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Abstract—With the fast proliferation of single-phase distributed generation (DG) units and loads integrated into 

residential microgrids, independent power sharing per phase and full use of the energy generated by DGs have 

become crucial. To address these issues, this paper proposes a hybrid microgrid architecture and its power 

management strategy. In this microgrid structure, a power sharing unit (PSU), composed of three single-phase 

back-to-back (SPBTB) converters, is proposed to be installed at the point of common coupling (PCC). The aim of 

the PSU is mainly to realize the power exchange and coordinated control of load power sharing among phases, as 

well as to allow fully utilization of the energy generated by DGs. Meanwhile, the method combining the modified 

adaptive backstepping-sliding mode control approach and droop control is also proposed to design the SPBTB 

system controllers. With the application of the proposed PSU and its power management strategy, the loads among 

different phases can be properly supplied and the energy can be fully utilized as well as obtaining better load 

sharing. Simulation and experimental results are provided to demonstrate the validity of the proposed hybrid 

microgrid structure and control. 

 

Index terms—microgrid, power sharing, energy utilization, adaptive backstepping-sliding-mode control, droop 

control. 
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I. INTRODUCTION 

With the high penetration of DGs, the concept of microgrids that can operate in either grid-connected or islanded modes 

is becoming more attractive [1]-[5]. A microgrid is a local controllable low-voltage distribution network consisting of a 

number of DGs, energy storage systems, and dispersed loads. DGs are often connected to the microgrid through power 

electronic interface converters, which are aimed at controlling the power injection while improving the power quality at the 

same time. Both the customers and power utilities can benefit from the microgrid concept, which can offer diversified 

energy options and high power quality and reliability [6]-[10]. Additionally, the use of low or zero emission generators in 

microgrids can increase the overall efficiency of energy utilization, dealing with environmental concerns, such as CO2 

emissions and reduction of dependence on conventional power generation [11], [12]. 

Accurate power management control among DGs is an important issue for the autonomous operation of microgrids. 

Typically, frequency and voltage droop control schemes are adopted to achieve power sharing among DGs without relying 

on communication [9], [10], [13]. Nevertheless, droop controlled microgrids are prone to have some stability and power 

sharing accuracy problems due to complex feeder impedances and high control gains [14]-[16]. To address these problems, 

stability-constrained and adaptive decentralized droop controllers have been proposed in [17]-[19]. In [20], the reactive 

power sharing accuracy was improved with the consideration of impedance voltage drop, the DG local load effects and the 

use of a virtual inductor loop. Methods based on virtual complex impedance loop and reactive power control error 

estimation were also proposed in [21] and [22], respectively. In order to mitigate the voltage and frequency deviations [23] 

produced by the conventional droop controllers, secondary control loops by using central PI compensators and 

decentralized networked control systems have been proposed [24]-[26]. The research works mentioned above, however, 

are mainly concentrated on DG control within a microgrid. Although much rarely seen, droop control applied to 

interlinked microgrids using back-to-back converters (BTB) can be found in [27]-[29], where, with the bidirectional 

control of the power flow, the specific amount of active and reactive power between utility and microgrid can be 

facilitated.  

It is worth noting that the aforementioned research works were mostly confined to three-phase microgrid system and 

little work has been done and reported in the area of load power sharing and power flow control in single-phase microgrids, 

especially interlinked single-phase microgrids. Commonly, in a real microgrid, single-phase DG units are very common, 

and a growing number of single-phase DGs are being installed in microgrids [30]-[35]. Nevertheless, methods applied in 

three-phase systems cannot be directly applied in single-phase ones.  
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The operation and reactive power compensation of the single-phase micro-sources by using STATCOM were proposed 

and discussed in [30] and [31], respectively. In traction power system, single-phase back-to-back converters were utilized 

to achieve active power balancing, reactive power compensation, and harmonic mitigation [32]. Additionally, the active 

filtering strategy was also be researched for the single-phase high-frequency AC microgrid in [33]. Further, a power 

sharing approach for islanding single-phase microgrid was proposed by using virtual impedance at fundamental and 

selective harmonic frequencies, trading-off DG terminal voltage THD and harmonic current sharing [34]. However, all 

these works were mainly focused on power quality issues.  

Regarding bidirectionality in terms of power flow, a modular multilevel cascade BTB system with particular focus on 

control, design and performances has been discussed by Akagi in [28]. This BTB system characterized by the use of 

multiple bidirectional isolated dc/dc converters was connected between two 6.6 kV feeders, which can realize directional 

power flow control between feeders. Other applications of rural microgrids connected to the grid by means of a 

back-to-back converter can be found in [27] and [39]. However, only three-phase centralized system was discussed in this 

BTB application.  

