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Burak Çakmak

Department of Electronic Systems

Aalborg University

9220 Aalborg, Denmark

Email: buc@es.aau.dk

Ole Winther

DTU Compute

Technical University of Denmark

2800 Lyngby, Denmark

Email: olwi@dtu.dk

Bernard H. Fleury

Department of Electronic Systems

Aalborg University

9220 Aalborg, Denmark

Email: fleury@es.aau.dk

Abstract—We propose a novel iterative estimation algorithm
for linear observation models called S-AMP. The fixed points of
S-AMP are the stationary points of the exact Gibbs free energy
under a set of (first- and second-) moment consistency constraints
in the large system limit. S-AMP extends the approximate
message-passing (AMP) algorithm to general matrix ensembles
with a well-defined large system size limit. The generalization is
based on the S-transform (in free probability) of the spectrum
of the measurement matrix. Furthermore, we show that the
optimality of S-AMP follows directly from its design rather than
from solving a separate optimization problem as done for AMP.

Index Terms—Variational inference; free energy optimization;
approximate message passing; S-transform in free probability

I. INTRODUCTION

Consider an N ×K linear observation model described by

y = Ax+w (1)

where A ∈ R
N×K , x ∈ R

K×1, y ∈ R
N×1, and w ∈ R

N×1

are the measurement matrix, the vector to be recovered,

the measurement vector, and a white Gaussian noise vector,

respectively. The entries of w have zero mean and variance

σ2
w. In [1] the authors propose a recovery scheme for x, given

A and y, called Approximate Message Passing (AMP), which

starting from an initial guess μ0 = 0, proceeds iteratively as

μt+1 = ηt

(
A†zt + μt

)
(2)

zt = y −Aμt +
1

α

〈
η′t−1(A

†zt−1 + μt−1)
〉
zt−1. (3)

The scalar functions ηt, t ≥ 0, in (2) are obtained by applying

an additional optimization procedure based upon the so-called

state evolution formula for the underlying measurement matrix

ensemble [2]. In (3), η′t(x) = dηt(x)/dx, t ≥ 0. Moreover

for a vector u � (u1, . . . , uK), 〈u〉 �
∑K

k=1 uk/K and

α � N/K. The vectors μt and zt are referred to as the current

estimate of x and the corresponding residual, respectively.

Finally (·)† denotes transposition.

AMP has two appealing properties. Firstly, when the entries

of A are independent identically distributed (iid) Gaussian

with zero mean and variance 1/N , AMP yields the minimum

mean square error (MMSE) estimator in the large system

limit [2]. Secondly, AMP includes a so-called Onsager re-

action term, i.e, α−1
〈
η′t−1(·)

〉
zt−1 in (3), that corrects the

naive mean field approximation. In statistical physics such a

technique is known as the Thouless-Anderson-Palmer (TAP)

correction [3].
The adaptive TAP (ADATAP) mean field theory was intro-

duced in [4]. In ADATAP the form of Onsager reaction term

depends on the measurement matrix, see [4, Eq. (20) & (51)].

Indeed, a connection between ADATAP and AMP has been

recently realized in [5]. The connection is based on some

approximations of the Gibbs free energy, which are derived

using the replica method, see [5, Eq. (10) & (11)] and the

references therein.
Inference techniques based on the free energy optimization

have become popular in the literature of information theory

[6], [7] and in machine learning e.g. [8], [9]. The important

results exploited in this contribution is that the fixed points of

belief propagation (BP) and expectation propagation (EP) are

the stationary points of the Bethe Free energy (BFE) under a

set of marginalization consistency constraints [6] and moment

consistency constraints [8], respectively.
The conventional approximate message passing methods

presented in the literature are based on a Gaussian approx-

imation of loopy BP on a dense graph, [10]–[13]. By contrast,

the method presented in this paper is based on probabilistic

inference on a tree graph. Specifically we consider an exact

Gibbs free energy formulation (i.e. a BFE formulation on a

tree probabilistic graph) under first and second-moment con-

sistency constraints. In particular we propose a novel algorithm

whose fixed points are the stationary points of the constrained

Gibbs free energy in the large system limit. This algorithm –

we coin it S-AMP – executes the following iteration steps:

