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ABSTRACT: 
 
A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital 
surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is 
applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an ‘intelligent’ point cloud. The 
decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land 
cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described 
step by step. The classification, assessment, and refinement is carried out by the open source software “R”; the generation of the 
dense and accurate digital surface model by the “Match-T DSM” program of the Trimble Company. A practical example of a 2D land 
cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland 
are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of 
samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the 
produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes ‘building’ 
(99%, 95% CI: 95%-100%) and ‘road and parking lot’ (90%, 95% CI: 83%-95%). Some other accuracy measures (overall accuracy, 
kappa value) and their 95% confidence intervals are derived as well. The proposed methodology has a high potential for automation 
and fast processing and may be applied to other scenes and sensors.  
 
 

1. INTRODUCTION 

The generation of land cover maps is usually carried out by 
means of satellite imagery. Aerial images of high resolution and 
of different spectral bands can be used with advantage in urban 
areas. By means of such imagery small objects can be extracted 
and accurate elevations of high density can be derived. In 
combination with some attributes accurate land cover maps may 
be derived. This approach is used by various works in recent 
years, e.g., (Zebedin et al., 2006; Höhle, 2013a). In urban areas 
the classification of land cover should not be based on 
individual pixels. Instead, it should be based on larger units 
(Thomas et al., 2003). The classification of units (image 
segments or cells of elevation) based on the derived features can 
be done by different methods. Typically, these are statistical 
approaches or machine learning approaches, which try to find a 
balance between good classification of available training 
material and its generalization to out-of-sample prediction. For 
example, one procedure is decision tree classification (Breiman 
et al.,1984), but even more computational methods such as 
random forests have become popular. Another aspect in the 
generation of land cover maps is the proper assessment of the 
thematic accuracy. Relevant research on this subject has been 
published for example in (Foody, 2002; Congalton and Green, 
2009; Höhle & Höhle, 2013).  
 
The goals of the present paper are the generation of accurate 
and reliable land cover maps for urban areas by applying 
machine learning techniques on modern aerial imagery. The 
assessment of the thematic accuracy of land cover maps will be 
based on accuracy measures derived from stratified sampling 
design and hence their uncertainty will be addressed. The 
derived land cover map can then also be a basis for map 

updating and analysis work, which requires some cartographic 
enhancements and other refinements. One aspect we would like 
to propagate in this work is the use of available open source 
statistical programs in the assessment of the thematic accuracy, 
because it allows for easy calculation of accuracy measures and 
their uncertainty.  
 
The structure of the paper is the following. An overview on 
classification methods of land cover is given in Section 2. It is 
followed by a description of the applied methodology in the 
generation of a 2D land cover map of urban areas (Section 3). 
Details of the applied tools in the generation, assessment, and 
refinements of land cover maps are presented in Section 4. The 
evaluation of the proposed methods on two test areas are 
described in Section 5 and 6. Finally, the achieved results are 
discussed and evaluated in Section 7. 
 
 