For the best knowledge of the authors, no research works have been reported about the power sharing and power flow 

control among individual phases of three-phase microgrids. In order to achieve it, a power sharing unit (PSU) and its 

operation and power management strategy are proposed in this paper. At first, the structure and operation principle of the 

proposed PSU is presented in detail in Section II. Section III presents the design of the internal and external control loops 

of the PSU. Section IV provides simulation and experimental results to demonstrate the effectiveness of the proposed PSU 

and power management. Finally, Section V gives the conclusion. 
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Fig. 1 Structure of the microgrid system under consideration. 
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II. STRUCTURE AND OPERATION PRINCIPLES OF THE PROPOSED POWER SHARING UNIT 

Fig. 1 shows the microgrid system under consideration, in which both three-phase and single-phase microgrids areas are 

connected to the utility grid through a three-phase BTB converter. Note that phase-A and phase-C contains DG units and 

some local loads, while phase-B has no DGs but loads. In such a configuration, even if the power generated by these DGs 

is larger than the load power demand in the two phases, the loads in the other phase (phase-B) will not be supplied when the 

single-phase microgrid is disconnected from the utility grid (CB1 open). 

In the microgrid system, two operation modes, grid-connected and islanded modes are considered. Particularly, it 

should be noted that the operation mode and control of the single-phase and three-phase microgrid areas are independent 

in islanded mode, when CB1 is open, as shown in Fig. 2.  

    

Fig. 2 Detailed schematic diagram of the microgrid: (a) single-phase and (b) three-phase parts; (c) flow-chart for different operating modes. 

In grid-connected mode, the single-phase microgrid, although there is no DG installed in phase-B, the load power 

demand in phase-B can be supplied by the utility grid. Nevertheless, when the microgrid is disconnected from the utility 

grid (CB open), the three-phase and single-phase microgrid areas will operate in islanded mode. Considering that the PCC 

voltage can be unbalanced and distorted seriously at the same time, independent operation of the three-phase and 
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single-phase microgrids is preferred (CB1 open). In this case, the loads in phase-B will lose the power supply and may not 

operate normally unless they can be supplied by some other power source. On the other hand, the power generated by DGs 

in phase-A and phase-C can be adequate, but will be restricted by the load power demand. So that the renewable energy 

such as wind or solar will be wasted. Additionally, it should be noted that the installation of DG such as rooftop PV system 

is determined by customers, including the unbalance situation in which few DGs are interfaced to one phase while other 

phases may be connected to a number of DGs. It should be emphasized that such microgrids widely exist in practice, such 

as residential customers in remote rural areas, multiple neighboring communities, and business districts. By taking 

residential customers in remote rural areas as an example, they usually suffer from low power quality and low reliability of 

power supply, due to the long distances from main power stations, large grid impedances, and weak grid voltage. However, 

renewable energy resources such as wind energy and solar energy in these areas are often adequate, thus small DGs can be 

installed near to the point of consumption. However DGs cannot always be installed in some areas due to geographical 

factors. Consequently, sometimes it is necessary to develop an appropriate strategy to guarantee the power supply quality 

and availability of these areas where DGs are not installed or the capacity of DGs is small [27], [39].  

Therefore, a power sharing unit (PSU), as shown in Fig. 2(a), installed at Bus-1 (see Fig. 1) is proposed to overcome this 

problem. The structure and operation modes principle are presented in Fig. 2(a), where the PSU, which is composed of 

three voltage-source-based single-phase back-to-back converters which are delta connected, enables the power generated 

by DGs to be transmitted from one phase to another, ensuring the loads supplied uninterruptedly. Although a star structure 

would save three converters, the reason why a delta connected structure rather than the star structure is considered in this 

paper mainly could be summarized as follows. (i) Higher reliability: the fault tolerance is higher since in case of star 

connection, the power exchange between two phases would not be achieved when dc-link faults are happened. This 

scenario can be avoided by using the delta connected structure even if the dc-link of one of the back-to-back converters 

fails. Power exchange between two phases may be realized through the other two back-to-back converters. (ii) Smaller 

dc-link capacitance is needed to achieve similar performances for the same amount of transferred power from one phase to 

the other two phases. (iii) Hot-swap capability: It is easier and more flexible to maintain the delta connected PSU 

compared to the star connected PSU. Within the delta connected PSU, only one back-to-back converter should be stopped 

and maintained with proper control and protection strategy when faults happens to the dc-link or VSC while the whole 

PSU equipment will be stopped for the star structure.  