μt+1 = ηt

(
A†zt + μt

)
(4)

zt = y −Aμt +

(
1− 1

st−1
A

)
zt−1 (5)

st−1
A � SA

(
−
〈
η′t−1(A

†zt−1 + μt−1)
〉)

(6)

with SA denoting the S-transform of the asymptotic eigenvalue

distribution (AED) of A†A (see, e.g. [14]).
To show that AMP is a special case of S-AMP, let the entries

of A be iid with zero mean and variance 1/N . Then, we

have SA(ω) = 1/(1 + ω/α) [14, Eq. (2.87)]. Inserting this

expression in (6) we obtain the iteration steps (2)-(3) of AMP.
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Notation: The entries of the N ×K matrix X are denoted

by Xnk, n ∈ N � {1, . . . , N} and k ∈ K � {1, . . . ,K}.

The entries of a vector u ∈ R
K×1 are indicated by uk. The

Gaussian probability density function (pdf) with mean μ and

the covariance Σ is denoted by N(·|μ,Σ). Throughout the

paper we assume that A†A has almost surely an AED as

N,K → ∞ while α = N/K fixed.

II. GIBBS FREE ENERGY WITH MOMENT CONSTRAINTS

Consider the linear observation model (1). For Bayesian

inference, we assign a prior pk(xk) for all k ∈ K. Hence the

joint posterior pdf can be written as

p(x|y) = 1

Z
p(y|x)

∏
k∈K

pk(xk) (7)

with p(y|x) and Z denoting the likelihood specified by (1)

and a normalization constant, respectively. The factor graph

representation of (7) is a tree. Thus the BFE of (7) is equal

to its Gibbs free energy [6, Theorem 3], which is given by

G({bk, bN , b̃k}) � −
∑
k∈K

∫
bk(xk) log bk(xk)dxk

−
∫

bN (x) log
p(y|x)
bN (x)

dx−
∑
k∈K

∫
b̃k(xk) log

pk(xk)

b̃k(xk)
dxk.

(8)

In this expression, bN and b̃k, k ∈ K, denote the beliefs of

the factors in (7), while bk, k ∈ K, denote the beliefs of the

unknown variables in (7).

When we define a Lagrangian for (8) that accounts for

the set of marginalization consistency constrains, then at its

stationary point, the belief bk(xk) is equal to p(xk|y) for all

k ∈ K [6]. Instead we consider the Gibbs energy formulation

with a set of moment consistency constraints. Specifically,

following the arguments of [8] we define the Lagrangian

L({bk, bN , b̃k}) � G({bk, bN , b̃k}) + Z
−
∑
k∈K

ν̄†
k

∫
φ(xk) {bN (x)− bk(xk)} dx

−
∑
k∈K

ν†
k

∫
φ(xk)

{
b̃k(xk)− bk(xk)

}
dxk. (9)

The term Z accounts for the normalization constraints for the
beliefs:

Z � −βN

(
1−

∫
bN (x)dx

)

−
∑
k∈K

βk

(
1−

∫
bk(xk)dxk

)
− β̃k

(
1−

∫
b̃k(xk)

)

with βN , βk, β̃k, k ∈ K denoting the associated Lagrange mul-

tipliers. We consider constraints on the mean and variance, i.e.

φ(xk) = (xk, x
2
k). For convenience we write the Lagrangian

multipliers explicitly appearing in (9) in the form

νk �
[
γk,−λk

2

]†
, ν̄k �

[
γ̄k,− λ̄k

2

]†
, k ∈ K.

We formulate the estimation procedure for xk, k ∈ K, as

μk �
∫

xkb
�
k(xk)dxk, (10)

where b�k(xk) represents bk(xk) at a stationary point of (9).

