mode shapes. The sec-

. ond approach is based on a more general ARMA model . 
that is formulated directly for multi-channel output sys
tems. Using this approach, the estimation is made in 
one step solving an eigenvalue problem. Results from 
the two approaches are compared. 

Test Case 

The offshore platform is a multi-pile st ructure located 
in Lake Maracaibo, Venezuela, and it houses the power 
plant for a large oil produetion camplex for the Venezue
lan oil industry. 

The platform consists of a reinforced base structure and 
a steel superstructure which holds t he power genera
tion equipment. This platform was buil t in 1992, and 
it experiences continuous vibrations caused by wave and 
current aetions which are to be evaluated in order to de
termine the effects of this continuous mavement on the 
integrety of the structure. 

The reinforced concrete structure is 58 m (195') long 
and 20 m (66') wide, it is supported by 42 pre-stressed 
concrete piles, 0.91 m (36") in diameter, 55 m (185') 
long, precast and driven on site, see figure l. The steel
framed structure holds 5 turbo-generators and t heir con
tro! rooms. 

Water depth at the location of the offshore platform is 
about 30 m. Wave heights is this zone have been re
ported to vary beween 1.20 m and 2.50 m, wi th recur
rence periods of 3.8 s and 4.9 s respectively. The in
formation reported for current action near t he platform 
shows values in the order of 1.4 m/s in t he direction of 
the waves. 

To measure vibrations of the platform due to ambient i 
excitation, the st ructure was instrumented using 8 seis
mic accelerometers of the DC type with a maxi m u m fre
quency of 3500 Hz. The accelerometers were placed at 
4 points at the topside deck as shown in tigure l. Sig
nals were amplified 100 t imes, and low-pass filtered at 5 
Hz before sampling at a sampling frequncy of 12.8 Hz. 
Data were recorded simultaneously at all 8 channels us
ing a rnulti-channel data aquisition systern converting 
from analog to digital with 16-bit accuracy. Data were 
recorded in blocks with 8192 data points per channel 
corresponding to a recording time of about 10 min. 

Before the data were used for modal analysis, the data 
were filtered and decimated. Since the physical modes 
were known to be around l Hz, the signals were deci-
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Figure l. Test arrangement on the offshore 
platform. The figure shows the measurement 
points on the topside deck. 
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mated with a factor 4 reducing the data blocks to 2048 
points per channel and the Nyquist frequncy to 1.60 Hz . 
Before decirnating, the signals were digitally low-pass 
filtered to reduce noise. Since the signals had a large 
long-periodic component, the singats were also digitally 
high-pass filtered at a cut-off frequency of 0.032 Hz. 

. Since the accelerometer number 3 some times showed 
unreliable results, this channel was exelucled in the anal
ysis. T he modal analysis reported in this paper was 
based on the data from one data block only, i.e. on 7 
channels, each with 2048 data points. 

Estimation by Scalar ARMA Model 

Let Yc(t) be a realisation of t he continuous stochastic 
process Y(~) , and let Yc(t) have the discrete (sam pled) 
representatwn y( k) = Y c( k6.t), where 6.t is the sam
pling interval. An ARMA model of the order (n, m), 
called ARMA(n, m), for the time series y( k) is then 
given by 

n m 

y( k) L <I>; y( k - i)- L e; e( k - i)+ e( k) 
i = l i = l 

(l) 



where <I>; are the auto regressive (AR) parameters de
scribing the response y( k) as a linear regression o n the 
past values, and 0; are the movin~ average (MA) param
eters describing the response y( k) as a linear regression 
on the past values of an unknown time series, e( t). Now , 
since the response y( k) might be considered as a linear 
regression of the past responses and the past unknown 
loads, the last term e(k) in eq. (1) is called the residue, 
since it might be considered as the term describing the 
deviation of the measured time series y( k) from the re
sponse predicted by the regression. Thus using minimum 
least squares, the best fit corresponds to mirrimising the 
variance of the residue e( k). 

It might be shown, that an ARMA modelofarder (2N, 
2N-l) is the covariance identical discrete model of a con
tinuous system with N degrees of freedom, Pand i t [lO], 
Kozin et al. [8], Andersen et al. [ll]. 