2. CLASSIFICATION METHODS IN THE 
GENERATION OF LAND COVER MAPS   

In the generation of land cover maps from imagery various 
types of classifiers have been applied. The features used in the 
classification are usually the reflectance values recorded in 
different bands of the spectrum and the classification is often 
done on a per-pixel basis. Machine learning and its success in 
pattern recognition has led to its application in remote sensing 
classification tasks. For example, decision tree (DT), random 
forest (RF), and support vector machines (SVM) have been 
applied in the classification of land cover (Breiman et al., 1984; 
Gislason, 2006; Huang et al., 2002; Giri, 2012). Besides these 
single methods also a combination of methods has been tried 
(Polikar, 2006). Typically, it is particularly convenient to form 
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objects consisting of many pixels, which are then used in the 
classification. Decision tree classification (DTC) has several 
advantages and is mainly applied in generation of land cover 
maps using satellite imagery at a global scale. Its advantages are 
a stable overall accuracy and a high training speed (Huang, et 
al. 2002). Decision trees have already been applied for land 
cover classification from remotely sensed data, e.g., (Hansen et 
al., 1996; Friedl and Brodley, 1997). The applied data in these 
investigations were of low resolution. Accurate elevations 
could, therefore, not be derived or were not extracted from other 
sources. In (Höhle, 2013a; Höhle and Höhle, 2013) the 
classification of high-resolution and multispectral imagery is 
carried out by means of a manually derived decision tree. The 
splits in the decision tree are selected from experiences with the 
given landscape (e.g., the average height of residential houses). 
The assessed user accuracy of extracted houses was 70% and 
99% respectively. A similar approach has been used in (Nex et 
al., 2013) in order to classify buildings, roads and vegetation 
using aerial images. A digital surface model was derived from 
the images and elevations together with spectral information of 
three bands were used in a RF classification. The user accuracy 
was assessed with 98% (buildings), 81% (roads) and 8% 
(vegetation).  
 
An introduction to the methods of decision tree classification is 
given in (Breiman et al., 1984); we state here the most 
important concepts. The principle of the decision tree 
classification is depicted in Figure 1. The set of data (root) is 
recursively split into two parts at nodes after a binary test (T). In 
its simplest form the test may be a threshold for an attribute of 
the data, e.g., the vegetation index. At each branch the 
remaining data are then tested at the next node down the tree. 
Here, the data are split again based on a binary test, e.g. by 
thresholding another attribute. The end nodes are the leaves of 
the tree. They represent the classes (categories). The threshold 
values can be found by expert knowledge (i.e. manually) or by 
supervised classification and statistical procedures. Pruning of 
the tree may also take place. The decision tree is derived from 
training data. For each class a number of points and their 
attributes are extracted. When the decision tree is derived, all 
data of the point cloud are classified, i.e. to each observation a 
class will be assigned. The noise in the training areas is 
important for the results and should therefore be checked. 
 

 
 
Figure 1. Principle of decision tree classification. Modified after 
(Friedl and Brodley, 1997), where ‘T’ indicates a test and a,b,c 
the three possible classes 
 

3. APPLIED METHODOLOGY IN THE GENERATION 
OF 2D LAND COVER MAPS IN URBAN AREAS 

The applied methodology is based on a digital surface model 
(DSM), which is automatically derived from overlapping aerial 
images. Each DSM-point (-cell) with its spatial coordinates 
(Easting, Northing, and elevation) is supplemented by two 
attributes which characterize classes of land cover (vegetation 
index and height above ground). A decision tree classification is 
then used to assign a class to each point of the DSM. The 
decision tree is derived from training samples, which are 
collected by digitizing polygons on top of a false-colour 
orthoimage and extracting the points within the polygons. The 
generation of a land cover map needs some preparatory work, 
an assessment of the accuracy, and some refinements. All steps 
in the generation of a land cover map in urban areas will be 
described in the following sections. Figure 2 depicts the 
flowchart of the steps at the generation of a 2D land cover map. 
 

 
Figure 2. Flowchart of the generation of a 2D land cover map  

 
3.1 Preparatory work 

The classes of the land cover map are in general specified with a 
specific application of the map in mind. Furthermore, the 
thematic accuracy is specified in advance either for each class 
(category) or overall. The producer of the land cover map has to 
select relevant data and methods in order to meet these 
specifications. Samples for training of the classifier and for 
assessment of the thematic accuracy have to be collected. The 
producer has to know, which features (attributes) characterize 
the individual classes, and which data can produce accurate and 
reliable results. Most important, the total costs of the production 
and of the assessment have to be within the agreements of the 
contract. 
 
