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Preface
The present notes are written for the course in water wave mechanics given
on the 7th semester of the education in civil engineering at Aalborg University.

The prerequisites for the course are the course in fluid dynamics also given on
the 7th semester and some basic mathematical and physical knowledge. The
course is at the same time an introduction to the course in coastal hydraulics
on the 8th semester. The notes cover the first four lectures of the course:

• Definitions. Governing equations and boundary conditions.

• Derivation of velocity potential for linear waves. Dispersion relationship.
Particle velocities and accelerations.

• Particle paths, pressure variation, deep and shallow water waves, wave
energy and group velocity.

• Shoaling, refraction, diffraction and wave breaking.

The last part of the course is on analysis of irregular waves and was included
in the first two editions of the present note but is now covered by the note of
Frigaard et al. (2012).
The present notes are based on the following existing notes and books:

• H.F.Burcharth: Bølgehydraulik, AaU (1991)

• H.F.Burcharth og Torben Larsen: Noter i bølgehydraulik, AaU (1988).

• Peter Frigaard and Tue Hald: Noter til kurset i bølgehydraulik, AaU
(2004)

• Ib A.Svendsen and Ivar G.Jonsson: Hydrodynamics of Coastal Regions,
Den private ingeniørfond, DtU.(1989).

• Leo H. Holthuijsen: Waves in ocean and coastal waters, Cambridge Uni-
versity Press (2007).
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Chapter 1

Phenomena, Definitions and
Symbols

1.1 Wave Classification

Various types of waves can be observed at the sea that generally can be divided
into different groups depending on their frequency and the generation method.

Phenomenon Origin Period

Surges Atmospheric pressure and wind 1 – 30 days

Tides Gravity forces from the moon and the sun app. 12 and 24 h

Barometric wave Air pressure variations 1 – 20 h

Tsunami Earthquake, submarine land slide or
submerged volcano 5 – 60 min.

Seiches (water level
fluctuations in bays Resonance of long period wave components 1 – 30 min.
and harbour basins)

Surf beat, mean water
level fluctuations at Wave groups 0.5 – 5 min.
the coast

Swells Waves generated by a storm some < 40 sec.
distance away

Wind generated waves Wind shear on the water surface < 25 sec.

The phenomena in the first group are commonly not considered as waves, but
as slowly changes of the mean water level. These phenomena are therefore also
characterized as water level variations and are described by the mean water
level MWL.
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In the following is only considered short-period waves. Short-period waves are
wind generated waves with periods less than approximately 40 seconds. This
group of waves includes also for danish waters the most important phenomena.

1.2 Description of Waves

Wind generated waves starts to develop at wind speeds of approximately 1
m/s at the surface, where the wind energy is partly transformed into wave
energy by surface shear. With increasing wave height the wind-wave energy
transformation becomes even more effective due to the larger roughness.

A wind blown sea surface can be characterized as a very irregular surface,
where waves apparently continuously arise and disappear. Smaller ripples are
superimposed on larger waves and the waves travel with different speed and
partly also different direction. A detailed description seems impossible and it
is necessary to make some simplifications, which makes it possible to describe
the larger changes in characteristics of the wave pattern.

Waves are classified into one of the following two classes depending on their
directional spreading:

Long-crested waves: 2-dimensional (plane) waves (e.g. swells at mild
sloping coasts). Waves are long crested and
travel in the same direction (e.g. perpendicu-
lar to the coast)

Short-crested waves: 3-dimensional waves (e.g. wind generated storm
waves). Waves travel in different directions and
have a relative short crest.

In the rest of these notes only long-crested (2D) waves are considered, which is
a good approximation in many cases. However, it is important to be aware that
in reality waves are most often short-crested, and only close to the coast the
waves are close to be long crested. Moreover, the waves are in the present note
described using the linear wave theory, the so-called Stokes 1. order theory.
This theory is only valid for low steepness waves in relative deep water.
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1.3 Definitions and Symbols

Water depth, h

Crest

Trough

MWL

H wave height
a wave amplitude
η water surface elevations from MWL (posituve upwards)
L wave length

s =
H

L
wave steepness

c =
L

T
phase velocity of wave

T wave period, time between two crests passage of same vertical section
u horizontal particle velocity
w vertical particle velocity

k =
2π

L
wave number

ω =
2π

T
cyclic frequency, angular frequency

h water depth

Wave fronts

Wave front

Wave orthogonals

Wave front

Wave orthogonal
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Chapter 2

Governing Equations and
Boundary Conditions

In the present chapter the basic equations and boundary conditions for plane
and regular surface gravity waves on constant depth are given. An analytical
solution of the problem is found to be impossible due to the non-linear bound-
ary conditions at the free surface. The governing equations and the boundary
conditions are identical for both linear and higher order Stokes waves, but the
present note covers only the linear wave theory, where the boundary conditions
are linearized so an analytical solution is possible, cf. chapter 3.

We will start by analysing the influence of the bottom boundary layer on the
ambient flow. Afterwards the governing equations and the boundary conditions
will be discussed.

2.1 Bottom Boundary Layer

It is well known that viscous effects are important in boundary layers flows.
Therefore, it is important to consider the bottom boundary layer for waves the
effects on the flow outside the boundary layer. The observed particle motions
in waves are given in Fig. 2.1. In a wave motion the velocity close to the
bottom is a horizontal oscillation with a period equal to the wave period. The
consequence of this oscillatory motion is the boundary layer always will remain
very thin as a new boundary layer starts to develop every time the velocity
changes direction.

As the boundary layer is very thin dp/dx is almost constant over the boundary
layer. As the velocity in the boundary layer is smaller than in the ambient flow
the particles have little inertia reacts faster on the pressure gradient. That is
the reason for the velocity change direction earlier in the boundary layer than
in the ambient flow. A consequence of that is the boundary layer seems to
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be moving away from the wall and into the ambient flow (separation of the
boundary layer). At the same time a new boundary starts to develop.

Phase difference between
velocity and acceleration

Interaction between inertia
and pressure forces.

Outside the boundary layer there
are small velocity gradients.

i.e.

Little turbulence, i.e.

Boundary layer thickness
large gradient but only in the
thin boundary layer

Figure 2.1: Observed particle motions in waves.

In the boundary layer is generated vortices that partly are transported into the
ambient flow. However, due to the oscillatory flow a large part of the vortices
will be destroyed during the next quarter of the wave cycle. Therefore, only
a very small part of the generated vortices are transported into the ambient
wave flow and it can be concluded that the boundary layer does almost not
affect the ambient flow.

The vorticity which often is denoted rot�v or curl�v is in the boundary layer:
rot�v = ∂u

∂z
− ∂w

∂x
� ∂u

∂z
, as w � 0 and hence ∂w

∂x
� 0. ∂u

∂z
is large in the boundary

layer but changes sign twice for every wave period. Therefore, inside the
boundary layer the flow has vorticity and the viscous effects are important.
Outside the boundary layer the flow is assumed irrotational as:

The viscous forces are neglectable and the external forces are essen-
tially conservative as the gravitation force is dominating. There-
fore, we neglect surface tension, wind-induced pressure and shear
stresses and the Coriolis force. This means that if we consider
waves longer than a few centimeters and shorter than a few kilo-
meters we can assume that the external forces are conservative. As
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a consequence of that and the assumption of an inviscid fluid, the
vorticity is constant cf. Kelvin’s theorem. As rot�v = 0 initially,
this will remain the case.

The conclusion is that the ambient flow (the waves) with good accuracy could
be described as a potential flow.

The velocity potential is a function of x, z and t, ϕ = ϕ(x, z, t). Note that
both ϕ(x, z, t) and ϕ(x, z, t)+f(t) will represent the same velocity field (u, w),

as
(
∂ϕ
∂x

, ∂ϕ
∂z

)
is identical. However, the reference for the pressure is different.

With the introduction of ϕ the number of variables is reduced from three
(u, w, p) to two (ϕ, p).

2.2 Governing Hydrodynamic Equations

From the theory of fluid dynamics the following basic balance equations are
taken:

Continuity equation for plane flow and incompresible fluid with constant den-
sity (mass balance equation)

∂u

∂x
+

∂w

∂z
= 0 or div �v = 0 (2.1)

The assumption of constant density is valid in most situations. However, ver-
tical variations may be important in some special cases with large vertical
differences in temperature or salinity. Using the continuity equation in the
present form clearly reduces the validity to non-breaking waves as wave break-
ing introduces a lot of air bubbles in the water and in that case the body is
not continuous.

Laplace-equation (plane irrotational flow)
In case of irrotational flow Eq. 2.1 can be expressed in terms of the velocity
potential ϕ and becomes the Laplace equation as vi =

∂ϕ
∂xi

.

∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (2.2)

Equations of motions (momentum balance)
Newton’s 2. law for a particle with mass m with external forces

∑
K acting

on the particle is, m d�v
dt

=
∑

K. The general form of this is the Navier-Stoke
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equations which for an ideal fluid (inviscid fluid) can be reduced to the Euler
equations as the viscous forces can be neglected.

ρ
d�v

dt
= −grad p+ ρg (+ viscous forces) (2.3)

Bernoulli’s generalized equation (plane irrotational flow)
In case of irrotational flow the Euler equations can be rewritten to get the
generalized Bernoulli equation which is an integrated form of the equations of
motions.

g z +
p

ρ
+

1

2

(
u2 + w2

)
+

∂ϕ

∂t
= C(t)

g z +
p

ρ
+

1

2

⎛
⎝(∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
⎞
⎠+

∂ϕ

∂t
= C(t) (2.4)

Note that the velocity field is independent of C(t) but the reference for the
pressure will depend on C(t).

Summary on system of equations:
Eq. 2.2 and 2.4 is two equations with two unknowns (ϕ, p). Eq. 2.2 can
be solved separately if only ϕ = ϕ(x, z, t) and not p(x, z, t) appear explicitly
in the boundary conditions. This is usually the case, and we are left with
ϕ(x, z, t) as the only unknown in the governing Laplace equation. Hereafter,
the pressure p(x, z, t) can be found from Eq. 2.4. Therefore, the pressure p can
for potential flows be regarded as a reaction on the already determined velocity
field. A reaction which in every point obviously must fulfill the equations of
motion (Newton’s 2. law).