When the AR parameters are known, the modal parame
ters are found from the 2N roots ,\ of the characteristic 
AR polynomial, Pandit [10] 

A2
N - <l>1A 2N-l- ... - <l>2N-1A - <l>2N (2) 

These roots are called the poles. The roots of the sim- l 
ilar characteristic MA polynomial are called the zeroes. 
The poles and the zeroes are camplex numbers. Zeroes 
and poles lying outside the unit circle correspond to un
stable systems, and t hus, usually zeroes and poles are 
forced inside the u ni t cire! e. Problems with unstable ze
roes and poles usually relates to problems with tao many 
degrees of freedom. The poles corresponding to physical 
degrees of freedom always appear in camplex conjugate 
pairs, one pair for each degree of freedom. The eigen- , 
frequencies J; and damping ratios ( ; are found from the 
relation between the modal parameters and the N com
plex conjugate poles 

,\ = exp(2pif 6.t( -( ± ijl-=(2)) (3) 

Since the covariance matrix Cø of all the estimated AR 
and MA parameters () = {el' Bz ... } T is easily obtained 
in the estimation process, Ljung [4], the covariance ma
trix C a of an y set of physical parameters a = { a 1 , a2, ... } T 

might be estimated by linearisation, see e.g. Kirkegaard 
[12] 

(4) 

where G is a gradient matrix describing the linear re
lationship of a araund its mean value a = Pa +GO, 
Pa = E[a]. This technique is used to calculate stan
dard deviations of the estimated eigenfrequencies and 
damping ratios. 

As explained earlier, not all of the estimated modes 
might conespond to structural modes. A helpful tool 
in judging to what extent an estimated mode might be 
physical or not, is to have a measure of its significance 

for the -iesponse. 1f a certain mode dominates the re
sponse, t hen i t is reasonable to assume i t to conespond 
to a structural mode - or to a dominating frequency of 
the loading system. On t he other hand, if the contribu
tion to the response is little, the estimated mode might 
be describing some non-physical phenomenon. A useful 
measure might be obt ained using that the auto covari
ance furretion R( r)= E [Y(t - r)Y(t)] can be written 
as a weighted sum of oscillators, one oscillator for each 
mode, Pandit [10] 

R (k6.t) (5) 

Now, using an unbiased estimate of R( T), e.g. by using 
the unbiased FFT, see e.g. Bendat & Piersol [13] or 
Brincker et al. [14], and the poles A; estimated by the 
ARMA model , the weights d; might by estimated by 
least square regression. Now, since the poles appear in 
camplex conjugate pairs, so does t he weights d;. Thus, 
for each oscillator, the energy content is proportional to 

JdJ, and, thus, P = .Jidf is a measure of the modal 
amplitude. The participation factors P; are determined 
for each estimated mode, and the participation vector is 
normalised to lengt h one. 

For the p resent multi-channel case, the time series for 
each channel were stacked to form one long record. In 
arder to weight all channels equally, the t ime series were 
normalised to variance one before the merging, and in 
arder to make a smooth transition between the roerged 
time series to p reven t transients in the residue e( k), the 
time series were tapered befare high-pass filtering. 

Figure 2 shows the variance of the residue and Akaike's 
Final Prediction Error (FPE) for the ditferen t scalar 
ARMA models estimated for the system. A smal! vari
ance of the residue indicates a good fit, t hus, the smaller 
values of the variance, the better the fit. However, in 
arder not to over-parameterise the problem, Akaike's Fi
nal Prediction E rror (FPE), that expresses a stat istical 
trade-off between the variance of t he resid ue, and the 
number of model parameters, is considered . As it ap
pears from the figure, models were tested with l to 15 
degrees of freedom. The jump from 5 to 6 degrees of free
dom and the flat curve for higher values, indicate that 
at least 5 physical modes are present ( one mode is used 
to model the high-pass filter). Since the ARMA(28,27) 
model was the model with the lowest FPE, this model 
was choosen for the further analysis. The results for 
the eigenfrequencies and damping ratios with estimated 
standard deviations and the part icipat ion factors for each 
mode are given in table l. 