The PSU system depending on the power requirements in the microgrid can run in different modes: mode-1, load power 

demand in phase-B is supplied by DGs in phase-A; mode-2, load power demand in phase-B is supplied and shared 
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coordinately by DGs in phase-A and phase-C; mode-3, load power demand in phase-B and phase-C is supplied by DGs in 

phase-A. Specifically, in mode-1 shown in Fig. 2(a) with blue lines, loads in phase-B are shared only by DGs in phase-A 

through the SPBTB1 in the PSU since the power generated by DGs in phase-C can just meet load demand in its phase. In 

this case, SPBTB2 and SPBTB3 will be blocked with the corresponding signal BLK1 for the sake of safety and efficiency. 

When the power transmitted from phase-A cannot meet the power demand in phase-B and the power generated by DGs in 

phase-C is more than its phase load demand, the operation of the PSU will be changed from mode-1 to mode-2 shown in 

Fig. 2(a) with solid red lines. This mode can provide more reliable power supply and coordinated load power sharing 

realized by droop controllers for phase-B loads by DGs in phase-A and phase-C through SPBTB1 and SPBTB2 of the 

PSU. The SPBTB3 will be locked with the input signal BLK2. When power generated by DGs in phase-C is less than the 

power demand, the operation of the PSU will be changed to mode-3 shown in Fig. 2(a) with black dashed lines. In this 

mode, DGs in phase-A will not only share the load power of phase-B but also share the rest power requirement of phase-C. 

The SPBTB2 will be locked with the input signal BLK3 in this mode. The situation is similar to that of phase-B if there is 

no DG installed in phase-A or phase-C. Fig. 2(c) shows the flow-chart indicating the choices for showing the different 

operating modes.  

Coordinated load power sharing control and power flow exchange among phases can be realized with the application of 

the proposed PSU in the microgrid, ensuring the loads supplied reliably, flexibly and uninterruptedly and achieving higher 

efficiency of energy utilization in islanded mode under the condition that the whole generated power of three phases can 

meet the whole load demand. Application of the PSU in such microgrids is helpful to enhance power supply reliability, 

flexibility for residential customers in remote rural areas, multiple neighboring communities, and business districts in 

practice. Additionally, it also allows improving efficiency of energy utilization and save investments of transmission and 

distribution. In the following, we mainly focus on modeling and nonlinear controller design of SPBTB of PSU for the 

power sharing. 

III. MODELING AND CONTROL DESIGN OF SPBTB OF PSU 

A. Modeling of SPBTB 

The modeling of SPBTB system is based on the principal circuit analysis and voltage and current equations for storage 

elements known as state equation. The equivalent circuit of SPBTB is shown in Fig. 3. 
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Fig. 3 The equivalent circuit of SPBTB. 

Although d-q transformation and controller design in rotating coordinates are simple and powerful with respect to 

improving performance at the fundamental frequency, it is not directly applicable to single-phase power converters. 

Single-phase d-q transformation method [36] is adopted in this paper, and then the model of the SPBTB converter in the 

synchronous d-q reference frame is given as: 
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where Adm , Aqm , Bdm  and Bqm  are the modulation index, pR  is converter loss resistor, A  and B  are angular 

frequencies of two microgrids, respectively. Obviously, the above mathematical model of SPBTB is nonlinear. 

Taking uncertainties into account, we can write the system (1) as follows: 

 
1

( ) ( ) ( )
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i i
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x f x f x g x u
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where the calculation methods of ( )f x , ( )f x , ( )
i

g x and 
i

u are given in Appendix A. we choose the output variables as: 
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According to the derivation rule of Lee derivative and the constructed new control inputs: 
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The dynamic model of the system (1) in the new coordinate can be written as follows: 

 
1 1 1 1 2 1 1

2 2 1 2 2 2 1 2

( ) ( )

( , ) ( , )

T

T

d

y f y G y y

y f y y G u y y

 

 

  

  





 (6) 

 
3 3 3 3 3 3

( ) ( )
T

q
y f y G u y     (7) 

where the new system (6) and (7) are the decoupled subsystems which are strict feedback form, respectively.  

Using the similar approach, the dynamic model of system (2) in the new coordinate can also be obtained: 

 
4 4 4 4 1

5 5 5 5 1

( ) ( )

( ) ( )

f g d

f g q

y L h x L h x u

y L h x L h x u

 


 

 (8) 

The calculation methods of all terms in (4) to (8) are given in Appendix B. 