2.3 Boundary Conditions

Based on the previous sections we assume incompressible fluid and irrota-
tional flow. As the Laplace equation is the governing differential equation for
all potential flows, the character of the flow is determined by the boundary
conditions. The boundary conditions are of kinematic and dynamic nature.
The kinematic boundary conditions relate to the motions of the water parti-
cles while the dynamic conditions relate to forces acting on the particles. Free
surface flows require one boundary condition at the bottom, two at the free
surface and boundary conditions for the lateral boundaries of the domain.

I case of waves the lateral boundary condition is controlled by the assumption
that the waves are periodic and long-crested. The boundary conditions at
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the free surface specify that a particle at the surface remains at the surface
(kinematic) and that the pressure is constant at the surface (dynamic) as
wind induced pressure variations are not taken into account. In the following
the mathematical formulation of these boundary conditions is discussed. The
boundary condition at the bottom is that there is no flow flow through the
bottom (vertical velocity component is zero). As the fluid is assumed ideal (no
friction) there is not included a boundary condition for the horizontal velocity
at the bottom.

2.3.1 Kinematic Boundary Condition at Bottom

Vertical velocity component is zero as there should not be a flow through the
bottom:

w = 0 or
∂ϕ

∂z
= 0

for z = −h (2.5)

2.3.2 Boundary Conditions at the Free Surface

One of the two surface conditions specify that a particle at the surface remains
at the surface (kinematic boundary condition). This kinematic boundary con-
dition relates the vertical velocity of a particle at the surface to the vertical
velocity of the surface, which can be expressed as:

w =
dη

dt
=

∂η

∂t
+

∂η

∂x

dx

dt
=

∂η

∂t
+

∂η

∂x
u , or

(2.6)
∂ϕ

∂z
=

∂η

∂t
+

∂η

∂x

∂ϕ

∂x
for z = η

The following figure shows a geometrical illustration of this problem.

surface

surface

The second surface condition specifies the pressure at free surface (dynamic
boundary condition). This dynamic condition is that the pressure along the
surface must be equal to the atmospheric pressure as we disregard the influence
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of the wind. We assume the atmospheric pressure p0 is constant which seems
valid as the variations in the pressure are of much larger scale than the wave
length, i.e. the pressure is only a function of time p0 = p0(t). If this is inserted
into Eq. 2.4, where the right hand side exactly express a constant pressure
divided by mass density, we get:

g z +
p

ρ
+

1

2

(
u2 + w2

)
+

∂ϕ

∂t
=

p0
ρ

At the surface z = η we have p = p0 and above can be rewritten as the
boundary condition:

gη +
1

2

⎛
⎝(∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
⎞
⎠+

∂ϕ

∂t
= 0 for z = η (2.7)

The same result can be found from Eq. 2.4 by setting p equal to the excess
pressure relative to the atmospheric pressure.

2.3.3 Boundary Condition Reflecting Constant Wave Form
(Periodicity Condition)

The periodicity condition reflects that the wave is a periodic, progressive wave
of constant form. This means that the wave propagate with constant form
in the positive x-direction. The consequence of that is the flow field must be
identical in two sections separated by an integral number of wave lengths. This
sets restrictions to the variation of η and ϕ (i.e. surface elevation and velocity
field) with t and x (i.e. time and space).

The requirement of constant form can be expressed as:

η(x, t) = η(x+ nL, t) = η(x, t+ nT ) , where n = 1, 2, 3, . . .

This criteria is fulfilled if (x, t) is combined in the variable
(
L t

T
− x

)
, as

η
(
L t

T
− x

)
= η

(
L (t+nT )

T
− (x+ nL)

)
= η

(
L t

T
− x

)
. This variable can be

expressed in dimensionless form by dividing by the wave length L. 2π
L

(
L t

T
− x

)
=

2π
(

t
T
− x

L

)
, where the factor 2π is added due to the following calculations.

We have thus included the periodicity condition for η and ϕ by introducing
the variable θ.

η = η(θ) and ϕ = ϕ(θ, z) where θ = 2π
(
t

T
− x

L

)
(2.8)
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If we introduce the wave number k = 2π
L

and the cyclic frequency ω = 2π
T

we
get:

θ = ωt− kx (2.9)

It is now verified that Eqs. 2.8 and 2.9 corresponds to a wave propagating in
the positive x-direction, i.e. for a given value of η should x increase with time
t. Eq. 2.9 can be rewritten to:

x =
1

k
(ωt− θ)

From which it can be concluded that x increases with t for a given value of θ.
If we change the sign of the kx term form minus to plus the wave propagation
direction changes to be in the negative x-direction.

2.4 Summary of Mathematical Problem

The governing Laplace equation and the boundary conditions (BCs) can be
summarized as:

Laplace equation
∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 (2.10)

Kin. bottom BC
∂ϕ

∂z
= 0 for z = −h (2.11)

Kin. surface BC
∂ϕ

∂z
=

∂η

∂t
+

∂η

∂x

∂ϕ

∂x
for z = η (2.12)

Dyn. surface BC gη +
1

2

⎛
⎝(∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
⎞
⎠+

∂ϕ

∂t
= 0

for z = η (2.13)

Periodicity BC η(x, t) and ϕ(x, z, t) ⇒
η(θ) , ϕ(θ, z)
where θ = ωt− kx

An analytical solution to the problem is impossible. This is due to the two
mathematical difficulties:

• Both boundary conditions at the free surface are non-linear.

• The shape and position of the free surface η is one of the unknowns of
the problem that we try to solve which is not included in the governing
Laplace equation, Eq. 2.10. Therefore, a governing equation with η is
missing.

A matematical simplification of the problem is needed.
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Chapter 3

Linear Wave Theory

The linear wave theory which is also known as the Airy wave theory (Airy,
1845) or Stokes 1. order theory (Stokes, 1847), is described in the present
chapter and the assumptions made are discussed. Based on this theory analyt-
ical expressions for the particle velocities, particle paths, particle accelerations
and pressure are established.

The linear theory is strictly speaking only valid for non-breaking waves with
small amplitude, i.e. when the amplitude is small compared to the wave length
and the water depth (H/L and H/h are small). However, the theory is funda-
mental for understanding higher order theories and for the analysis of irregular
waves. Moreover, the linear theory is the simplest possible case and turns out
also to be the least complicated theory.

By assumingH/L << 1, i.e. small wave steepness, it turns out that the bound-
ary conditions can be linearized and η can be eliminated from the equations.
This corresponds to the surface conditions can be taken at z = 0 instead of
z = η and the differential equation can be solved analytically. The linearisation
of the boundary conditions is described in the following section.

3.1 Linearisation of Boundary Conditions

The two surface boundary conditions (Eqs. 2.12 and 2.13) are the two non-
linear conditions that made an analytical solution to the problem impossible.
These are linearised in the following by investigating the importance of the
various terms.

3.1.1 Linearisation of Kinematic Surface Condition

The non-linearised kinematic surface condition is, cf. Eq. 2.12:

∂ϕ

∂z
=

∂η

∂t
+

∂η

∂x

∂ϕ

∂x
for z = η (3.1)
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The magnitude of the different terms is investigated in the following, where σ
indicate the order of magnitude. If we consider a deep water wave (H/h << 1)
observations has shown that the particle paths are circular and as the particles
on the surface must remain on the surface the diameter in the circular motion
must close to the surface be equal to the wave height H. As the duration of
each orbit is equal to the wave period T , the speed of the particles close to the
surface can be approximated by πH/T .

Deep water wave

max
∂ϕ

∂x
= umax =

πH

T
= σ

(
H

T

)

max
∂ϕ

∂z
= wmax =

πH

T
= σ

(
H

T

)
∂η

∂x
= σ

(
H

L

)
, as η varies H over the length L/2

∂η

∂t
= σ

(
H

T

)
, as η varies H over the time T/2

Therefore, we get from Eq. 3.1:

σ
(
H

T

)
= σ

(
H

T

)
+ σ

(
H

L

)
σ
(
H

T

)

from which it can be seen that the order of magnitude of the last non-linear
term is H/L smaller than the order of the linear term. As we assumed H

L
<< 1

we only make a small error by neglecting the non-linear term. However, the
argumentation can be risky as we have not said anything about the simoul-
tanousness of the maximum values of each term.

The linaerised kinematic surface boundary condition is thus:

∂ϕ

∂z
=

∂η

∂t
, for z = η (3.5)

However, we still have the problem that the boundary condition is expressed at
z = η as the position of the surface is unknown. An additional simplificaion is
needed. ∂ϕ

∂z
, which is the only term in Eq. 3.5 that depends on z, is expanded

in a Taylor series to evaluate the posibilities to discard higher order terms.
The general form of the Taylor series is:

f(z +Δz) = f(z) +
Δz

1!
f ′(z) +

(Δz)2

2!
f ′′(z) + . . .+

(Δz)n

n!
f (n)(z) +Rn(z)

where Δz represent a deviation from the variable z. With the Taylor expansion
we can get any preassigned accuracy in the approximation of f(z + Δz) by
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choosing n large enough. We now make a Taylor series expansion of ∂ϕ
∂z

from
z = 0 to calculate the values at z = η, i.e. we set Δz = η and get:

∂ϕ

∂z
(x, η, t) =

∂ϕ

∂z
(x, 0, t) +

η

1!

∂2ϕ(x, 0, t)

∂z2
+ . . .

=
∂ϕ

∂z
(x, 0, t) +

η

1!

(−∂2ϕ(x, 0, t)

∂x2

)
+ . . . (3.6)

where
∂2ϕ

∂x2
+

∂2ϕ

∂z2
= 0 has been used.