The results are shown graphically in figure 3 showing 
the spectrum and correlation of the residue, a plot com
paring the FFT spectr um with the spectrum estimated 
by the ARMA model, and finally a plot showing zeroes 
and poles with 99 % confidence regions. The results in
dicate, that the residue is close to white noise, thus, all 
the information of the response signals is extracted by 
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Figure 2. The deviation between models and 
measured time series expressed as the variance 
of the residue e( k) and Akaike 's Final Fredie
tion Error (FPE) as a function of the number 
of Auto Regressive (AR) parameters. 

30 

the ARMA estimation , t hat the model gives a good fit, 
and t hat all parameters are reasonably well estimated. 

To estimate the mode shapes, the response of the ditfer
en t channels y;(k) must be considered separately. "Xow, 
let R;j(r) = E [Y;(t - r)Yj(t)] be the covariance func
tions, and let them constitute t he covariance function 
matrix R( k) with the elements R; j( k6.t). Then an ex
pression similar to eq. (5) might be derived, Pandit [10), 

N 

R(k) = LD;.Af (6) 
i=l 

If only one mode is present, then all channels would be 
fully correlated, and the mode shapes would simply be 
given by the standard deviations er; of the responses , and 
the sign of the mode shape (the phase) would be given 
by the cerrelations (±1). Thus, themode shapes would 
be given by the rows or the columns of the covariance 
matrix Cy = R(O). Since eq. (6) is the modal deeom
position of the covariance function matrix, the modal 
weight matrices D; play a similar role in the multiple 
degree of freedom case. 

The weight matrices were found by estimating the co
variance function matrix by the unbiased FFT, and then 
us ing least square linear regression. Once the weight 
matrices are estimated, the rows or the columns con
stitute a set of estimates for the mode shapes. In this 
case, only the 8 most significant modes were used for 
estimation of the modal weight matrices, and the mode 
shapes were estimated as the normalised mean of t.he 
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Figure 3 . Graphical presentation of the re
sults of fitting a scalar ARMA(28,27) model. 
Upper figures indicate that the residuals is ap
proximately white noise. Lover figures indicate 
a good fit with reasonable uncertainty on all 
model parameters. 

columns of t he weight matrices. T he results are shown 
in figure 4 together wi t h the modal complexity factor 
MCFl and MCF2, Imregun and Ewins [15). The mode 
shapes were estimated on the assumption that no longi
tudinal strain occurs between the measurement points, 
shear strain however, w as allowed. Only one mode is 
nearly free of complexity, mode 4 at f = 0.69 Hz. All 
other modes suffer a relatively high complexity. The 
complexity might be due to for instance non-linearities 
or non-proportional damping, in this case however, the 
most likely reason is noise and est imation errors. 

Estimation by ARMAV model 

The ARMAV model is a vector ARMA model. The re
sponses y( k) for the channels i = l, 2, . . . M are or-
ganised in the vector y (k) = {y1(k),y2 (k) ... V, and 
the ARMAV(n, m) model is a straightforward generali
sation of the scalar case 

n m 

y( k) L 45; y( k- i)- L e; e( k- i)+ e ( k) 
i= l i=l 

(7) 

In t his case, the AR coefficients 45; and the MA coeffi
cients e; are (generally full) M x M matrices. In the 
estimation process, Ljung [4] suggest to minimize the 
determinant of the covariance matrix of the noise time 
series e ( k). Once the model is estimated, the modal pa
rameters are ext racted by formutating the corresponding 