B. Design of nonlinear controller of SPBTB 

The control of the VSC-based SPBTB in the PSU is the key problem. Presently, the PI controllers and proportional 

multiresonant controllers are usually applied to the inverter-based microgrid as well as droop control method. But recently, 

adaptive backstepping method is applied to the power electronic system [37], [38], which allows the designer to 

incorporate most system nonlinearities and uncertainties in the design of the controller. The modified backstepping control 

method has been utilized to design the controller of BTB VSC system which is applied in HVDC, wind generation system, 

and hybrid power system such as transmission transformer (partial) bypass. On the other hand, sliding mode control is an 

effective robust control method due to the invariance for the disturbance and uncertain parameters. A novel modified 

adaptive backstepping-sliding mode control approach is therefore applied to design the nonlinear controller of PSU. This 

approach not only can overcome the system nonlinearities and uncertainties but also improve the performance of 

robustness. 

In the SPBTB of the PSU system, one converter controls the dc-link voltage and supports its reactive power and the 

other one controls the active and reactive powers. The overall structure of the control system of the SPBTB in the PSU 

system is shown in Fig. 4 where the control system mainly includes DC link voltage controller, modified adaptive 

backstepping controller and droop controller, which are described in detail in the following.  

The controller design steps are given in the following. Firstly, the controller design of VSC1 is conducted. 

Step 1) For the subsystem (6), the tracking error is defined by 

 
1 1 1ref

z y y   (9) 
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Then, the dynamics is given by 

 
1 1 1 1 1 1 2 1 1 1

( ) ( )
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To start backstepping, 
2y is chosen as the virtual control input variable, and we define another tracking error

2 2 2
z y   . 

The virtual stabilizing function is chosen as 
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The parameter estimation error is defined as ˆ    . Combining the definition of 2z , equation (10) can be written as 
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Step 2) The sliding surface is defined as
1 1 2
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Then, the derivative of 2z and the selected Lyapunov function is obtained as follows: 

 

2

2 2 1 2 2 2 1 2 1 1 1 2

1

2

1 1

( , ) ( , ) ( ( )

ˆ( ) )
ˆ

    

T

d

T

d
z f y y G u y y f y G y

dy

d
y

d


 


  



    

 

 (14) 

      

      

1

1 1 1

2 1

1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2

2 2

2 1 2 1 1 1 2 1 1

1

ˆ

ˆ [ ,

ˆ, ]
ˆ

T

T T T

d

T T

V z z ss

c z G z z z y s d c z d G z d y f y y G u

d d
y y f y G y y

dy d

 

     

 
    







   

            

   

 (15) 

The feedback control law and the parameter adaptation law can be designed as follows: 
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Combing (15) (16) and (17), the derivative of Lyapunov function becomes 

 
2 2

1 1 1
V c z s   . (18) 
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With the suitable choices of 
1

0c   and 0  , the requirement of 
1

0V   can be met.  

For the subsystem (7), the tracking error is defined as 

 
3 3 3ref

z y y   (19) 

then, the dynamics can be obtained: 

 
3 3 3 3 3 3 3 3 3

( ) ( )
T

ref q ref
z y y f y G u y y       .  (20) 

We consider a new Lyapunov function as 

 
2

2 3
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then the derivative of (21) is 
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The control law is therefore chosen as 

 
3 3 3 3 3

3

1
[ ( ) ]

q ref
u f y y c z

G
    .  (23) 

Substituting (23) into (22), the requirement 
2

2 3 3
0V c z    can be met with the suitable choice of

3
0c  . 

In the following, the design of the controller of VSC2 that controls the active and reactive power sharing between two ac 

systems will be discussed in detail. Specifically, the inner-loop controller will be designed with the aforementioned 

modified adaptive backstepping-sliding mode control method.  

The controller design of subsystem (8) is as follows. 

The tracking errors are defined by 

 
4 4 4

5 5 5

ref

ref

z y y

z y y

 


 

 (24) 

and taking the time derivative of (24) yields 

 
4 4 4 4 4 4 1 4

5 5 5 5 5 5 1 5

( ) ( )

( ) ( )

ref f g d ref

ref f g q ref

z y y L h x L h x u y
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 (25) 

The Lyapunov function is given by 



 11 
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the derivative of the Lyapunov function is 
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If we choose the feedback control laws as 

 

1 4 4 4 4
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and with suitable choices of 4 5, 0c c  , the derivative of the Lyapunov function can be given as 

 
2 2

4 4 5 5 0V c z c z    .  (29) 

Since V is negative-definite, the states 4z and 5z can converge to zero, and the tracking requirements can be met. 

C. Power management via droop control 

To achieve coordinated load active and reactive power sharing among phases through the SPBTB-based PSU system, 

droop control method given in (30) is implemented to design the VSC outer-loop controller. 