As η = σ(H) and
∂2ϕ

∂x2
= σ

(
1

L

∂ϕ

∂x

)
= σ

(
1

L

∂ϕ

∂z

)
, as u = σ(w), we get from

Eq. 3.6:

∂ϕ

∂z
(x, η, t) =

∂ϕ

∂z
(x, 0, t) +

σ(H
L

∂ϕ
∂z )︷ ︸︸ ︷

σ(H)σ

(−1

L

∂ϕ

∂z

)
� ∂ϕ

∂z
(x, 0, t) , as

H

L
<< 1.

The use of z = 0 instead of z = η in Eqs. 3.1 and 3.5 corresponds thus to
neglecting the small second order term with the same magnitude as the non-
linear term in the boundary condition removed above. The linearised kinematic
surface boundary condition is therefore simplified to:

∂ϕ

∂z
=

∂η

∂t
for z = 0 (3.7)

The error committed by evaluating ϕ at MWL (z = 0) instead of at the surface
(z = η) is thus small and of second order.

3.1.2 Linearisation of Dynamic Surface Condition

The non-linaerised dynamic surface boundary condition reads, cf. Eq. 2.13:

gη +
1

2

⎛
⎝(∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
⎞
⎠+

∂ϕ

∂t
= 0 for z = η (3.8)

The linearisation of the dynamic surface boundary condition follows the same
approach as for the kinematic condition. We start by examining the magni-
tude of the different terms. For the assessment of the magnitude of the term

∂ϕ
∂t ’ is used

∂

∂x

(
∂ϕ

∂t

)
=

∂

∂t

(
∂ϕ

∂x

)
=

∂u

∂t
i.e.

∂

∂x

(
∂ϕ

∂t

)
= σ

(
1

L

∂ϕ

∂t

)
=

∂u

∂t
=

σ

(
H/T

T

)
, as u = σ

(
H

T

)
.

Therefore, we get:

∂ϕ

∂t
= σ

(
L

H

T 2

)
(3.9)
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Moreover we have for the quadratic terms:

(
∂ϕ

∂x

)2

�
(
∂ϕ

∂z

)2

= σ
(
H

T

)2

= σ
(
L

H

T 2

)
σ
(
H

L

)
= σ

(
∂ϕ

∂t
· H
L

)

From this we can conclude that the quadratic terms are small and of higher
order and as a consequence they are neglected. Therefore, we can in case of
small amplitude waves write the boundary condition as:

gη +
∂ϕ

∂t
= 0 for z = η (3.10)

However, the problem with the unknown position of the free surface (η) still
exists. We use a Taylor expansion of ∂ϕ

∂t
around z = 0, which is the only term

in Eq. 3.10 that depends on z.

∂ϕ

∂t
(x, η, t) =

∂ϕ

∂t
(x, 0, t) +

η

1!

∂

∂z

(
∂ϕ

∂t
(x, 0, t)

)
+ . . . (3.11)

∂ϕ

∂t
= σ

(
L

H

T 2

)
cf. eq. 3.9,

η
∂

∂z

(
∂ϕ

∂t

)
= η

∂

∂t

(
∂ϕ

∂z

)
= σ(H) σ

(
1

T

∂ϕ

∂z

)
=

σ(H) σ
(
1

T

)
σ
(
H

T

)
= σ

(
H2

T 2

)
= σ

(
H

L

)
σ
(
L

H

T 2

)
which is

σ

(
H

L

∂ϕ

∂t

)
i.e. <<

∂ϕ

∂t
.

The second term in Eq. 3.11 is thus small and of higher order and can be
neglected whenH/L << 1. This corresponds to using z = 0 instead of z = η in
Eq. 3.10. As a consequence the linearised dynamic surface boundary condition
is simplified to:

gη +
∂ϕ

∂t
= 0 for z = 0 (3.12)

3.1.3 Combination of Surface Boundary Conditions

The linearised surface boundary conditions Eqs. 3.7 and 3.12 are now combined
in a single surface boundary condition. If we differentiate Eq. 3.12 with respect
to t we get:

g
∂η

∂t
+

∂2ϕ

∂t2
= 0 for z = 0 (3.13)
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which can be rewritten as:

∂η

∂t
= −1

g

∂2ϕ

∂t2
for z = 0 (3.14)

This result is now inserted into Eq. 3.7 and we get the combined surface
boundary condition:

∂ϕ

∂z
+

1

g

∂2ϕ

∂t2
= 0 for z = 0 (3.15)

Now η has been eliminated from the boundary conditions and the mathemat-
ical problem is reduced enormously.

3.1.4 Summary of Linearised Problem

The mathematical problem can now be summarized as:

3.2 Inclusion of Periodicity Condition

The periodicity condition can as mentioned in section 2.3.3 by inclusion of θ
given by Eq. 2.9 instead of the two variables (x, t). Therefore, the Laplace
equation and the boundary conditions are rewritten to include ϕ(θ, z) instead
of ϕ(x, z, t). The coordinates are thus changed from (x, t) to (θ) by using the
chain rule for differentiation and the definition θ = ωt− kx (eq. 2.9).

∂ϕ

∂x
=

∂ϕ

∂θ

∂θ

∂x
=

∂ϕ

∂θ
(−k) (3.16)

∂2ϕ

∂x2
=

∂
(
∂ϕ
∂x

)
∂x

=
∂
(
∂ϕ
∂x

)
∂θ

∂θ

∂x
=

∂
(
∂ϕ
∂θ
(−k)

)
∂θ

(−k) = k2∂
2ϕ

∂θ2
(3.17)

A similar approach for the time derivatives give:

∂ϕ

∂t
=

∂ϕ

∂θ

∂θ

∂t
=

∂ϕ

∂θ
ω

∂2ϕ

∂t2
= ω2∂

2ϕ

∂θ2
(3.18)
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Eq. 3.17 is now inserted into the Laplace equation (Eq. 2.2) and we get:

k2 ∂
2ϕ

∂θ2
+

∂2ϕ

∂z2
= 0 (3.19)

Eq. 3.18 is inserted into Eq. 3.15 to get the free surface condition with θ
included:

∂ϕ

∂z
+

ω2

g

∂2ϕ

∂θ2
= 0 for z = 0 (3.20)

The boundary condition at the bottom is unchanged (∂ϕ
∂z

= 0).

The periodicity condition
∂ϕ
∂x (0, z, t) =

∂ϕ
∂x (L, z, t) is changed by considering

the values of θ for x = 0 and x = L:

For x = 0 and t = t we get, θ = 2π t
T
.

For x = L and t = t — θ = 2π t
T
− 2π.

It can be shown that it is sufficient to to impose the periodicity condition on
the horizontal velocity (u = ∂ϕ

∂x
), which yields by inclusion of Eq. 3.16:

−k
∂ϕ

∂θ

(
2π

t

T
, z
)
= −k

∂ϕ

∂θ

(
2π

t

T
− 2π , z

)
,

which should be valid for all values of t and thus also for t = 0. As the
periodicity condition could just as well been expressed for x = −L instead of
x = L it can be concluded that the sign of 2π can be changed and we get:

−k
∂ϕ

∂θ
(0, z) = −k

∂ϕ

∂θ
(2π, z) (3.21)

which is the reformulated periodicity condition.

3.3 Summary of Mathematical Problem

The mathematical problem from section 2.4 has now been enormously simpli-
fied by linearisation of the boundary conditions and inclusion of θ instead of
x, t. The mathematical problem can now be solved analytically and summa-
rized as:

Laplace equation: k2 ∂
2ϕ

∂θ2
+

∂2ϕ

∂z2
= 0 (3.22)

Bottom BC:
∂ϕ

∂z
= 0 for z = −h (3.23)

Linearised Surface BC:
∂ϕ

∂z
+

ω2

g

∂2ϕ

∂θ2
= 0 for z = 0 (3.24)

Periodicity BC: −k
∂ϕ

∂θ
(0, z) = −k

∂ϕ

∂θ
(2π, z) (3.25)
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3.4 Solution of Mathematical Problem

The linear wave theory is based on an exact solution to the Laplace equation
but with the use of linear approximations of the boundary conditions. The
solution to the problem is straight forward and can be found by the method
of separation of variables. Hence we introduce:

ϕ(θ, z) = f(θ) · Z(z) (3.26)

which inserted in Eq. 3.22 leads to:

k2f ′′Z + Z ′′f = 0

We then divide by ϕ = fZ on both sides to get:

−k2 f
′′

f
=

Z ′′

Z
(3.27)

As the left hand side now only depends on θ and the right hand only depends
on z they must be equal to the same constant which we call λ2 as the constant
is assumed positive. Therefore, we get the following two differential equations:

f ′′ +
λ2

k2
f = 0 (3.28)

Z ′′ − λ2Z = 0 (3.29)

Eq. 3.28 has the solution:

f = A1cos

(
λ

k
θ

)
+ A2sin

(
λ

k
θ

)
= Asin

(
λ

k
θ + δ

)
(3.30)

where A, λ and δ are constants to be determined from the boundary conditions.
However, we can set δ equal to zero corresponding to an appropriate choice of
the origin of θ = (x, t). Therefore, we can write:

f = Asin

(
λ

k
θ

)
(3.31)

If we insert the definition in Eq. 3.26 into the periodicity condition (Eq. 3.25)
we get the following condition:

f ′(0) = f ′(2π)

From Eq. 3.31 we get f ′ = A λ
k
cos

(
λ
k
θ
)
and hence the above condition gives:

A
λ

k
cos

(
λ

k
0

)
= A

λ

k
= A

λ

k
cos

(
λ

k
2π

)
, i.e.
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λ

k
= n , where n = 1, 2, 3 . . . (n �= 0, as λ �= 0)

This condition is now inserted into Eq. 3.31 and the solution becomes:

f = Asin(nθ) = Asin
(
n
(
ωt− 2π

L
x
))

As x = L must correspond to one wave length we get n = λ
k
= 1 as the only

solution and n = 2, 3, 4, ... must be disregarded. The result can also be written
as λ = k which is used later for the solution of the second differential equation.
The result can also be obtained from θ = 2π by definition corresponds to one
wave length. Therefore, we get the following solution to the f -function:

f = Asinθ (3.32)

The second differential equation, Eq. 3.29, has the solution:

Z = B1 e
λz + C1 e

−λz (3.33)

As sinh x = ex−e−x

2
and cosh x = ex+e−x

2
and we choose B1 = B+C

2
and C1 =

B−C
2

and at the same time introduce λ = k as found above, we get:

Z = B cosh kz + C sinh kz (3.34)

The three integration constants A, B and C left in Eqs. 3.32 and 3.34 are
determined from the bottom and surface boundary conditions. We start by
inserting Eq. 3.26 into the bottom condition (Eq. 3.23), ∂ϕ

∂z
= 0 for z = −h,

and get:

Z ′ = 0 for z = −h

We now differentiate Eq. 3.34 with respect to z and insert the above given
condition:

B k sinh(−kh) + C k cosh(−kh) = 0 or B = C coth kh

as sinh(−x) = −sinh(x), cosh(−x) = cosh(x) and coth(x) = cosh(x)
sinh(x)

.