The applied method requires multispectral images with 60% 
forward overlap. The calibration parameters of the applied 
camera and the orientation parameters of all images have to be 
known. Such data may be derived by means of ground control 
and/or additional sensors at the camera. The preparatory work 
will then comprise the generation of a digital surface model 
(DSM) and an orthoimage. The derivation of the elevation 
model may use colour images. The orthoimage is compiled by 
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means of a false colour image and a digital terrain model 
(DTM). The DSM and the orthoimage are sources for the 
attributes of various land cover classes. In the proposed method 
the “elevations above ground” (dZ) and the “normalized 
difference vegetation index” (NDVI) are attributes which will 
characterize classes of vegetation and man-made constructions. 
The normalized DSM (nDSM) is obtained from the difference 
between the DSM and the DTM. The DSM is derived from two 
overlapping images by matching corresponding image parts and 
by interpolating a structured model of elevations. The DTM is 
obtained by filtering the DSM where buildings and vegetation 
above ground are removed. The elevations in both models are 
separated by a multiple of the ground sample distance (GSD). 
Nevertheless, the grid of elevations of both models is very 
dense. The accuracy of the derived elevations may become 
important for the result of the classification. Also the accuracy 
and resolution of the NDVI values will have an influence on the 
results. 
 
3.2 Derivation of a decision tree  

The proposed decision tree classification procedure requires the 
availability of a number of training areas for each class. These 
training areas are digitized as closed polygons on top of a false-
colour orthoimage. At a position of a single DSM point the 
intensity values of the red and infrared channel of the 
orthoimage are extracted and converted into a NDVI value. A 
file with the spatial coordinates (E, N) and attribute values (dZ, 
NDVI) for each DSM point is created. By means of recursive 
partitioning of the training data set a decision tree is derived. It 
may be visualized as a plot of all nodes together with the 
calculated thresholds. In order to check for noise in the training 
areas all points of the training areas can be classified by using 
the derived decision tree. The accuracy of each class of the 
training data can then be assessed (cf. Section 3.4). If noise 
(misclassification) in the training data is absent, the thematic 
accuracy of each class will be 100%. This is, however, seldom 
the case.  
 
3.3 Classification of all cells 

The generation of the land cover map occurs by means of 
classification of all DSM cells and its attributes using the 
derived decision tree. Each DSM cell is assigned to a class. The 
result is plotted by means of coloured symbols. The number of 
cells belonging to one class can be calculated and used in 
sampling and weighting in the assessment of the overall 
accuracy.   
 
3.4 Assessment 

The assessment of the land cover map is done both visually and 
quantitatively.  
 
3.4.1 Visual check  
The derived land cover map should first of all be complete, 
which can be checked visually. Areas with no data may have 
occurred during the generation  of the DSM. The gaps can only 
be closed by manual editing in combination with stereo 
observation of the images. Other refinements may also be 
required (cf. Section 3.5).  
 
3.4.2 Quantitative assessment of the thematic accuracy 
The quantitative assessment of the thematic accuracy of the 
generated land cover map has to be based on sound statistical 
principles. An independent sample has to be taken and the 

estimated accuracy measures of the sample are representative 
for the whole land cover map. The sample should have the 
proper size and the reference data should be of high accuracy 
and reliability. As the emphasis in this contribution is on the 
accuracy of the individual classes, a stratified simple random 
(STSI) sampling will be applied. This means that for each class 
a sample of predefined size is drawn by simple random 
sampling (without replacement). The number of sample units 
(observations) is calculated on the basis of the likelihood ratio 
test (LRT) confidence interval (Young and Smith, 2005). The 
reference values for cells can be determined by stereovision of 
false-colour image pairs. A Z-value of the sample unit is 
required for displaying the checkpoints in 3D. At such a 
position the ”true” class value of the point (cell) is found by the 
analyst. An error matrix can then be established from which the 
accuracy measures (overall accuracy, user accuracy, and kappa 
value) are derived. The stratified design has to be taken into 
account. Weights for each class are calculated by w=N/n, where 
‘N’ is the number of cells in the land cover map and ‘n’ is the 
number of cells in the accuracy sample. The number of cells (or 
their area) are determined after the classification and calculation 
of the sample size. 
  