 
0 0

0 0

( )

( )

m P P

E E n Q Q

    

   
 (30) 

where m  is the frequency droop coefficient, n  is the voltage droop coefficient, 
0

  is the nominal frequency, 
0

E  is the 

rated phase voltage magnitude, 
0

P and
0

Q  are the active and reactive power rated capacity of the SPBTB converter. The 

droop coefficients m and n  are taken proportional to rated power of SPBTBs for power sharing among them. 
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Fig. 4 Block diagram of the global control system. 

 

Fig. 5 Block diagram of the DC-link voltage control system of VSC1. 

 

Fig. 6 The detailed block diagram of the active and reactive power control system of VSC2. 

The block diagrams of the control system of the SPBTB converter are shown in Fig. 4. Specifically, the DC link voltage 

controller of VSC1 is shown in Fig. 5. The controllers of VSC2 including droop controller are shown in Fig. 6. The 

controllers of VSC1 and VSC2 are mainly to maintain the dc link voltage and to control the active and reactive power, 

respectively. 
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Fig. 7 The test single-phase microgrid with SPBTB. 

TABLE I 

TEST SYSTEM AND CONTROLLER PARAMETERS 

System Quantities Values 

Utility grid 

Frequency 

Source voltage 

Feeder impedance 

 

50Hz 

380V rms (L-L) 

RS=1Ω, LS=0.5mH 

DGs and SPBTB VSCs 

DC voltage 

Filter inductances  

and capacitances 

Coupling impedance 

Rated capacity 

 

 

Back-to-back efficiency 

Microgrid line impedance 

 

Vdc1=Vdc2=Vdc3=400V 

Lf1=Lf2=Lf3=1.35mH 

Cf1=Cf2=Cf3=100μF 

R1=R2=R3=1Ω, L1=L2=L3=0.25mH 

PRDGa1=14kW, QRDGa1=6kVar 

PRDGa2=21kW, QRDGa2=9kVar 

PRDGc1=3kW, QRDGc1=1.3kVar 

87.43% 

Ra=Rb=Rc=0.5Ω, 

La=Lb=Lc=0.25mH 

Ra1=Ra2=Rb1=Rb2=Rc1=Rc2=0.5Ω 

La1=La2=Lb1=Lb2=Lc1=Lc2=0.25mH 

Loads 

PL1=5kW, QL1=1kVar 

PL2=2kW, QL2=1kVar 

PL3=3kW, QL3=1kVar 

PL4=9.5kW, QL4=3.12kVar 

PL5=5kW, QL5=2kVar 

PL6=4.5kW, QL6=1.12kVar 

PL7=4kW, QL7=0.5kVar 

Controllers of SPBTB VSCs 

m1=6·10-5, n1=1·10-3 

m2=9·10-5, n2=1.5·10-3 

m3=6·10-5, n3=1·10-3 

c1=2, c2=2, c3=3, d1=0.4, Γ=0.5 

IV. SIMULATION RESULTS 

To verify the effectiveness of the proposed strategies, simulation studies are carried out in MATLAB/SIMULINK 

(version 7.6). The single-phase microgrid test system with the proposed PSU is shown in Fig. 7 where two DGs are 

considered in phase-A of the microgrid, one DG in phase-C of the microgrid and no DGs in phase-B. Some key simulation 
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parameters are listed in Table I. During the simulation, the microgrid is operating in the islanded mode, and various 

operating conditions with different load demands are considered.  

The simulation considered in this paper includes four cases: 

1) power flow from phase-A to phase-B; 

2) power flow from phases A and C to phase-B; 

3) power flow from phase-A to phase-C; 

4) voltage and frequency change in phase-A of the microgrid. 

Simulation studies are discussed for these four cases as follows. 

A. Power flow from phase-A to phase-B 

In reality, one probable scenario would be that power generated by DGs in phase-C can only meet the power demand of 

its phase while power generated by DGs in phase-A may be adequate enough to meet the load power demand of phase-B 

as well as that of phase-A. Under this circumstance, therefore, the load in phase-B can be supplied (or shared) by DGs in 

phase-A through the proposed PSU in islanded mode, resulting in reliable, uninterruptible power supply and higher 

efficiency of renewable energy utilization. Due to the reasons mentioned above, power supply from phase-A to phase-B of 

the microgrid would be considered in this case. 

Fig. 8 shows the active and reactive load power of both phase-A and phase-B shared by DGa1 and DGa2 and the power 

transmitted from phase-A to phase-B. Initially, the active and reactive load power demand of phase-B (PB, QB) is 9.5kw 

and 3.12kvar, respectively, while that of phase-A (PL1, QL1) is 5kw and 1kvar, respectively. As shown in Fig 8(a) and Fig. 