This result is now inserted into Eq. 3.34 to get:

Z = C (coth kh cosh kz + sinh kz)

=
C

sinh kh
(cosh kh cosh kz + sinh kh sinh kz)

= C
cosh k(z + h)

sinh kh
(3.35)
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We now combine the solutions to the two differential equations by inserting
Eqs. 3.32 and 3.35 into Eq. 3.26:

ϕ = f · Z = AC
cosh k(z + h)

sinh kh
sinθ (3.36)

The product of the constants A and C is now determined from the linearised
dynamic surface boundary condition (Eq. 3.12), η = −1

g
∂ϕ
∂t

for z = 0, which
express the surface form. We differentiate Eq. 3.36 with respect to t and insert
the result into the dynamic surface condition to get:

η = −ω

g
AC

cosh kh

sinh kh
cosθ , (3.37)

where −ω
g
AC cosh kh

sinh kh
must represent the wave amplitude a ≡ H

2
. Therefore,

the wave form must be given by:

η = a cosθ =
H

2
cos(ωt− kx) (3.38)

The velocity potential is found by inserting the expression for AC and θ into
Eq. 3.36:

ϕ = −a g

ω

cosh k (z + h)

cosh kh
sin(ωt− kx) (3.39)

3.5 Dispersion Relationship

If we take a look on the velocity potential, Eq. 3.39, then we observe that the
wave motion is specified by the four parameters a, ω, h and k or alternatively
we can use the parameters H, T , h and L. However, these four parameters
are dependent on each other and it turns out we only need to specify three
parameters to uniquely specify the wave. This is because a connection between
the wave length and the wave period exists, i.e. the longer the wave period
the longer the wave length for a given water depth. This relationship is called
the dipersion relationship which is derived in the following.

The dispersion relationship is determined by inserting Eq. 3.36 into the lin-
earised free surface boundary condition (Eq. 3.24), ∂ϕ

∂z
+ ω2

g
∂2ϕ
∂θ2

= 0 for z = 0.

As
∂ϕ

∂z
= AC k

sinh , k (z + h)

sinh kh
sinθ

and
∂2ϕ

∂θ2
= AC

cosh k (z + h)

sinh kh
(−sinθ)

We find by substitution into Eq. 3.24 and division by AC:

ω2 = g k tanh kh (3.40)

25



which could be rewritten by inserting ω = 2π
T

, k = 2π
L

and L = c · T to get:

c =

√
g L

2π
tanh

2πh

L
(3.41)

This equation shows that waves with different wave length in general have
different propagation velocities, i.e. the waves are dispersive. Therefore, this
equation is often refered to as the dispersion relationship, no matter if the for-
mulation in Eq. 3.40 or Eq. 3.41 is used. We can conclude that if h and H are
given, which is the typical case, it is enough to specify only one of the param-
eters c, L and T . The simplest case is if h, H and L are specified (geometry
specified), as we directly from Eq. 3.41 can calculate c and afterwards T = L

c
.

However, it is much easier to measure the wave period T than the wave length
L, so the typical case is that h, H and T are given. However, this makes the
problem somewhat more complicated as L cannot explicitly be determined for
a given set of h,H and T . This can be see by rewriting the dispersion relation
(Eq. 3.41) to the alternative formulation:

L =
g T 2

2π
tanh

2πh

L
(3.42)

From this we see that L has to be found by iteration. In the literature it is
possible to find many approximative formulae for the wave length, e.g. the
formula by Hunt, 1979 or Guo, 2002. However, the iteration procedure is
simple and straight forward but the approximations can be implemented as
the first guess in the numerical iteration. The Guo, 2002 formula is based on
logarithmic matching and reads:

L =
2πh

x2(1− exp(−xβ))−1/β
(3.43)

where x = hω/
√
gh and β = 2.4908.

The velocity potential can be rewritten in several waves by including the dis-
persion relation. One version is found by including Eq. 3.40 in Eq. 3.39 to
get:

ϕ = −a c
cosh k(z + h)

sinh kh
sin(ωt− kx) (3.44)
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3.6 Particle Velocities and Accelerations

The velocity field can be found directly by differentiation of the velocity po-
tential given in Eq. 3.39 or an alternatively form where the dispersion relation
has been included (e.g. Eq. 3.44).

u =
∂ϕ

∂x
=

a g k

ω

cosh k(z + h)

cosh kh
cos(ωt− kx)

= a c k
cosh k(z + h)

sinh kh
cos(ωt− kx)

= aω
cosh k(z + h)

sinh kh
cos(ωt− kx) (3.45)

=
πH

T

cosh k(z + h)

sinh kh
cos(ωt− kx)

w =
∂ϕ

∂z
= −a g k

ω

sinh k(z + h)

cosh kh
sin(ωt− kx)

= −a c k
sinh k(z + h)

sinh kh
sin(ωt− kx)

= −aω
sinh k(z + h)

sinh kh
sin(ωt− kx) (3.46)

= −πH

T

sinh k(z + h)

sinh kh
sin(ωt− kx)

The acceleratation field for the particles is found by differentiation of Eqs. 3.45
and 3.46 with respect to time. It turns out that for the linear theory the total
accelerations can be approximated by the local acceleration as the convective
part are of higher order.

du

dt
≈ ∂u

∂t
= −a g k

cosh k(z + h)

cosh kh
sin(ωt− kx) (3.47)

dw

dt
≈ ∂w

∂t
= −a g k

sinh k(z + h)

cosh kh
cos(ωt− kx) (3.48)
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Theoretically the expressions in Eqs. 3.46 to 3.48 is only valid for H
L

<< 1,
i.e. in the interval −h < z � 0. However, it is quite common practise to
use the expressions for finite positive and negative values of η, i.e. also for
z = η. However, this can only give a very crude approximation as the theory
breaks down near the surface. Alternatively the so-called Wheeler stretch-
ing of the velocity and acceleration profiles can be applied, where the profiles
are stretched and compressed so that the evaluation coordinate (zc) is never

positive. The evaluation coordinate is given by zc =
h(z−η)
h+η

where η is the in-
stantaneous water surface elevation. This type of stretching is commonly used
for irregular linear waves where the velocity of each component is stretched
to the real surface, i.e. the sum of all η components. Alternatively is also
commonly used extrapolation of the velocity profile from SWL.

3.7 Pressure Field

The pressure variations are calculated from the Bernoulli equation, Eq. 2.4:

gz +
p

ρ
+

1

2

⎛
⎝(∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
⎞
⎠+

∂ϕ

∂t
= 0 (3.49)

The reference pressure for z = 0, i.e. the atmospheric pressure is here set equal
to zero. As a consequence the pressure p is the excess pressure relative to the
atmospheric pressure. The quadratic terms are small when H/L << 1 as
shown earlier in the linearisation of the dynamic surface boundary condition.
The linearised Bernoulli equation reads:

gz +
p

ρ
+

∂ϕ

∂t
= 0 (3.50)

We now define the dynamic pressure pd which is the wave induced pressure, i.e.
the excess pressure relative to the hydrostatic pressure (and the atmospheric
pressure), i.e.:

pd ≡ p− ρg(−z) = p+ ρ g z (3.51)

which when inserted into Eq. 3.50 leads to:

pd = −ρ
∂ϕ

∂t
(3.52)

From Eq. 3.51 we get:

pd = ρ g
H

2

cosh k(z + h)

cosh kh
cos(ωt− kx) (3.53)

As η = H
2
cos(ωt− kx), we can also write Eq. 3.53 as:

pd = ρ g η
cosh k(z + h)

cosh kh
, which at z = 0 gives pd = ρ g η (3.54)
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This means the pressure is in phase with the surface elevation and with de-
creasing amplitude towards the bottom. The figure below shows the pressure
variation under the wave crest.

For z > 0, where the previous derivations
are not valid, we can make a crude approx-
imation and use hydrostatic pressure distri-
bution from the surface, i.e. ptotal = ρg(η−z)
giving pd = ρgη.

Wave height estimations from pressure measurements
Waves in the laboratory and in the prototype can be measured in several ways.
The most common in the laboratory is to measure the surface elevation directly
by using resistance or capacitance type electrical wave gauges. However, in the
prototype this is for practical reasons seldom used unless there is already an
existing structure where you can mount the gauge. In the prototype it is more
common to use buoys or pressure transducers, which both give rise to some
uncertainties. For the pressure transducer you assume that the waves are linear
so you can use the linear transfer function from pressure to surface elevations.
For a regular wave this is easy as you can use:

Highest measured pressure (pmax):

ρ g(h− a) + ρ g ηmax
cosh k(−(h− a) + h)

cosh kh

Lowest measured pressure (pmin):

ρ g(h− a) + ρ g ηmin
cosh k(−(h− a) + h)

cosh kh

pmax − pmin = ρg
cosh ka

cosh kh
· (ηmax − ηmin)

In case of irregular waves you cannot use the above give procedure as you
have a mix of frequencies. In that case you have to split the signal into the
different frequencies. The position of the pressure transducer is important as
you need to locate it some distance below the lowest surface elevation you
expect. Moreover, you need a significant variation in the pressure compared
to the noise level for the frequencies considered important. This means that
if you have deep water waves you cannot put the pressure gauge close to the
bottom as the wave induced pressures will be extremely small.