3.5 Refinements 

The produced land cover map may further be improved. The 
deficiencies of the ‘raw’ land cover map are gaps in the areas of 
the objects and misclassifications. Refinements have to be 
carried out with respect to applications (map updating or 
analysis) and the type of map (2D or 3D). With regard to map 
updating a high cartographic quality may be required. Buildings 
should be represented by straight and orthogonal lines. 
Solutions to this task are published by (Gross and Thoennessen, 
2006) and (Sampath and Shan, 2007). The present article 
concentrates on the derivation and analysis of a land cover map. 
The ‘raw’ land cover map is converted into an image and the 
image map is then improved by the methods of image 
processing and image analysis. The necessary tasks are filling of 
gaps within the individual objects, derivation of outer 
boundaries, and removal of objects not belonging to one of the 
selected classes. These tasks can be carried out by filtering, 
morphological operations, and object manipulations.    
 
 

4. APPLIED TOOLS   

The imagery used in the practical example has been taken by the 
medium-format camera Leica RCD 30. The applied software 
tools include commercial packages, existing open source 
software, and newly developed programs. Details are given in 
the following sections.  
 
4.1 Generation of DSM and nDSM 

The generation and editing of the DSM as well as the 
generation of orthoimages are carried out by means of the 
software packages of the Trimble Company (“Match-T DSM”, 
“DTMaster”, and “OrthoMaster”). Numerous parameters have 
to be set in these programs which requires experience in order 
to obtain good results. In the generation of the DSM, e.g., the 
size of the search area for homologous points has to be 
specified. Filtering of the DSM needs to specify the spacing of 
an internal (less dense) elevation model and of cell heights in 
order to remove buildings and vegetation above ground. Details 
on these professional packages are contained in the manuals of 
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the producer. The normalized digital surface model (nDSM) has 
been derived by a program written in C++ language.   
 
4.2 Classification and assessment 

The classification and assessment have been carried out by 
newly developed programs using the open source language and 
environment “R” (R Development Core Team, 2013). Several R 
packages have to be used for this task. By means of the package 
“rpart” the decision tree is derived and by “ipred” (with 
function ‘predict’) the land cover map is generated. The 
packages “survey” (with functions ‘svydesign’, ‘svyciprop’, and 
‘svykappa’), “binomSamSize”, and “binom” are used in the 
programs which derive the accuracy measures and its 
confidence intervals (Lumley, 2013; Höhle, 2009b).  
 
4.3 Refinements 

The derived land cover map has some problems regarding the 
lack of generalization and homogeneity of the areas 
representing the six classes. Errors in the classification have to 
be detected and removed. We propose to apply image 
processing techniques as implemented in, e.g., the R-package 
“EBImage” (Pau et al., 2013) in order to solve the mentioned 
tasks. “EBImage” is a toolkit for processing and analysis of 
images, which has been developed for microscopy imagery of 
biological content (cells). Applied functions are, e.g., ‘dilate’, 
‘erode’, ‘fillHull’, ‘computeFeatures’, ‘makeBrush’. Various 
parameters have to be specified in these functions.  
 
 

5. PRACTICAL TEST 

In order to test the proposed method a 2D land cover map is 
generated and evaluated.  
 
5.1 Description of test area and selected classes 

The test area is an urban area in Switzerland of 1.4 ha. The 2D 
land cover map to be generated shall contain the six classes 
specified in Table 1, which also shows the discriminating 
features (attributes) to be used for the classification. The 
attributes (dZ, vegetation) of the classes vary considerably 
which is a prerequisite to assign each DSM cell to the proper 
class. The thresholds for the attributes will be determined by 
recursive partitioning of the training areas.  
 

class dZ vegetation 
building high none 

hedge & bush low yes 
grass none yes 

road & parking lot none none 
tree high yes 

wall & car port low none 
 

Table 1. Characteristics of the used land cover classes.  
                    (dZ=height of object above ground) 
 
The test area contains some other categories, e.g., “swimming 
pool” and “field”. They will be classified into one of the six 
classes and thereby contribute to errors. Their area is, however, 
very small (cf. Figure 3). Objects like “hedge” and “wall” form 
very narrow lines which requires high-resolution imagery and 
accurate positioning when tracing the training areas. 