A. Stationary Points of the Lagrangian (9)

For the sake of notational compactness we define

J � 1

σ2
w

A†A, θ � 1

σ2
w

A†y (11)

Σ � (J + Λ̄)−1, μ � Σ(θ + γ̄). (12)

In (12) we have introduced the K×K diagonal matrix Λ̄ and

the K × 1 vector γ̄ whose entries are respectively Λ̄kk = λ̄k

and γ̄k, k ∈ K. The stationary points of the Lagrangian (9)

are obtained to be of the form

b̃�k(xk) =
1

Z̃k

pk(xk) exp(ν
†
kφ(xk)), k ∈ K (13)

b�N (x) = N(x|μ,Σ) (14)

b�k(xk) =
1

Zk
exp((νk + ν̄k)

†φ(xk)), k ∈ K (15)

with Z̃k and Zk denoting the normalization constants for

the beliefs in (13) and (15), respectively. At this stage it is

convenient to define κk � γk

λk
, k ∈ K. With this definition we

can rewrite the belief (13) in the form

b̃�k(xk) =
1

Z(κk, λk)
pk(xk)N(xk|κk, 1/λk), k ∈ K. (16)

Furthermore we define for any k ∈ K

η(κk;λk) � κk +
1

λk

∂ logZ(κk, λk)

∂κk
, (17)

η′(κk;λk) �
∂η(κk;λk)

∂κk
. (18)

It is shown in [12, Eq. (31)-(35)] that η(κk;λk) and

η′(κk;λk)/λk give respectively the mean and the variance of

the belief (16). With these definitions, the identities resulting

from the moment consistency constraints are given by

b�k(xk) = N(xk|μk,Σkk) k ∈ K (19)

λk

η′(κk;λk)
= λk + λ̄k, k ∈ K (20)

λkη(κk;λk)

η′(κk;λk)
= γk + γ̄k, k ∈ K. (21)

We now derive a simple expression for (10). By making use

of the identities in (15) and (19), we write first

γk =
μk

Σkk
− γ̄k, λk =

1

Σkk
− λ̄k, k ∈ K. (22)

Furthermore by the definitions in (12) we have

γ̄ = −θ + (J + Λ̄)μ. (23)
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Let us introduce the K×K diagonal matrix Λ and the K×1
vector γ whose entries are respectively Λkk = λk and γk,

k ∈ K. Then, making use of the identity in (22) we can write

γ = θ − (J + Λ̄)μ+ diag(Σ)−1μ (24)

= θ − Jμ+Λμ =
1

σ2
w

A†(y −Aμ) +Λμ (25)

where diag(Σ) is the K × K diagonal matrix with

diag(Σ)kk = Σkk, k ∈ K. Then, by invoking the identities

(19) and (21) we arrive at the sought explicit form for (10):

μk = η(κk;λk) (26)

κk =
1

λkσ2
w

∑
n∈N

Ank

(
yn −

∑
l∈K

Anlμl

)
+ μk (27)

λk =
1

Σkk
− λ̄k, λ̄k =

λk

η′ (κk;λk)
− λk, (28)

k ∈ K. As a matter of fact equations (26)–(28) coincide with

the fixed-point equations of ADATAP that are obtained by

applying the cavity approach-new [4] in statistical physics,

see [4, Eq. (20), (25) and (26)].

The step in (28) requires a matrix inversion, which is

desirable to avoid in order to keep the complexity of fixed-

point algorithms devised from (26)–(28) low. In [4] the authors

circumvent this complexity problem by using the so-called

self-averaging method [4, Section 3.1] in the large system limit

under the following underlying assumption:

ASSUMPTION 1 As N,K → ∞ with the ratio α = N/K
fixed let A†A have an AED almost surely and EA{λk} − λk

converge almost surely to zero for all k ∈ K with EA denoting
expectation over random matrix A.

Showing the explicit necessary conditions for the self-

averaging property of λk, k ∈ K in the large system requires

an extensive study. Due to space limitation this will be not

addressed in this work.

THEOREM 1 [4, Section 3.1] Let the random matrix
A†A full-fill Assumption 1. Furthermore let 〈η′(κ;Λ)〉 �
1
K

∑
k∈K η′(κk;λk). Then, as N,K → ∞ with the ratio

α = N/K fixed, for all k ∈ K λk converges almost surely to
the macroscopic quantity λ that is the solution of

λ =
1

σ2
w

RA

(
−〈η′(κ;λ)〉

σ2
wλ

)
(29)

with RA denoting the R-transform (see e.g. [15]) of the AED
of A†A and by abuse of notation 〈η′(κ;λ)〉 representing
limK→∞ 〈η′(κ;Λ)〉.

In [4] the authors show that ADATAP under the self aver-

aging analysis above is consistent with the replica symmetry

ansatz. In other words once the replica symmetry ansatz of

the underlying system breaks down that spoils the optimality

the fixed-point identities (26), (27) and (29).