29



3.8 Linear Deep and Shallow Water Waves

In the literature the terms deep and shallow water waves can be found. These
terms corresponds to the water depth is respectively large and small compared
to the wave length. It turns out the linear equations can be simplified in
these cases. The two cases will be discussed in the following sections and the
equations will be given.

3.8.1 Deep Water Waves

When the water depth becomes large compared to the wave length kh = 2πh
L

→
∞, the wave is no longer influence by the presence of a bottom and hence the
water depth h must vanish from the equations. Therefore, the expressions
describing the wave motion can be simplified compared to the general case.
The equations are strictly speaking only valid when kh is infinite, but it turns
out that these simplified equations are excellent approximations when kh > π
corresponding to h

L
> 1

2
.

Commonly indice 0 is used for deep water waves, i.e. L0 is the deep water
wave length. From Eq. 3.42 we find:

L0 =
g T 2

2π
or T =

√
2π

g
L0 or c0 =

√
g

k0
(3.55)

as tanh(kh) → 1 for kh → ∞. Therefore, we can conclude that in case of deep
water waves the wave length only depends on the wave period as the waves
doesn’t feel the bottom. Note that there is no index on T , as this does not
vary with the water depth.

From Appendix A we find coshα and sinhα → 1
2
eα for α → ∞ and tanhα

and coth α → 1 for α → ∞. Therefore, we find the following deep water
expressions from Eqs. 3.44, 3.45, 3.46 and 3.53:

ϕ = −H0 L0

2T
ek0zsin(ωt− k0x)

u =
πH0

T
ek0z cos(ωt− k0x)

(3.56)

w = −πH0

T
ek0z sin(ωt− k0x)

pd = ρg
H0

2
ek0z cos(ωt− k0 x)

Even though these expressions are derived for kh → ∞ they are very good
approximations for h/L > 1

2
.
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3.8.2 Shallow Water Waves

For shallow water waves, i.e. kh → 0, we can also find simplified expressions.
As tanhα → α for α → 0 we find from Eq. 3.41 or 3.42:

L =
g T 2 h

L
, T =

√
L2

g h
, L = T

√
g h , c =

√
g h (3.57)

From which we can conclude that the phase velocity c depends only of the
water depth, and in contrast to the deep water case is thus independent of the
wave period. Shallow water waves are thus non-dispersive, as all components
propagate with the same velocity.

As coshα → 1 , sinhα → α and tanhα → α for α → 0 we find:

ϕ = −H L

2T

1

k h
sin(ωt− kx)

u =
H

2

L

Th
cos(ωt− kx)

w = −πH

T

z + h

h
sin(ωt− kx)

pd = ρ g
H

2

z + h

h
cos(ωt− kx)

These equations are good approximations for h/L < 1
20
.

3.9 Particle Paths

The previously derived formulae for the particle velocities (Eqs. 3.45 and 3.46)
describe the velocity field with respect to a fixed coordinate, i.e. an Eulerian
description. In this section we will describe the particle paths (x(t), z(t)),
i.e. a Lagrange description. In general the particle paths can be determined
by integrating the velocity of the particle in time, which means solving the
following two equations:

dx

dt
= u(x, z, t)

dz

dt
= w(x, z, t) (3.58)

where the particle velocity components u and w are given by Eqs. 3.45 and
3.46. These equations (3.58) cannot be solved analytically because of the way
u and w depend on x and z.

We utilize the small amplitude assumption, H/L << 1, to linearize Eq. 3.58.
Based on the expressions of u, w and visual observations we assume the particle
paths are closed orbits and we can introduce a mean particle position (x, z) =
(ξ, ζ). Moreover, based on the 1. order theory we assume that, the particle
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oscillations Δx,Δz from respectively ξ and ζ are small compared to the wave
length, L, and water depth, h. We can write the instantaneous particle position
(x, z) as:

x = ξ +Δx and z = ζ +Δz (3.59)

We now insert Eq. 3.59 into Eqs. 3.45 and 3.46, and make a Taylor expansion
of the sin, cos, sinh and cosh functions from the mean position (ξ, ζ). Terms
of higher order are discarded and here after we can solve Eq. 3.58 with respect
to x and z.

By using the taylor series expansion:

f(a+Δa) = f(a) +
f ′(a)
1 !

Δa+
f ′′(a)
2 !

Δa2 + . . .

we get by introducing Eq. 3.59 the following series expansions of sinh, cosh,
sin and cos.

sinh k(z + h) = sinh k(ζ + h) + k cosh k(ζ + h) ·Δz + . . .

cosh k(z + h) = cosh k(ζ + h) + k sinh k(ζ + h) ·Δz + . . .
(3.60)

sin(ωt− kx) = sin(ωt− kξ) + (−k)cos(ωt− kξ) ·Δx+ . . .

cos(ωt− kx) = cos(ωt− kξ)− (−k)sin(ωt− kξ) ·Δx+ . . .

If we insert Eqs. 3.45 and 3.58 we get for the x-coordinate:

dx

dt
� πH

T

cosh k(ζ + h) + kΔ z sinh k(ζ + h)

sinh kh
(cos(ωt− kξ)

+kΔ x sin(ωt− kξ))

As kΔz and kΔx = σ
(
H
L

)
<< 1 we find the linearised expression:

dx

dt
� πH

T

cosh k(ζ + h)

sinh kh
cos(ωt− kξ) (3.61)

and equivalent for dz/dt:

dz

dt
� −πH

T

sinh k(ζ + h)

sinh kh
sin(ωt− kξ) (3.62)

By integration we find:

x =
πH

Tω

cosh k(ζ + h)

sinh kh
sin(ωt− kξ) + C (3.63)

This equation could also be written as:

x = K sin(ωt− kξ) + C or K sinθ + C , where θ has the cycle 2π.
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The mean position ξ ≡ x =
1

2π

∫ 2π

0
K sinθ dθ + C = 0 + C, hence C = ξ.

x = ξ +
H

2

cosh k(ζ + h)

sinh kh
sin(ωt− kξ)

and by equivalent calculations we get: (3.64)

z = ζ +
H

2

sinh k(ζ + h)

sinh kh
cos(ωt− kξ)

Eq. 3.64 could be written as:

x− ξ = A(ζ)sinθ

z − ζ = B(ζ)cosθ

By squaring and summation we get, as
√
cos2θ + sin2θ = 1:(

x− ξ

A(ζ)

)2

+

(
z − ζ

B(ζ)

)2

= 1 ,

Leading to the conclusion that the particle paths are for linear waves elliptical
with center (ξ, ζ) and A(ζ) and B(ζ) are horizontal and vertical amplitude
respectively. Generally speaking the amplitudes are a function of ζ, i.e. the
depth. At the surface the vertical amplitude is equal to H/2 and the horizontal
one is equal to H/2 coth kh. Below is a figure showing the particle paths, the
foci points and the amplitudes.

MWL

3.9.1 Deep Water Waves

We will now consider the deep water case h
L
> 1

2
, corresponding to kh = 2πh

L
>

π we have cosh kh � 1
2
ekh and sinh kh � 1

2
ekh.
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By using cosh k(ζ+h)
sinh kh

= coshkζ cosh kh+sinh kζ·sinh kh
sinh kh

we find:

A(ζ) � H

2
ekζ

B(ζ) � H

2
ekζ

Leading to the conclusion that when we have deep water waves, the particle
paths are circular with radius A = B. At the surface the diameter is naturally
equal to the wave height H. At the depth z = −L

2
the diameter is only approx.

4% of H. We can thus conclude that the wave do not penetrate deep into the
ocean.

3.9.2 Shallow Water Waves

For the shallow water case h
L
< 1

20
, corresponding to kh = 2πh

L
< π

10
we find,

as cosh kh � 1 and sinh kh � kh:

A(ζ) � H

2

1

kh
, i.e. constant over depth

B(ζ) � H

2
(1 +

ζ

h
) , i.e. linearly decreasing with depth.

3.9.3 Summary and Discussions

Below are the particle paths illustrated for three different water depths.

Shallow water
Deep water

The shown particle paths are for small amplitude waves. In case of finite am-
plitude waves the particle paths are no longer closed orbits and a net transport
of water can be observed. This is because the particle velocity in the upper
part of the orbit is larger than in the lower part of the orbit.

When small wave steepness the paths are closed orbits (general
ellipses):

When large wave steepness the paths are open orbits, i.e. net mass
transport:

However, the transport velocity is even for steep waves smaller than 4% of the
phase speed c. Below is the velocity vectors and particle paths drawn for one
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wave period.

umax < c for deep water waves. For H/L = 1/7 we find umax � 0, 45c

3.10 Wave Energy and Energy Transportation

When we talk of wave energy we normally think of the mechanical energy
content, i.e. kinetic and potential energy. The kinetic energy originates from
the movement of the particles and the potential energy originates from the
displacement of the water surface from a horizontal plane surface.

The amount of heat energy contained in the fluid is of no interest as the heat
energy never can be converted to mechanical wave energy again. However,
the transformation of mechanical energy to heat energy is interesting, as it
describes the ’loss’ of mechanical energy. Wave breaking is in most cases the
main contributor to the loss in mechanical energy. In the description of certain
phenomena, such as for example wave breaking, it is important to know the
amount of energy that is transformed.

The energy in the wave can be shown to propagate in the wave propagation
direction. In fact the wave propagation direction is defined as the direction
the energy propagate.

3.10.1 Kinetic Energy

As we consider an ideal fluid there is no turbulent kinetic energy present.
Therefore, we only consider the particle velocities caused by the wave itself.
The instantaneous kinetic energy per unit volume ek(θ) is:

ek(θ) =
1

2
ρ(u2 + w2)

ek(θ) =
1

2
ρ(

Hω

2sinhkh
)2[cosh2k(z + h)cos2θ + sinh2k(z + h)sin2θ)]

ek(θ) =
1

4
ρ

gkH2

sinh2kh
[cos2θ + sinh2k(z + h)] (3.65)
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The instantaneous kinetic energy per unit area in the horizontal plane Ek(θ)
is found by integrating ek(θ) from the bottom (z = −h) to the surface (z = η).
However, as it mathematically is very complicated to integrate to the surface,
is instead chosen to do the integration to the mean water level (z = 0). It can
easily be shown that the error related to this is small when H/L << 1.