8(b), a part of power generated by DGa1 and DGa2 has been transmitted from phase-A to phase-B, ensuring their normal 

operation in islanded mode. That is to say, DGa1 and DGa2 not only supply the power demand of phase-A but also supply 

the power demand of phase-B. At 0.6s, the load power of phase-B is doubled, arriving at 19kW and 6.24kvar, and at 1.3s, 

the load power of phase-A is changed to 9kW and 1.5kvar shown in Fig. 8 (a) and Fig. 8 (b). It can be seen that the DGs can 

pick up the balance load demand and share it proportionally as desired through the PSU. It can also be seen that if the load 

power changed greatly, the slightly active power oscillation shown in Fig. 8(a) may occur, but it can be eliminated quickly 

after several cycles. On the other hand, the load active and reactive power of phase-B (PB, QB) can remain almost constant 

while load power changed in phase-A. Fig. 9 shows the capacitor voltage of SPBTB1. The dc voltage reference is 400V, 

and it can be seen that the voltage can keep at the reference value and that it has good robustness when the loads changed. 

With the application of PSU, the loads in phase-B can be supplied by DGs in other phases in the islanded mode. 
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Fig. 8 Active and reactive power. (a) DG active power sharing (W). (b) DG reactive power sharing (var). 
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Fig. 9 Capacitor voltage of SPBTB1 (V). 

B. Power flow from phase-A and phase-C to phase-B  

In this case, the condition that the power demand of phase-B is supplied by DGs in both phase-A and phase-B of the 

microgrids through the PSU (SPBTB1 and SPBTB2) is considered, which means that in phase-A and phase-C, DGa1, 

DGa2 and DGc1 not only share the power demand of Load1, Load2 and Load3, but also share the load power of phase-B 

due to the adequate generation capacity of DGs. Under this consideration, the load power of phase-A (PL1, QL1) and 

phase-C (PL2+PL3, QL2+QL3) are always remaining 5kW, 1kvar and 5kW, 2kvar, respectively, while the load power of 

phase-B changes from 9.5kW and 3.12kvar to 19kW and 6.24kvar at 1 s. 

Fig. 10 and Fig. 11 show the active and reactive power sharing among DGs and power sharing between phase-A and 

phase-C of the microgrid, respectively. As shown in Fig. 11, at 1 s, the load power of phase-B (PB, QB) is doubled, arriving 

at 19kw and 6.24kvar, and it can be seen that phase-A and phase-C of the single-phase microgrid can pick up the balance 

load demand quickly and share it proportionally as desired through SPBTB1 and SPBTB2 of the PSU system. The active 

and reactive power sharing (PBfromA, PBfromC, QBfromA, and QBfromC) is shown in Fig. 11(a) and Fig. 11(b), respectively. On 

the other hand, as shown in Fig. 10(a-d), it can be seen that regardless of the power changing of phase-B, the DGs (DGa1, 
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DGa2, and DGc1) in phase-A and phase-C can track the power changing accurately and share it proportionally (PDGa1, 

PDGa2, PDGc1, QDGa1, QDGa2, and QDGc1) and that the load power (PL1, QL1, PL2+PL3, and QL2+QL3) of phase-A and phase-C 

remain almost undisturbed. We can see that using the PSU system, the loads in the phase where there is no DG installed can 

be shared by DGs in the other phases coordinately, resulting in normal operation of the load and enhanced reliability and 

flexibility of power supply in islanded mode. Additionally, higher efficiency of renewable energy utilization can be 

achieved with the application of the proposed PSU. 
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Fig. 10 Active and reactive power sharing among DGs. (a and c) active power sharing among DGa1, DGa2 and DGc1 (W). (b and d) reactive power 

sharing among DGa1, DGa2 and DGc1 (var). 

0

0.5

1

1.5

2

x 10
4 (a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1000

2000

3000

4000

5000

6000

7000

Time(sec)

(b)

PB PBfromA

PBfromC

QBfromA

QBfromC

QB

 

Fig. 11 Phase-B load power sharing between phase-A and phase-C of the microgrids. (a) Active power sharing (W). (b) Reactive power sharing (var). 

 

C. Power flow from phase-A to phase-C 

In this case, we assume that the power requirement of the load in phase-C is more than the power generated by the DGc1, 

while in phase-A, the power requirement is less than the power generated by DGa1 and DGa2, so the rest load power 
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requirement in phase C microgrid can be supplied by phase-A of the microgrid through the PSU (SPBTB3). That is to say, 

the load power of phase-C is shared not only by DGc1 (phase-C) but also by DGa1and DGa2 (phase-A). 
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Fig. 12 Active and reactive power sharing between DGa1 and DGa2.        Fig. 13 Phase-C load power sharing between SPBTB3 and DGc1. 