Tabte l. Resutts from scala r ARMA model (28,27} 

Mode F'rcqucncy Standard Damping St~ndard Participation 
deviation ratio deviation fa.clor 

f, (IIz) Ufi (Hz) (i(%) "'' (%) P, 

l 0.0580 0.0010 26.58 2.07 0.0~02 

2 0.1309 0.0062 10.70 5.28 0.0217 
3 0.4080 0.0038 7.11 0.91 0.1379 
4 0.4806 0.0037 2.87 0.78 0.0850 
5 0.5439 0.0038 2.45 0.69 0.0858 
6 0.6905 0.0007 . 0.97 0.11 0.6753 
7 0.7802 0.0038 3.31 0.49 0.6507 
8 0.8076 0.0029 0.90 0.36 0.2338 
9 0.8641 0.0084 3.15 0.93 0.1509 
lO 0.9825 0.0006 0.15 0.06 0.0181 
Il 1.1232 0.0127 5.28 0.99 0.0734 
12 1.1549 0.0003 0.06 0.03 0.0277 
13 1.3438 0.0000 0.00 0.00 0.0198 
14 1.4989 0.0012 0.13 0.08 0.0227 

discrete time state space model 

x ( k) = ~x( k- l )+ e a( k) (8) 

where the state vector x(k) and the load vector a(k) are 
made by stacking the responses and the noise vectors in 
the following way, 

x( k) 
[ 

y( k) l y(k- l) 
y( k- 2) 

and the Auto regressive matrix of the state space model 
is g iven by 

~l ~2 ~n 
I O O 

~ = O I O 
(lO) 

o I O 

For an ARMAV(2N, 2N-1) with M channels , them odel 
is a covari ance cquivalent discrete model of a continuous 
system with N M degrees of freedom, Andersen et al. 
(11]. Forthis case, the vectors x (k) and a ( k) both have 
the length N M, and the au to regressive matrix ~ o f the 
state s pace model is N M x N M. The pol es and the 
mode shapes are found by salving t he eigenvalue problem 
t hat naturally arises from eq. (8) 

(-\;1 - ~)t/J; = o (11) 

the eigenvalues A; constitute the poles, and in this for
mulation, the mode shapes are the last M components 

Tabte 2. Results from ARMAV(4,3) 

Mode Frequcncy Damping Participation 
ratio factor 

/;(Hz) ,, (%) p, 

l 0.0577 100.0 0.0245 
2 0.1938 62.7 0.0551 

3 0.2495 79.0 0.0418 
4 0.3707 22.6 0.0918 
5 0.3905 37.9 0.0789 
6 0.4008 9.6 0.0960 
7 0.6034 100.0 0.0473 
8 0.6956 1.3 0.7330 
9 0.7008 17.5 0.0626 
IO 0.7721 1.64 0.4890 
11 0.7924 1.66 0 .4312 
12 1.0382 18.1 0.0153 
13 1.1190 36.9 0.0423 
14 1.3029 33.1 0.0143 

of the eigenvectors t/J;. Similar to the scalar case, the 
eigenvalues and eigenvectors appear in complex conju
gate pairs, one pair for each degree of freedom. 

For direct comparison of the two ARMA approaches, 
an ARMAV model was choosen with t he same number 
of degrees of freedom as for t he scalar case, thus, an 
ARMAV( 4,3) w as estimated for the 7 channels corre- · 
sponding to 28 poles or 14 degrees of freedom. W hen 
the ARMAV model is known , the weight matrices D ; 
of the covariance furretion matrix is easily determined, 
Andersen et al. [11], and a participation factor might be 
defined by taking a scalar measure of D;. In this investi
gation t he modal participation factors P; were estimated 
by taking the square root of the sum of the eigenval ues 
of D ;. Again, the modal participation vector was nor
malised to length one. 

The results are shown in table 2 gtvmg eigenfrequen
cies, damping rat ios and participation factors for the 
14 modes. An uncertainty measure might be estimated 
using t he covariance matrix for the estimated parame
ters. This was not done however, for the vector AR\1A 
case. The eight most significant modes were selected us
ing the participation factors, though exelucting mode 6 
(f = 0.6034 Hz) due to the unrealistically large damp
ing. The eight mode shapes are shown in figure 5. 