Ek(θ) =
1

4
ρ

gkH2

sinh2kh

(
h cos2θ +

1

2

∫ 0

−h
[cosh2k(z + h)− 1] dz

)

where sinh2(x) = e2x+e−2x−2
4

= 1
2
[cosh(2x)−1] has been used. After performing

the integration and rearranging we get:

Ek(θ) =
1

16
ρgH2 +

1

8
ρgH2 2kh

sinh2kh

[
cos2θ − 1

2

]
(3.66)

If we average over one wave period T or one wave length L (which gives
identical results for waves with constant form), we get the mean value of the
kinetic energy Ek to:

Ek =
1

16
ρgH2 (3.67)

as the mean value of cos2(θ) over one period is 1/2.

3.10.2 Potential Energy

As the fluid is assumed incompressible and surface tension is neglected all the
potential energy originates from the gravitational forces. Further, we deal only
with the energy caused by displacement of the water surface from the mean
water level. With these assumptions we can write the instantaneous value of
the potential energy Ep(θ) per unit area in the horizontal plane as:

Ep(θ) =
∫ η

−h
ρgzdz −

∫ 0

−h
ρgzdz

Ep(θ) =
∫ η

0
ρgzdz

Ep(θ) =
1

2
ρgη2 (3.68)

Averaging over one wave period T or one wave length L gives the mean value
of the potential energy Ep:

Ep =
1

2
ρgη2

Ep =
1

2
ρg

H2

4
cos2θ (for linear waves)

Ep =
1

16
ρgH2 (3.69)
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3.10.3 Total Energy Density

The total wave energy density per unit area in the horizontal plane E is the
sum of the kinetic energy density Ek and the potential energy density Ep.

E = Ek + Ep

E =
1

8
ρgH2 (3.70)

3.10.4 Energy Flux

As the waves travel across the ocean they carry their potential an kinetic en-
ergy with them. However, the energy density in the waves can not directly be
related to an energy equation for the wave motion. In that case we need to
consider the average energy (over one period) that is transported through a
fixed vertical section and integrated over the depth. If this section is parallel
to the wave fronts and has a width of 1 m, it is called the mean transported
energy flux or simply the energy flux Ef .

Figure 3.1: Definitions for calculating energy flux.

We now consider the element shown in Fig. 3.1. The energy flux through
the shown vertical section consist partly of the transported mechanical energy
contained in the control volume, and partly of the increase in kinetic energy,
i.e. the work done by the external forces.

Work produced by external forces:
On a vertical element dz acts the horizontal pressure force pdz. During the
time interval dt the element moves the distance udt to the right. The work
produced per unit width A (force x distance) is thus:

A = ΔEk = p u dz dt
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Mechanical energy:
The transported mechanical energy through the vertical element dz per unit
width is calculated as:

Ef,mec = [ρgz +
1

2
ρ(u2 + w2)]u dz dt

Energy flux:
The instantaneous energy flux Ef (t) per unit width is:

Ef (t) =
∫ η

−h
[p+ ρgz +

1

2
ρ(u2 + w2)]udz

After neglecting the last term which is of higher order, change of upper inte-
gration limit to z = 0, and introduction of the dynamic pressure pd = p+ ρgz
we get:

Ef (t) =
∫ 0

−h
pd u dz (3.71)

Note that the symbol p+ (excess pressure) can be found in some literature
instead of pd.

The mean energy flux Ef (often just called the energy flux) is calculated by
integrating the expression 3.71 over one wave period T , and insertion of the
expressions for pd and u.

Ef = Ef (t)

Ef =
1

16
ρgH2c[1 +

2kh

sinh2kh
] (3.72)

Ef = Ecg (3.73)

where we have introduced the energy propagation velocity cg = c(1
2
+ kh

sinh2kh
).

The energy propagation velocity is often called the group velocity as it is re-
lated to the velocity of the wave groups, cf. section 3.10.5

If we take a look at the distribution of the transported energy over the depth
we will observe that for deep water waves (high kh) most of the energy is close
to the free surface. For decreasing water depths the energy becomes more and
more evenly distributed over the depth. This is illustrated in Fig. 3.2.
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Figure 3.2: Distribution of the transported energy over the water depth.

3.10.5 Energy Propagation and Group Velocity

The energy in the waves travels as mentioned above with the velocity cg. How-
ever, cg also describes the velocity of the wave groups (wave packets), which is
a series of waves with varying amplitude. As a consequence cg is often called
the group velocity. In other words the group velocity is the speed of the enve-
lope of the surface elevations.

group velocity, energy propagation velocity

cg = c for shallow water waves

cg =
1

2
· c for deep water waves

This phenomena can easy be illustrated by summing two linear regular waves
with slightly different frequencies, but identical amplitudes and direction. These
two components travel with different speeds, cf. the dispersion relationship.
Therefore, they will reinforce each other at one moment but cancel out in
another moment. This will repeat itself over and over again, and we get an
infinite number of wave groups formed.

Another way to observe wave groups is to observe a stone dropped into water
to generate some few deep water waves.
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Stone drop in water generates
ripples of circular waves, where
the individual wave overtake the
group and disappear at the front
of the group while new waves de-
velop at the tail of the group.

One important effect of deep water waves being dispersive (c and cg depends
on the frequency) is that a field of wind generated waves that normally consist
of a spectrum of frequencies, will slowly separate into a sequence of wave fields,
as longer waves travel faster than the shorter waves. Thus when the waves af-
ter traveling a very long distance hit the coast the longer waves arrive first and
then the frequency slowly increases with time. The waves generated in such
a way are called swell waves and are very regular and very two-dimensional
(long-crested).

In very shallow water the group velocity is identical to the phase velocity,
so the individual waves travel as fast as the group. Therefore, shallow water
waves maintain there position in the wave group.

3.11 Evaluation of Linear Wave Theory

In the previous pages is the simplest mathematical model of waves derived
and described. It is obvious for everyone, who has been at the coast, that real
waves are not regular monochromatic waves (sine-shaped). Thus the question
that probably arise is: When and with what accuracy can we use the linear
theory for regular waves to describe real waves and their impact on ships,
coasts, structures etc.?

The developed theory is based on regular and linear waves. In engineering
practise the linear theory is used in many cases. However, then it is in most
cases irregular linear waves that are used. In case regular waves are used for
design purposes it is most often a non-linear theory that is used as the Stokes
5. order theory or the stream function theory. Waves with finite height (non-
linear waves) is outside the scope of this short note, but will be introduced in
the next semester.
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To distinguish between linear and non-linear waves we classify the waves after
their steepness:

H/L → 0, waves with small amplitude

1. order Stokes waves, linear waves, Airy
waves, monochromatic waves.

H/L > 0.01, waves with finite height

higher order waves, e.g. 5. order Stokes
waves.

Even though the described linear theory has some shortcomings, it is impor-
tant to realise that we already (after two lectures) are able to describe waves
in a sensible way. It is actually impressive the amount of problems that can
be solved by the linear theory. However, it is also important to be aware of
the limitations of the linear theory.

From a physically point of view the difference between the linear theory and
higher order theories is, that the higher order theories take into account the
influence of the wave itself on its characteristics. Therefore, the shape of the
surface, the wave length and the phase velocity all becomes dependent on the
wave height.

Linear wave theory predicts that the wave crests and troughs are of the same
size. Theories for waves with finite height predicts the crests to significant
greater than the troughs. For high steepness waves the trough is only around
30 percent of the wave height. This is very important to consider for design
of e.g. top-sites for offshore structure (selection of necessary level). The use
of the linear theory will in such cases lead to very unsafe designs. This shows
that it is important to understand the differences between the theories and
their validity.

Linear wave theory predicts the particle paths to be closed orbits. Theories
for waves with finite height predicts open orbits and a net mass flow in the
direction of the wave.
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Chapter 4

Changes in Wave Form in
Coastal Waters

Most people have noticed that the waves changes when they approach the
coast. The change affect both the height, length and direction of the waves.
In calm weather with only small swells these changes are best observed. In
such a situation the wave motion far away from the coast will be very limited.
If the surface elevation is measured we would find that they were very close to
small amplitude linear waves, i.e. sine shaped. Closer to the coast the waves
becomes affected by the limited water depth and the waves raises and both
the wave height and especially the wave steepness increases. This phenomena
is called shoaling. Closer to the coast when the wave steepness or wave height
has become too large the wave breaks.

The raise of the waves is in principle caused by three things. First of all the
decreasing water depth will decrease the wave propagation velocity, which will
lead to a decrease in the wave length and thus the wave steepness increase. Sec-
ond of all the wave height increases when the propagation velocity decreases,
as the energy transport should be the same and as the group velocity decreases
the wave height must increase. Finally, does the increased steepness result in
a more non-linear wave form and thus makes the impression of the raised wave
even more pronounced.

The change in the wave form is solely a result of the boundary condition
that the bottom is a streamline. Theoretical calculations using potential the-
ory gives wave breaking positions that can be reproduced in the laboratory.
Therefore, the explanation that wave breaking is due to friction at the bottom
must be wrong.

Another obvious observation is that the waves always propagate towards the
coast. However, we probably all have the feeling that the waves typically prop-
agate in the direction of the wind. Therefore, the presence of the coast must
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affect the direction of the waves. This phenomenon is called wave refraction
and is due to the wave propagation velocity depends on the water depth.

These depth induced variations in the wave characteristics (height and direc-
tion) are usually sufficiently slow so we locally can apply the linear theory for
waves on a horizontal bottom. When the non-linear effects are too strong we
have to use a more advanced model for example a Boussinesq model.

In the following these shallow water phenomena are discussed. An excellent
location to study these phenomena is Skagens Gren (the northern point of
Jutland).