      (a) Active power sharing (W). (b) Reactive power sharing (var).                  (a) Active power sharing (W). (b) Reactive power sharing (var). 

 

Fig. 12 and Fig. 13 show the active and reactive power among DGa1, DGa2 and DGc1. It can be seen that DGc1 can 

only generate the active and reactive power of 2kw and 1kvar, which is not adequate enough to balance the load demand, 

so the rest power demand of the load is supplied by phase-A through the SPBTB3 of the PSU (PC, QC) (note that the power 

(PC, QC) is less than zero indicates that the power energy is transmitted from phase-A to phase-C). At 0.6 s, the load of 

phase-C is doubled (Load2 is connected into the system) and at 1.4 s, it is changed back to the nominal value (Load2 is 

disconnected from the system). It can be seen that DGa1 and DGa2 (or SPBTB3) can pick up the balance load demand as 

desired (PDGa1, PDGa2, QDGa1, and QDGa2). It can also be seen that the active and reactive power (PL1, QL1) of phase-A can 

remain almost constant regardless of the load power changing of phase-C. 

D. Voltage and frequency change in phase-A of the microgrid 

It is known that one outstanding advantage is that due to the isolation provided by back-to-back converter connection, 

the voltage and frequency fluctuation in one phase will not impact on another one. Voltage and frequency fluctuations 

occurred in phase-A of the single-phase microgrid at different periods of time is therefore considered in this case. The 

system response for voltage and frequency fluctuations is shown in Fig. 14 and Fig.15, respectively.  
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 Fig. 14 Active and reactive power response during voltage fluctuation.      Fig. 15 Active and reactive power response during frequency fluctuation. 

 (a) active power response (W) and (b) reactive power response (var).         (a) Active power response (W). (b) Reactive power response (var). 

 

As shown in Fig. 14, a 50% voltage sag at VBus1a (shown in Fig. 7) in phase-A of the microgrid occurs at 0.3 s and is 

removed after 0.4 s. It can be seen that the load power (PL2+PL3, QL2+QL3) of phase-C and the injected power (PC, QC) to 

phase-C have not been impacted by the voltage sag occurred in phase-A, remaining almost undisturbed. As shown in Fig. 

15, the frequency of phase-A dropped by 0.5% at 1.2 s, and at 1.6 s, it comes back to its normal value. It can be seen that 

while the injected power (PA, QA) from phase-A to the PSU (SPBTB3) fluctuate, the load power (PL2+PL3, QL2+QL3) of 

phase-C and the injected power (PC, QC) from SPBTB3 to phase-C remain almost undisturbed. 
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Fig. 16 Active and reactive power response when SPBTB1 fails. (a) Active power response (W) and (b) Reactive power response (var).  
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E. Fault within one back-to-back converter 

In order to verify the reliability of the PSU system, the scenario of an internal fault within one back-to-back converter, 

which produced its automatic disconnection, has been simulated. In that case the load demand in phase-B is only supplied 

by the DGs connected in phase-A. Fig. 16 shows the system response when a fault occurs in SPBTB1. As shown in Fig. 16, 

the active and reactive power (PBfromA, QBfromA) transferred through SPBTB1 drops quickly to zero due to this fault at 0.5s. 

To maintain the power supplied to loads in phase-B, SPBTB2 and SPBTB2 are then transferring the demanded power 

(PBfromC= PCfromA, QBfromC= QCfromA) to phase-B at the same time. It can be seen that the loads in phase-B can be pretty well 

supplied by DGs in phase-A through the PSU system, in spite of the internal fault and subsequent disconnection of one of 

the back-to-back converters (in this case SPBTB1). Therefore, power supply with high availability and reliability can be 

guaranteed by using the proposed PSU system.  

V. EXPERIMENTAL RESULTS 

To verify the effectiveness of the developed PSU-based microgrid and the proposed control strategy, experiments are 

also conducted on a scaled laboratory setup. The experimental test microgrid is composed of three identical single-phase 

H-bridge inverters, a PSU system composed of three single-phase back-to-back converters that are delta connected, loads 

and the dc link voltages of these inverters. The dc link voltages are provided by PV array, battery bank and small wind 

turbine generators (WTG) through dc-dc/ac-dc converters, respectively. The PV array is located on the top of the building, 

the wind turbine generators are installed in the vicinity of the building and the batteries are installed in the lab. Two of these 

inverters to interface battery bank and small WTG are installed in phase-A, the other one to interface PV array is installed 

in phase-C and there is no inverter installed in phase-B of the microgrid. Adjustable loads are connected to each phase. The 

laboratory setup implemented is shown in Fig. 16, and the experimental system parameters are given in Appendix C. 