Making use of the relation between the R-transform and

the S-transform [15, Table 6] in (29) we obtain the following

corollary.

COROLLARY 1 Let the random matrix A be defined as in
Theorem 1. Then, we have in the large system limit

λ =
1

σ2
wSA (−〈η′(κ, λ)〉) (30)

with SA denoting the S-transform of the AED of A†A.

III. FIXED-POINT ALGORITHMS

In this section we use the stationary point equations obtained

in the previous section to devise three fixed point iterative

algorithms. Firstly we will present the classical EP scheme

for (1) [16] and the ADATAP scheme [4]. Secondly we derive

the S-AMP algorithm mentioned in the introduction.

All three recovery schemes have the following update step

in common, which results by time-indexing the first identity

in (12):

Σt = (J + Λ̄
t
)−1. (31)

Since only one element of Λ̄
t

is updated in each iteration

the matrix inversion lemma can be applied to reduce the

complexity of this step to O(K2), e.g. see [9, Eq. (37)]. This

makes (31) suitable for applications with moderately large

dimensions of A.

A. EP and ADATAP

In the following we present the compact form of the EP

scheme for (1) (e.g. see [16]) and the ADATAP scheme [4].

First we start with defining update steps common to both

algorithms. They follow by merely time indexing (28):

λt
k =

1

Σt
kk

− λ̄t
k, λ̄t

k =
λt−1
k

η′(κt−1
k ;λt−1

k )
−λt−1

k , k ∈ K (32)

EP [16] updates μt
k, k ∈ K, based on the second identity in

(12), (20) and (27):

μt+1
k = [Σt(θ + γ̄t+1)]k (33)

γ̄t+1
k =

λt
kη(κ

t
k;λ

t
k)

η′(κt
k;λ

t
k)

− μt
k

Σt
kk

(34)

κt
k =

1

λt
kσ

2
w

∑
n∈N

Ank

(
yn −

∑
l∈K

Anlμ
t
l

)
+ μt

k. (35)

ADATAP [4] updates μt
k, k ∈ K, based on the stationary

points identities in (26)–(27):

μt+1
k = η(κt

k;λ
t
k) (36)

κt
k =

1

λt
kσ

2
w

∑
n∈N

Ank

(
yn −

∑
l∈K

Anlμ
t
l

)
+ μt

k. (37)

Depending on the applications, EP and ADATAP may

exhibit a poor convergence behavior, and may even diverge.

A procedure to improve the convergence behavior consists in

introducing a damping factor, say ε, when updating e.g. μt
k in

(35) and (37) as (1− ε)μt
k + εη(κt

k;λ
t
k) → μt

k. However this

approach leads to very slow convergence which might require

thousands of iterations, e.g. see [5, Section V]. Regarding more

advanced damping schemes we refer the reader to [17].
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B. S-AMP

In the sequel we derive a new fixed-point algorithm from

the stationary points identities (26)–(28). The algorithm yields

S-AMP in the large system limit.

First we return to (27) and define

zn,k � 1

λkσ2
w

(
yn −

∑
l∈K

Anlμl

)
, n ∈ N , k ∈ K. (38)

Using this definition in (27) we “devise” the following identity:

zn,k = yn −
∑
l∈K

Anlμl + (1− σ2
wλk)zn,k. (39)

Making use of (26), (27) (with definition (38)), and (39) we

obtain the new fixed-point algorithm

μt+1
k = η

(∑
n∈N

Ankz
t
n,k + μt

k;λ
t
k

)
(40)

ztn,k = yn −
∑
l∈K

Anlμ
t
l + (1− σ2

wλ
t−1
k )zt−1

n,k (41)

k ∈ K, n ∈ N , where λt
k satisfies the system of equations

λt
k =

1

Σt
kk

− λ̄t
k, λ̄t

k =
λt
k

η′(κt
k;λ

t
k)

− λt
k. (42)

Like AMP, this scheme includes by design a natural damping

factor (1− σ2
wλ

t−1
k ) for the contribution zt−1

n,k . Specifically in

this scheme, just like in AMP, we do not need a step-size

parameter. However, solving λt
k from (42) at each iteration is

non-trivial in general. Note that, the scheme in (32) can be

considered as an iterative approximation of (42).