4.1 Shoaling

We investigate a 2-dimensional problem with parallel depth contours and where
the waves propagate perpendicular to the coast (no refraction). Moreover, we
assume:

• Water depth vary so slowly that the bottom slope is everywhere so small
that there is no reflection of energy and so we locally can apply the
linear theory for progressive waves with the horizontal bottom boundary
condition. The relative change in water depth over one wave length
should thus be small.

• No energy is propagating across wave orthogonals, i.e. the energy is
propagating perpendicular to the coast (in fact it is enough to assume
the energy exchange to be constant). This means there must be no
current and the waves must be long-crested.

• No wave breaking.

• The wave period T is unchanged and hence f and ω are also unchanged.
This seems valid when there is no current and the bottom has a gentle
slope.

The energy content in a wave per unit area in the horizontal plane is:

E =
1

8
ρgH2 (4.1)

The energy flux through a vertical section is E multiplied by the energy prop-
agation velocity cg:

P = Ecg (4.2)

Inserting the expressions from Eq. 3.73 gives:

P =
1

8
ρgH2 · c (1

2
+

kh

sinh(2kh)
) (4.3)
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Figure 4.1: Definitions for calculating 2-dimensional shoaling (section A is
assumed to be on deep water).

Due to the assumptions made the energy is conserved in the control volume.
Thus the energy amount that enters the domain must be identical to the
energy amount leaving the domain. Moreover, as we have no energy exchange
perpendicular to the wave orthogonals we can write:

EA · cgA = EB · cgB (4.4)

HB = HA

√√√√cgA

cgB
(4.5)

The above equation can be used between two arbitary vertical sections, but
remember the assumption of energy conservation (no wave breaking) and small
bottom slopes. In many cases it is assumed that section A is on deep water
and we get the following equation:

H

H0

= Ks =

√
c0,g
cg

(4.6)

The coefficient Ks is called the shoaling coefficient. As shown in Figure 4.1
the shoaling coefficient first drops slightly below one, when the wave approach
shallower waters. However, hereafter the coefficient increase dramatically.

All in all it can thus be concluded that the wave height increases as the wave
approach the coast. This increase is due to a reduction in the group velocity
when the wave approach shallow waters. In fact using the linear theory we can
calculate that the group velocity approaches zero at the water line, but then
we have really been pushing the theory outside its range of validity.

As the wave length at the same time decreases the wave steepness grows and
grows until the wave becomes unstable and breaks.

4.2 Refraction

A consequence of the phase velocity of the waves is decreasing with decreasing
water depth (wave length decreases), is that waves propagating at an angle
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Figure 4.2: Variation of the shoaling coefficientKs and the dimensionless depth
parameter kh, as function of k0h, where k0 = 2π/L0 is the deep water wave
number.

(oblique incidence) toward a coast slowly change direction so the waves at last
propagate almost perpendicular to the coast.

Generally the phase velocity of a wave will vary along the wave crest due to
variations in the water depths. The crest will move faster in deep water than
in more shallow water. A result of this is that the wave will turn towards
the region with more shallow water and the wave crests will become more and
more parallel to the bottom contours.

Therefore, the wave orthogonals will not be straight lines but curved. The
result is that the wave orthogonals could either diverge or converge towards
each other depending on the local bottom contours. In case of parallel bottom
contours the distance between the wave orthogonals will increase towards the
coast meaning that the energy is spread over a longer crest.
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Figure 4.3: Photo showing wave refraction. The waves change direction when
they approach the coast.

We will now study a case where oblique waves approach a coast. Moreover,
we will just as for shoaling assume:

• Water depth vary so slowly that the bottom slope is everywhere so small
that there is no reflection of energy and so we locally can apply the
linear theory for progressive waves with the horizontal bottom boundary
condition. The relative change in water depth over one wave length
should thus be small.

• No energy is propagating across wave orthogonals, i.e. the energy is
propagating perpendicular to the coast (in fact it is enough to assume
the energy exchange to be constant). This means there must be no
current and the waves must be long-crested.

• No wave breaking.

• The wave period T is unchanged and hence f and ω are also unchanged.
This seems valid when there is no current and the bottom has a gentle
slope.
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Figure 4.4: Refraction of regular waves in case of parallel bottom contours.

The energy flux Pb0 , passing section b0 will due to energy conservation be
identical to the energy flux Pb passing section b, cf. Fig. 4.4. The change
in wave height due to changing water depth and length of the crest, can be
calculated by require energy conservation for the control volume shown in Fig.
4.4:

Eb0 · cgb0 · b0 = Eb · cgb · b ⇒ (4.7)

Hb = Hb0

√√√√cgb0

cgb
·
√
b0
b
⇒ (4.8)

Hb = Hb0 ·Ks ·Kr (4.9)

where, cg = c · (1
2
+

kh

sinh(2kh)
)

Kr is called the refraction coefficient. In case of parallel depth contours as
shown in Fig. 4.4 the refraction coefficient is smaller than unity as the length
of the crests increases as the wave turns.

In the following we will shortly go through a method to calculate the refraction
coefficient. The method starts by considering a wave front on deep water and
then step towards the coast for a given bottom topography. The calcultion is
performed by following the wave crest by stepping in time intervals Δt, e.g. 50
seconds. In each time interval is calculated the phase velocity ”in each end” of
the selected wave front. As the water depths in each of the ends are different
the phase velocities are also different. It is now calculated the distance that
each end of the wave front has tralled during the time interval Δt. Hereafter
we can draw the wave front Δt seconds later. This procedure is continued
until the wave front is at the coast line. It is obvious that the above given
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procedure requires some calculation and should be solved numerically.
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Figure 4.5: Refraction calculation.

As the wave fronts turns it must be evident that the length of the fronts will
change. We can thus conclude that this implies that the refraction coefficient
is larger than unity where the length of wave front is decreased and visa versa.

Figure 4.6: Influence of refraction on wave height for three cases. The curves
drawn are wave orthogonals and depth contours. a) Increased wave height
at a headland due to focusing of energy (converging wave orthogonals). b)
Decrease in wave height at bay or fjord (diverging wave orthogaonals). c)
Increased wave height behind submerged ridge (converging wave orthogonals).

Figure 4.6 shows that it is a good idea to consider refraction effects when look-
ing for a location for a structure built into the sea. This is the case both if
you want small waves (small forces on a structure) or large waves (wave power
plant). In fact you will find that many harbours are positioned where you have
small waves due to refraction and/or sheltering.
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Practically the refraction/shoaling problem is always solved by a large numer-
ical wave propagation model. Examples of such models are D.H.I.’s System21,
AaU’s MildSim and Delfts freely available SWAN model, just to mention a few
of the many models available.

If there is a strong current in an area with waves it can be observed that the
current will change the waves as illustrated in Fig. 4.7. The interaction affects
both the direction of wave propagation and characteristics of the waves such as
height and length. Swell in the open ocean can undergo significant refraction as
it passes through major current systems like the Gulf Stream. If the current
is in the same direction as the waves the waves become flatter as the wave
length will increase. In opposing current conditions the wave length decreases
and the waves become steeper. If the wave and current are not co-directional
the waves will turn due to the change in phase velocity. The phase velocity is
now both a function of the depth and the current velocity and direction. This
phenomena is called current refraction. It should be noted that the energy
conservation is not valid when the wave propagate through a current field.

following current

opposing current

Figure 4.7: Change of wave form due to current.

4.3 Diffraction

If you observe the wave disturbance in a harbour, you will observe wave distur-
bance also in areas that actually are in shelter of the breakwaters. This wave
disturbance is due to the waves will travel also into the shadow of the break-
water in an almost circular pattern of crests with the breakwater head being
the center point. The amplitude of the waves will rapidly decrease behind
the breakwater. Thus the waves will turn around the head of the breakwater
even when we neglect refraction effects. We say the wave diffracts around the
breakwater.

If diffraction effects were ignored the wave would propagate along straight or-
thogonals with no energy crossing the shadow line and no waves would enter
into the shadow area behind the breakwater. This is of cause physical impos-
sible as it would lead to a jump in the energy level. Therefore, the energy will
spread and the waves diffract.
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Figure 4.8: Diffraction around breakwater head.

The wave disturbance in a harbour is determining the motions of moored ships
and thus related to both the down-time and the forces in the mooring systems
(hawsers and fenders). Also navigation of ships and sediment transport is af-
fected by the diffracted waves. Moreover, diffraction plays a role for forces on
offshore large structures and wind mill foundations. It is therefore important
to be able to estimate wave diffraction and diffracted wave heights.

From the theory of light we know the diffraction phenomena. As the govern-
ing equation for most wave phenomena formally are identical, we can profit
from the analytical solution developed for diffraction of electromagnetic waves
around a half-infinite screen (Sommerfeld 1896).

Fig. 4.9 shows the change in wave height behind a fully absorbing breakwater.
The shown numbers are the so-called diffraction coefficientKd, which is defined
as the diffracted wave height divided by the incident wave height. In reallity
a breakwater is not fully absorbing as the energy can either be absorped,
transmitted or reflected. For a rubble mound breakwater the main part of the
energy is absorbed and most often only a small part of the energy is reflected
and transmitted. In case of a vertical breakwater the main part of the energy is
reflected. Therefore, these cases are not generally covered by the Sommerfeld
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Figure 4.9: Diffraction around absorping breakwater.

solution, but anyway the solution gives an idea of the diffracted wave height.

The preceding description (the Sommerfeld solution) is based on the assump-
tion of constant phase velocity of the wave. As previously derived the phase
velocity depends not only on the wave period but also on the water depth.
Therefore, we have implicit assumed constant water depth when we apply the
Sommerfeld solution.

In the conceptual design of a harbour or another structure is the diffraction
diagram is an essential tool. However, a detailed design should be based on
either physical model tests or advanced numerical modelling.

A larger mathematical derivation leads to the so-called Mild-Slope equations
and Boussinesq equations. It is outside the scope of these notes to present this
derivation, but it should just be mentioned that commercial wave disturbance
models are based on these equations.