Figure 3. Training areas on top of a false-colour orthoimage 
 
5.2 Input Data  

The multispectral images of the test area have a ground 
sampling distance of GSD=5 cm. Each pixel has four colours 
(red, green, blue, and near-infra red) with 256 intensity values 
each. The calibration data of the camera and the orientation data 
of the images were provided. The geometric quality of the 
camera and the used software package enable a high precision 
of the derived point cloud (σZ=0.04 m). The derived DSM and 
DTM have a spacing of 0.25 m. An orthoimage with a pixel size 
of 0.05 m is produced by means of the DTM and a false colour 
image. Six training areas for each class are digitized on top of 
the false-colour orthoimage (cf. Figure 3). Altogether, 17449 
DSM-points were collected. The numbers per class (n) and the 
accuracy of each class are contained in Table 2. The accuracies 
of the classes are determined in the same way as the classes of 
the land cover map (cf. chapter 5.4). It is obvious from Table 2 
that the accuracy of the class “wall and car port” is relatively 
poor (73%). The other classes have an thematic accuracy above 
92% at the training areas.  
 

class n accuracy 
building 4204 100% 

hedge & bush 3308 99% 
grass 2680 93% 

road & parking lot 3152 100% 
tree 1829 92% 

wall & car port 2276 73% 
 

Table 2. Accuracies of classes derived from training areas 
 
5.3 Processing of the land cover map 

The processing starts with the derivation of the decision tree 
using the training areas of each class. The result is depicted in 
Figure 4.  
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Figure 4. Decision tree derived from training areas. (b=building, 
h=hedge & bush, g=grass, r=road & parking lot, t=tree, w=wall 
& car port, ndsm (dZ)=height above ground, ndvi=normalized 
difference vegetation index) 
 
The decision tree has six intermediate nodes and seven end 
nodes. The automatically derived thresholds are written there. 
The leaves of the tree are marked with the abbreviations of the 
classes. Buildings, e.g., are classified when the height above 
ground is nDSM >= 4.47 m and the NDVI < -0.01555. By 
means of the derived decision tree the land cover map can be 
generated. For each point (cell) of the point cloud a class will be 
assigned. 
 
5.4 Assessment of the produced land cover map 

The visual inspection of the graphical representation of the 
derived land cover (cf. Figure 5) reveals a clear separation of 
the six classes. Buildings are very distinctly extracted despite 
the fact that the colours of the roofs are very heterogeneous in 
the false-colour orthoimage. Less visible are the walls, which 
are small in size and height. Many small cells, which represent 
the class “wall and car port”, appear in the classes “road” and 
“grass”. White areas are areas without data. Such gaps are the 
result of insufficient editing the DSM and are not corrected 
here. The generated land cover map is a ‘raw’ result, which can 
be improved by some refinements (cf. chapter 5.5).  

Figure 5. Land cover map (‘raw’ result). Six classes are coded 
by colours. (red=“building”, light green=”grass”, dark 
green=”tree”, green=”hedge&bush”, grey=”road & parking lot”, 
orange=”wall & car port”) 