As it appears from the results, again the mode shape 
has a relatively large degree of complexity, except the 
mode at f = 0.69 Hz. Comparing the mode shapes 
with the mode shapes estimated by the scalar ARMA 
approach it appears that the mode shape at 0.69 Hz is 
very much the same, whereas some modes at 0.40- 0.41 
Hz, O. 77 - O. 78 Hz are relatively cl ose, the mode shapes 
at 1.12 Hz is quite d ifferent, and the rest of the modes 
do not seem to correspond. The condusion is, t hat t he 
most dominant mode at 0.69 Hz is determined wit h a 
good accuracy concerning both eigenfrequency and mo de 
shape, two modes are determined with a good accu racy 
for t he eigenfrequency, and sarnew hat larger uncertainty 
on the mode shape, and one mode is determined only 
with respect to eigenfrequency. 



mode 1, f= 0.408 Hz mode 2, f= 0.4806 Hz 

20 
~ 20 

····················· 
15 

MCF1 =3.9% MCF1 =20% 
15 

10 
MCF2 =8.3% 

10 
MCF2=42% 

5 5 

o - ol:=:====:~ o 10 20 o 10 20 

mode 3, f= 0.5439 Hz mode 4, f= 0.6905 Hz 

20 20 
·-·······--······················· 

15 15 
MCF1 = 19% MCF1 = 0.3% 

10 10 
MCF2 =24% MCF2=0.63% 

5 5 

o o '····················· 
o 10 20 o 10 20 

mode 5, f = 0.7802 Hz mode 6, f= 0.8076 Hz 

20 20 

15 15 
r····--···-····----------- --------------------! 

MCF1 = 3.7% MCF1 = 13% 
10 10 

MCF2 = 7.1% MCF2 = 21% 
5 5 

o ·················-······························' o ~--····························· ······ ····· --· 

20 

15 

10 

5 

o 

o 10 20 o 10 20 

mode 7, f = 0.8641 Hz modeS, f= 1.123Hz 

20 

15 
MCF1 =20% MCF1 = 19% 

10 
MCF2=23% MCF2=36% 

il 5 

------·····································; o L. •.•.••..•.••••. ... ..••....•...... __________ j 

o 10 20 o 10 20 

Figure 4 . Mode shapes estimated by the scalar 
ARMA approach determining the modal weight 
matrices for the covariance function by titting 
an analytical form to the empirical covariance 
function matrix. 
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Comparing the differences between the estimated values 
of eigenfrequencies with the uncertainty measure from 
the scalar approach, it seems like the standard deviations 
underestimate the uncertainty. This might be due to 
bias errors. 

An important difference between the results of the two 
models is , that .t he ARMAV model estimates three sig
nificant close modes, whereas the scalar model only es
timates two. The mode at 0.78 Hz in the scalar model 
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Figure 5 . Mode shapes estimated by using an 
ARM AV model and solving the eigenvalue prob
lem arising from the state space formulation of 
the model. 
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is split into two modes at 0 .77 and 0.79 Hz. Since the 
ARMAV model takes ad vantage of cross information be
tween channels, and thus should be a stronger tool in 
detecting close modes, and since the mode is split into 
two modes with a smaller damping ratio around 1.6 %, 
the results of the ARMAV model could be a better es
timate of the structural behavour. On the other ha nd, 
since the complexity of themodes did not reduce , i t can 
only be conluded, that the possibily of two close modes 
exist s. 



Condusions 

Two ARMA approaches have been compared for esti 
mating eigenfrequencies, damping ratios and mode shapes 
for an operating offshore platform loaded basically by 
sea waves. The acceleration response was measured at 7 
points at the topside deck, and the responses were anal
ysed wit hout using any information about the load. 

Com paring the two approaches, it seems that because 
of the larger freedom in choosing the degrees of free
dom in t he model, t he scalar model has an advantage in 
a better understanding of the necessary d egrees of free
dom needed to have a good estimate. Further, the scalar 
model gives relatively good estimates of both eigenfre
quencies , damping ratios and mode shapes, although the 
ARMAV model is believed to be better in detecting close 
modes. T he accuracy in determining the modal param
eters seems to be camparable for the two approaches. 
The two models agree quite well on the most signifi
cant modes, concerning both eigenfrequencies , damping 
ra tios and mode shapes. The damping ratio of the dom
inant mode (0.69 Hz) was estimated as 1.3 % for t he 
ARMAV model and 0.9 %for the scalar approach. 
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