Generally all the shallow water phenomena (i.e. shoaling, refraction and
diffraction) are included in such a numerical model. Examples of such mod-
els are as previously mentioned D.H.I.’s Mike21, AaU’s MildSim and Delfts
SWAN model.
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Figure 4.10: Diffraction diagram for fully absorbing breakwater.
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Figure 4.11: Example of wave heights in the outer part of Grenaa harbour
calculated by the MildSim model.
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4.4 Wave Breaking

Wave measurements during storm periods shows that the wave heights almost
never gets higher than approximately 1/10 of the wave length. If we in the
laboratory try to generate steep waves we will observe that it is only possible
to generate waves with a wave steepness up to between 1/10 and 1/8. If we
try to go steeper we will observe that the wave breaks.

Miche (1944) has shown theoretically that the maximum wave is limited by
the fact that the particle velocity u cannot be larger then the phase velocity c.

umax = c (4.10)

The wave steepness is high when the wave breaks and thus the assumptions in
the linear theory are violated too strong to give usable results. Miche (1944)
found the maximum steepness from Eq. 4.10 to:

H

L
= 0.142 · tanh(kh) (4.11)

If we instead apply the linear theory we get when using the velocity at z = 0 a
coefficient 1/π instead of 0.142, which shows that the linear theory is pushed
way out of its range of validity.

Eq. 4.11 gives for deep water waves ( h
L
≥ 1

2
) that the maximum steepness is

0.14. In shallow water ( h
L
≤ 1

20
) Eq. 4.11 is reduced to:

H ≤ 0.88 · h (4.12)

However, observation shows that this formula is the upper limit and typically
the wave breaks around H/h = 0.6 to 0.8. In case of irregular waves observa-
tions shows that the maximum significant wave height around Hs/h ≈ 0.5.

In reality the breaking wave height depends in shallow water not only on the
depth as suggested by Eq. 4.12 but also on the bottom slope. We can observe
at least three different wave breaking forms. Waves on deep water breaks by
spilling, when the wind has produced relative steep waves.
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Figure 4.12: Different breaker types.

The type of wave breaking depends on shallow water on both the wave steep-
ness and the bottom slope typically combined in the Iribarren number defined
as:

ξ =
tan(α)√
Hb/L0

=
tan(α)√

s0
(4.13)

where s0 is the wave steepness at the breaker point but using the deep water
wave length. The Iribarren number is also known as the surf similarity param-
eter and the breaker parameter. Typical values used for the different breaker
types are:

spilling : ξ < 0.4

plunging : 0.4 < ξ < 2.0

surging : ξ > 2.0

Fig. 4.13 indicate the breaker type as function of the bottom slope and the
wave steepness (s0 = H/L0) using the above given limits for the breaker pa-
rameter. In many cases the reflection from a sloping structure is calculated
using the Iribarren number as this determines the breaker process and thus
the energy dissipation. Also stability of rubble mound structures depends on
the Iribarren number.
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Figure 4.13: Type of wave breaking as function of wave steepness and bottom
slope.

Towards the surf zone there are changes in the mean water level. Before the
wave breaking point there is a small set-down of the mean water level. From
the breaker line and towards the coast line there is a set-up of the water level.
These changes in the water level is due to variations in the wave height (wave
radiation stress), i.e. before the breaker zone the wave height is increased due
to shoaling and causes the set-down. In the breaker zone the wave height is
reduced very significantly and leads to set-up, which can be as much as 20%
of the water depth at the breaker point.

These water level variation gives also rise to a return flow from the coast to-
wards the breaker zone (cross-shore current). In case of oblique incident waves
a long-shore current is also generated. These currents can if they are strong
enough be extremely dangerous for swimmers as they occasional can outbreak
to the sea and generate what is often refered to as rip currents. Moreover, the
wave generated currents are important for the sediment transport at the coast.
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Appendix A

Hyperbolic Functions

y y′

sinhα = eα−e−α

2
= −sinh (−α) coshα

coshα = eα+e−α

2
= cosh (−α) sinhα

Limit for shallow
water waves

Limit for deep
water waves

correponding to correponding to
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Appendix B

Phenomena, Definitions and
Symbols

B.1 Definitions and Symbols

Water depth, h

Crest

Trough

MWL

H wave height
a wave amplitude
η water surface elevations from MWL (posituve upwards)
L wave length

s =
H

L
wave steepness

c =
L

T
phase velocity of wave

T wave period, time between two crests passage of same vertical section
u horizontal particle velocity
w vertical particle velocity

k =
2π

L
wave number

ω =
2π

T
cyclic frequency, angular frequency

h water depth

63



Wave fronts

Wave front

Wave orthogonals

Wave front

Wave orthogonal

B.2 Particle Paths

Shallow water
Deep water

When small wave steepness the paths are closed orbits (general ellipses).

When large wave steepness the paths are open orbits, i.e. net mass
transport.

However, the transport velocity is even for steep waves smaller than 4% of the
phase speed c.

umax < c for deep water waves. For H/L = 1/7 we find umax � 0, 45c
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B.3 Wave Groups

group velocity, energy propagation velocity

cg = c for shallow water waves

cg =
1

2
· c for deep water waves

Example:

Stone drop in water generates
ripples of circular waves, where
the individual wave overtake the
group and disappear at the front
of the group while new waves de-
velop at the tail of the group.

B.4 Wave Classification after Origin

Phenomenon Origin Period

Surges Atmospheric pressure and wind 1 – 30 days

Tides Gravity forces from the moon and the sun app. 12 and 24 h

Barometric wave Air pressure variations 1 – 20 h

Tsunami Earthquake, submarine land slide or
submerged volcano 5 – 60 min.

Seiches (water level
fluctuations in bays Resonance of long period wave components 1 – 30 min.
and harbour basins)

Surf beat, mean water
level fluctuations at Wave groups 0.5 – 5 min.
the coast

Swells Waves generated by a storm some < 40 sec.
distance away

Wind generated waves Wind shear on the water surface < 25 sec.
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B.5 Wave Classification after Steepness

H/L → 0, waves with small amplitude

1. order Stokes waves, linear waves, Airy
waves, monochromatic waves.

H/L > 0, 01, waves with finite height

higher order waves, e.g. 5. order Stokes
waves.

B.6 Wave Classification after Water Depth

h/L < 1
20

, shallow water waves

h/L > 1
2
, deep water waves

B.7 Wave Classification after Energy Propa-

gation Directions

Long-crested waves: 2-dimensional (plane) waves (e.g. swells at mild
sloping coasts). Waves are long crested and
travel in the same direction (e.g. perpendicu-
lar to the coast)

Short-crested waves: 3-dimensional waves (e.g. wind generated storm
waves). Waves travel in different directions and
have a relative short crest.
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B.8 Wave Phenomena

In the following is described wave phenonema related to short period waves.
Short period waves are here defined as typical wind generated waves with pe-
riods less than approximately 30 seconds.

Wind speed > 1 m/s

H, L and T increases with increas-
ing wind velocity and the distance
the wind has acted over (the fetch).

Wind shear current in the surface
layer.

Decreasing H

Diffraction

Reflection and transmission

following current

opposing current

Change of wave form due to current.
The corresponding change in phase
velocity cause current refraction if S
and c are not parallel.
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Phenomena related to the presence of the bottom:

Boundary layer

Thin boundary layer due
to the oscillating mo-
tion. Compare to bound-
ary development at a
plate in stationary flow

Bed shear stress (can
generate sediment trans-
port)

Percolation

Decreasing h

Decreasing L

Increasing H
Increasing H/L

Waves shoal and refract
in coastal waters. Re-
fraction when wave crests
and depth contours are
not parallel
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MWL

MWL

Set-down of MWL before breaker
point (typically insignificant)

Set-up of MWL as a consequence
of decreasing wave height through
the surf zone.

In
c
re

a
s
in

g
w

a
v
e

s
te

e
p
n

e
s
s

spilling breaker

plunging breaker

Surging

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

wave breaking in coastal

waters when app.

H ≥ 0.8h

Type of breaking depends both

on H/L and bottom slope

It should be noted that waves on deep water breaks by spilling when the wind
has produced relative steep waves.

Breaking waves generates long-shore currents where the wave orthogonals are
not perpendicular to the depth contours.
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Appendix C

Equations for Regular Linear
Waves

C.1 Linear Wave Theory

ϕ = −a g

ω

cosh k (z + h)

cosh kh
sin(ωt− kx) (C.1)

η = a cosθ =
H

2
cos(ωt− kx) (C.2)

c =

√
g L

2π
tanh

2πh

L
(C.3)

u =
∂ϕ

∂x
= −Hc

2
(−k)

cosh k(z + h)

sinh kh
cos(ωt− kx)

=
πH

T

cosh k(z + h)

sinh kh
cos(ωt− kx) (C.4)

=
a g k

ω

cosh k(z + h)

cosh kh
cos(ωt− kx)

w =
∂ϕ

∂z
= −Hc

2
k
sinh k(z + h)

sinh kh
sin(ωt− kx)

= −πH

T

sinh k(z + h)

sinh kh
sin(ωt− kx) (C.5)

= −a g k

ω

sinh k(z + h)

cosh kh
sin(ωt− kx)
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∂u

∂t
= −a g k

cosh k(z + h)

cosh kh
sin(ωt− kx) (C.6)

∂w

∂t
= −a g k

sinh k(z + h)

cosh kh
cos(ωt− kx) (C.7)

pd = ρ g η
cosh k(z + h)

cosh kh
, which at z = 0 gives pd = ρ g η (C.8)

L =
g T 2

2π
tanh

2πh

L
(C.9)

E =
1

8
ρvgH

2 (C.10)

P = Ecg (C.11)

P =
1

8
ρvgH

2 · (1
2
+

kh

sinh(2kh)
) (C.12)

C.2 Wave Propagation in Shallow Waters

H

H0

= Ks =

√
c0
c

(C.13)

Hb

Hb0
=

√√√√cgb0

cgb
·
√
b0
b

(C.14)
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