The six classes are not equally distributed. The assessment of 
overall accuracy requires, therefore, appropriate weighting. The 
areas in per cent are 21% (“building”), 18% (“hedge and 
bush”), 25% (“grass”), 19% (“road and parking lot”), 4% 
(“tree”), and 13% (“wall and carport”). The size of the 
independent sample comprises 91 units (cells) for each class, 
i.e. 546 altogether. They are randomly extracted and their “true” 
class is found at their spatial position (E, N, Z) by stereo-
observation in the oriented image pair of false-colour images. 
This approach leads to reliable reference values. The 
comparison between reference values and classified values is 
done by an error matrix (cf. Table 3). The classification result of 
the 91 units is written in rows separated for each class. In the 
diagonal of the matrix are the scores and outside the diagonal 
are the errors. The overall accuracy is calculated with 75% 
(95% CI: 72%-78%). When applying STSI weights the overall 
accuracy is 79% (95% CI: 76%-82%). The kappa value is 0.71 
(95% CI: 0.66-0.75). According to (Landis and Koch, 1977) the 
derived kappa value of 0.71 represents a “moderate agreement” 
between the remotely sensed classification and the reference 
data. The survey weighted kappa is 0.74 (95% CI: 0.70-0.77) 
and thereby closer to “strong agreement” which starts with 0.80. 
The user’s accuracy of the individual classes and the 
corresponding 95% confidence intervals are contained in Table 
4. Good results are obtained for the classes “building” and 
“road and parking lot” with 99% and 90% respectively. The 
poor results for class “wall and car port” (26%) was expected 
because noise in the training areas (accuracy=73%) has been 
monitored at this class (cf. Table 2).  
 
5.5 Refinements 

The refinement of the land cover map is carried out for each 
class separately. The class ‘building’ is used as an example. The 
application of the morphological operations (dilatation and 
erosion) improves the homogeneity of the buildings. The use of 
a “high-pass filter” derives the boundaries of all areas in class 
‘building’. Some areas have to be removed. The connected sets 
of pixels (objects) are first labelled. Gaps inside the objects are 
then closed. Attributes of the objects (e.g., ‘size of area’, ‘centre 
of mass’) can be extracted for each object of the class. 

 
Table 3.  Error Matrix of the derived land cover map for the six 
classes. (b=”building”, h=”hedge&bush, g=”grass”, 
r=”road&parking lot”, t=”tree”, w=”wall&car port”)  

 

class \ 
reference b h g r t w row 

total 

building 90 0 1 0 0 0 91 

hedge & 
bush 0 71 17 1 1 1 91 

grass 3 8 74 5 0 1 91 

road & 
parking lot 5 2 0 82 1 1 91 

tree 10 4 6 0 71 0 91 

wall & car 
port 8 8 8 43 0 24 91 

column 
total  116 93 106 131 73 27 546 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-II-7-15-2014 19



 

 
Table 4. User’s accuracy of the derived classes 

 
A threshold for the attribute ‘size of the area’ is used to remove 
objects not belonging to the class ‘building’. Figure 6 shows the 
result of the two steps of refinement. Other classes are handled 
in a similar way. The final land cover map is combined of all 
the refined classes. Classification errors may become visible and 
may be removed by means of other image processing.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Outer boundary of objects in the class “building” (left) 
and coloured objects belonging either to the classes “building” 
or “non-building” (right) 
 
Figure 7 depicts two refined land cover maps. They are 
generalized and overlaps between the objects are removed.  

 

 
 

Figure 7. Generalized land cover maps with three and six 
classes. The left map is produced by means of the red-, green-, 
and blue channel of the colour image, the right map is plotted 
using the same colours as in Figure 5  
 
 

6. OTHER APPLICATIONS 

The proposed method may use imagery of other sensors as well. 
The medium-format RCD 30 camera has recently be improved 
and may now be equipped with a 80 MP sensor (compared to 
60 MP as in this investigation). The GSD will then be 1.15 
times smaller when the images are taken from the same altitude. 
Images with four bands (red, green, blue, and near infrared) 
may also be taken by a large-frame camera which will reduce 
the amount of images necessary for a given area. Moreover, the 

digital elevation models can be generated by means of airborne 
laser scanning or extracted from existing databases. The 
methodology to generate land cover maps can be the same as in 
this investigation. It is, however, of advantage when the 
necessary data are acquired by one sensor only and when they 
are collected at the same point of time. The urban areas may be 
very different too. The scenes may contain many other objects. 
The viewing angle and the ground resolution can also vary a lot. 
It is difficult to judge if the proposed method will work in all 
other scenes as well. Other testing has to follow. 
 