Under Assumption 1, by the design of λt
k through (42), and

from Theorem 1, for all k ∈ K λt
k converges almost surely

to a macroscopic quantity λt as N,K → ∞ with the ratio α
fixed. Furthermore invoking Corollary 1 the quantity λt is the

solution of the identity

λt =
1

σ2
wSA (−〈η′t(κt)〉) (43)

where for convenience we define

ηt(κ
t
k) � η(κt

k;λ
t), k ∈ K. (44)

Consequently we obtain the iteration steps (4)-(6) of S-AMP

in their scalar form:

μt+1
k = ηt

(∑
n∈N

Ankz
t
n + μt

k

)
, k ∈ K (45)

ztn = yn −
∑
l∈K

Anlμ
t
l +

(
1− 1

st−1
A

)
zt−1
n , n ∈ N .

(46)

We note that by definition κt = A†zt + μt.

In [2], ηt(κ
t), t ≥ 0 in the AMP updates is referred as

“an appropriate sequence of non-linear functions”. By contrast,

in SAMP ηt(κ
t) results directly from the iterative process

designed via the fixed-point equation (43). Note that, λt must

be solved at each iteration t from this equation. Depending

on the prior pdfs, obtaining closed form expression for λt is

often non-trivial. In fact this shows how S-AMP (or AMP in

particular) can be a very advanced estimator as (43) directly

relates the asymptotic stationary point identity in (30). In order

to better comprehend this aspect, in the following we examine

λt for the linear Gaussian observations.

1) λt for the Linear Gaussian Observation Model: The

optimality of AMP for the linear Gaussian models with the

zero-mean iid matrix ensemble, was proven in [2, Section 2.1]

via a minimization procedure upon the state evolution formula.

By contrast we can show the optimality S-AMP for general

matrix ensembles from its design.

Consider the linear observation model (1) with the entries

of x being iid Gaussian with zero mean and variance one, i.e.

pk(xk) = N(xk|0, 1), k ∈ K. Then the asymptotic MMSE of

estimating x in (1) reads [14] τA(σ2
w) �

∫
(1+ x

σ2
w
)−1dPA(x)

with PA denoting the AED of A†A. Recall that the fixed

points of S-AMP are the stationary points of the Gibbs

free energy under the moment consistency constraints in

the large system limit. Therefore, for the given a Gaussian

prior, S-AMP must be a MMSE estimator in the large sys-

tem limit. Namely the following relation must be satisfied:

〈η′t(κt)〉 /λt = τA(σ2
w) as t → ∞. We show next that actually

for any t ≥ 0, 〈η′t(κt)〉 /λt = τA(σ2
w). First notice that with

the choice of the prior we have 〈η′t(κt)〉 = λt/(1+λt). Thus,

in this case (43) becomes

λt =
1

σ2
wSA

(
− λt

1+λt

) . (47)

The S-transform can be formulated in terms of τA(σ2
w) [14,

Definition 2.15]. Using this formula we write

1− τA(σ2
w)

τA(σ2
w)

=
1

σ2
wSA (τA(σ2

w)− 1)
. (48)

Thus λt = 1/τA(σ2
w) − 1, which confirms the optimality of

S-AMP for the linear Gaussian observation model.

IV. A SUB-OPTIMAL VARIANT OF S-AMP

In the previous subsection we derived the explicit expression

for λt when the prior pdf is Gaussian. However solving λt

from (43) for other prior pdfs is often non-trivial. A direct

approach consists in including an inner loop to solve (43)

iteratively at each iteration. That would, however, create an

overhead that we would like to avoid. Instead, we propose a

sub-optimal scheme for λt that does not require any inner loop.

Specifically, we approximate λt in (43) with λt
s that satisfies

λt
s =

1

σ2
wSA

(
− λt

s

λt−1
s

〈
η′t−1(κ

t−1)
〉) . (49)

Note that the fixed points of (49) coincide with (43).