Another practical test has, therefore, recently been carried out 
with building facades. In such an application the use of oblique 
aerial imagery is of advantage. Objects in the facades of 
buildings (windows, doors, walls, stonework, etc.) have to be 
detected, mapped and supplemented with information (position, 
dimensions, type of material, etc.). When determining four 
classes in the façades of a church (‘window’, ‘stone work’, 
‘painted wall’, ‘vegetation’) by using intensities of oblique 
aerial images and elevations of these objects in a decision tree 
classification an overall accuracy of 80% has been achieved. 
The user accuracy of class ‘stonework’ and ‘window’ was 
assessed with 90% and 85% respecitively. The applied camera 
(RCD 30 Oblique) recorded three colour channels (red, green, 
blue) only. The results may be improved when multi-spectral 
oblique cameras are applied. The experiences with this example 
may indicate that the proposed methodology may also be 
successful in other scenes. In the two applications the object 
and image information are both used in the decion tree 
classification. The elevations have to be accurate and reliable. 
They may be derived from imagery only. This is a major 
characteristic of the applied methodology. 
 
 

7. CONCLUSION 

We propose a method to efficiently generate a large scale 2D 
land cover map from high-resolution imagery using decision 
tree classification. The obtained result for the overall accuracy 
of the derived land cover map with six classes (“building”, 
“hedge and bush”, “grass”, “road and parking lot”, “tree”, “wall 
and car port”)  is 75% (95% CI: 72%-78%) and 79% (95% CI: 
76%-82%) when weights for the size of classes are applied. The 
kappa value is 0.71 (95% CI: 0.66-0.75) and 0.74 (95% CI: 
0.70-0.77) respectively. This is a moderate result (Landis and 
Koch, 1977). Strong results are obtained for the important 
classes “building” (99%), “road and parking lot” (90%), and 
grass (81%). Problems to overcome are the shadows of objects 
above ground, displacements of the objects in standard 
orthoimages and errors in filtering of the DSM. Improvements 
of the results are also expected when an average NDVI value is 
calculated for each DSM-cell so that the neighbourhood of a 
pixel is also included. The use of the decision tree classification 
of a point cloud with attributes “elevation above ground” and 
“vegetation index” is a very effective approach. Additional 
refinements by means of image processing techniques yield a 
generalized and homogeny land cover map.  
 
The application of the R-packages for generation, assessment 
and refinement of land cover maps makes this approach easy to 
realize. The amount of work can be reduced when for the 
assessment of the thematic accuracy the cross validation is 
applied. The set of reference data is then used both for the 
derivation of the decision tree and for the assessment of the 
thematic accuracy. We preferred that the training areas and the 
test sample are completely separated from each other and that a 

class accuracy 95% CI 
building 99% 95%-100% 

hedge & bush 78% 69%-86% 
grass 81% 72%-89% 

road & parking lot 90% 83%-95% 
tree 78% 69%-86% 

wall & car port 26% 18%-36% 
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relatively large amount of DSM points (here 17449 
points=1.9% of all points) is used for the derivation of the 
decision tree.  
 
In the presented investigations the imagery of a medium-format 
camera has been applied for a relatively small area. For large 
areas a high number of images has to be taken. Processing of a 
large amount of images is, however, no problem when 
distributed processing is applied. The proposed methodology 
has a high potential for automation and fast processing. The 
method has also successfully been tested with oblique images in 
order to detect and map objects of building façades and to 
extract information on these objects. The application of the 
proposed method to other urban areas and scenes seem to be 
possible. The event of new sensors and of advanced methods to 
extract elevations from imagery will support this view.  
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