When the entries of A are iid with zero mean and variance

1/N , the sub-optimal scheme coincides with the classical

recursion of AMP used in the literature, see e.g. [12]. In fact,

from (49), it is easy to obtain the so-called state-evolution

formula [1] for the iid zero-mean matrix ensemble.
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Fig. 1. Performance of the sub-optimal variant of S-AMP implemented for
the row orthogonal matrix ensemble (solid curves) and the iid zero-mean
Gaussian matrix ensemble (dashed curves). Note that in the latter case the
scheme coincides with the classical AMP recursion. The empirical nmsee per
iteration is reported versus the number iterations for different selections of α.
Confidence intervals (CIs) are also shown for α = 1/3. We set σ2

w = −20 dB
and ρ = 0.1. For each selection of α 2000 trials are performed. The numbers
in the plot are the predictions of replica theory [5].

In the sequel we assess the performance of the sub-optimal

variant of S-AMP. Due to space limitation we only consider the

system model used in [5, Section 5] for Bayesian inference in

compressed sensing. Specifically, the prior pdfs are Bernoulli-

Gaussian: pk(xk) = (1− ρ)δ(xk) + ρN(xk|0, 1), k ∈ K with

ρ ∈ (0, 1). We refer the reader to [12, Eq. (67) & (68)] for

the closed-form expressions of ηt(·) and η′t(·) in this case.

We apply the sub-optimal variant of S-AMP in two sce-

narios: i) the random row-orthogonal measurement matrix

ensemble, i.e. A = α− 1
2P αO, α ≤ 1, where P α is the

N×K matrix with entries [P α]ij = δij , ∀ij, with δij denoting

the Kronecker delta, and O is the K ×K Haar matrix [18];

ii) iid zero-mean Gaussian matrix ensemble. Note that in the

latter case, the sub-optimal variant coincides with the classical

AMP recursion [12]. In the former case, with a straightforward

calculus we obtain that SA(ω) = (1 + ω)/(1 + ω/α) and

λt
s = (1 + χt −

√
(1 + χt)2 − 4αχt)/(2ασ2

wχ
t) (50)

where χt �
〈
η′t−1(A

†zt−1 + μt−1)
〉
/(ασ2

wλ
t−1
s ).

In [5, Section 5], the authors report the estimated normalized

mean square estimation error (nmsee) of the damped-ADATAP

scheme for the scenario (i). Note that for each trial up to

3000 iterations were executed. In Fig. 1 we report the nmsee

of the suboptimal variant of S-AMP applied in the same

scenario versus the number of iterations. Details are reported

in the caption of Fig. 1. Note that no divergence behavior

was observed in all performed trials. A comparison of the

curves in Fig. 1 with the corresponding curves reported in

[5, Fig. 1] shows that both recovery schemes achieve the

same performance, but with a significantly smaller number

of iterations for the sub-optimal variant.

V. CONCLUSION

We developed a novel fixed-point algorithm called S-AMP

for linear observation models from the equations of the sta-

tionary points of the Gibbs free energy under first- and second-

moment consistency constraints in the large system limit. AMP

is a special case of S-AMP when the measurement matrix has

iid zero-mean entries. The optimality of S-AMP follows by

its design. We also defined a sub-optimal variant of S-AMP,

which is easy to implement. This sub-optimal recovery scheme

shows excellent performance when applied in a compressed

sensing context to a linear model with a row-orthogonal

measurement matrix ensemble. In particular, it converges in

around 40 iterations without showing any divergence behavior.
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[14] A. M. Tulino and S. Verdú, “Random matrix theory and wireless commu-
nications,” Foundations and Trends in Communications and Information
Theory, vol. 1, no. 1, June 2004.

[15] R. R. Müller, G. Alfano, B. M. Zaidel, and R. de Miguel, “Ap-
plications of large random matrices in communications engineering,”
arXiv:1310.5479, October 2013.

[16] M. W. Seeger, “Bayesian inference and optimal design for the sparse
linear model,” Journal of Machine Learning Research: Theory and
Experiment, vol. 9, pp. 759–813, 2008.

[17] T. Heskes and O. Zoeter, “Expectation propagation for approximate in-
ference in dynamic bayesian networks,” in Proc. Eighteenth Conference
on Uncertainty in Artificial Intelligence (UAI), 2002.

[18] M. Vehkapera, Y. Kabashima, and S. Chatterjee, “Analysis of regularized
LS reconstruction and random matrix ensembles in compressed sensing,”
arXiv:1312.0256, December 2013.

197