In this Section, two experiments with different operating conditions are conducted. 

              

(a)                                                                              (b) 

Fig. 16 Experimental verification. (a) Schematic diagram of hardware. (b) Laboratory setup. 
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(a)                                                                                                     (b) 

Fig. 17 Transient response of SPBTB1 and SPBTB2 with a step change of 5 kW and 2 kvar of load-3 in phase-B: (a) active power (W) and (b) reactive 

power (var). 

 

Firstly, the load power demand of phase-B is shared by DGs in both phase-A and phase-C through SPBTB1 and 

SPBTB2 of the PSU system, proportionally. The ratio of the droop gains of SPBTB1 and SPBTB2 is 2:3. 

Fig. 17 shows the fundamental output active and reactive power (PBfromA, PBfromC, QBfromA, and QBfromC) response of 

SPBTB1 and SPBTB2, respectively, as well as the load power in phase-B of the microgrid. At t=t0 s, a step change of 2.5 

kW active power and 1 kVar reactive power of load-2 in phase-B was excited (initially 2.5 kW and 1 kVar). From the 

experimental results presented in Fig. 17, it can be seen that the load in phase-B can be supplied by DGs in phase-A and 

phase-C of the microgrids through back-to-back converters of the PSU system, proportionally. That is to say, in the 

islanded mode, if the power generated by DGs is less than the power demand in this phase while the power generated by 

DGs is more than the load power demand in other phases, the rest power demand can be supplied by DGs in other phases 

through the PSU system. By doing so, the loads in phase-B microgrid can be supplied uninterruptedly and flexibly when 

the microgrid runs in islanded mode. With the application of the PSU, the coordinated load active and reactive power 

sharing can be realized among phases, and the energy generated by DGs also can be fully utilized. 

In the following, the power supply from phase-A to phase-C through the PSU system is conducted with the 

consideration of one probable scenario that DGc1 cannot supply load-3 in phase-C normally due to the weather conditions 

in islanded mode while DGa1 and DGa2 may have enough power to supply load-3 in phase-C as well as load-1 in phase-A. 

Because that unlike small WTG, PV-based DG cannot generate power at night. The active and reactive power response of 

DGc1 is shown in Fig. 18, where the power flown from phase-A to phase-C is also presented. As shown in Fig. 18, in order 

to maintain the normal operation of load-3, DGa1 and DGa2 will share the rest power demand of load-3 through the PSU 

system quickly when DGc1 cannot meet the power demand of load-3. Although the active and reactive power generated by 

DGc1 has reduced, the operation of load-3 remains undisturbed due to the application of the PSU. 
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(a)                                                                                                     (b) 

Fig. 18 Transient response of DGs and load-3: (a) active power (W) and reactive power (var). 
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(a)                                                                                                 (b) 

Fig. 19 Transient response during a voltage sag: (a) active power (W) and (b) reactive power (var). 

 

To investigate the power response during the voltage sag, the experiment is also conducted. In this test, a part of load 

power demand of phase-C is shared by DGs in phase-A through the PSU system. During the test, at t=t1 s, a 20% voltage 

sag at the input terminal of the PSU in phase-A occurred and at t=t2 s, the voltage sag is removed. The active and reactive 

load power (PL3, QL3) of phase-C, the input power (PA, QA) of the PSU and the injected power (PC, QC) to phase-C during 

this voltage sag are presented in Fig. 19. As it can be seen, the load power of phase-C and the injected power to phase-C 

remain almost undisturbed during the voltage sag. This is the advantage of the application of back-to-back converters 

which provide the isolation between phases thereby ensuring the normal operation of the system.  
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Fig. 20 Power generation and consumption. 

 

In order to observe the efficiency of the application of PSU system, daily power generation of DGs and power 

consumption of loads have been obtained for 30 days continuously, which is shown in Fig. 20. From the results, it can be 

seen that if there is no PSU implemented in the microgrid, DGa1 and DGa2 can only supply the load in phase-A and the 

power generation (S1 shown in Fig. 20) is constrained by load-1 even the weather condition is good enough to supply the 

load in phase-B and phase-C. So in this condition, without power supply, load-2 in phase-B cannot operate normally in 

islanded mode. The abundant primary energy will be wasted. However, with the application of the proposed PSU, the 

abundant primary energy will be conductive to generate more electricity by DGa1 and DGa2 to supply load-2 in phase-B 

as well as part power of load-1 in phase-C through PSU in the islanded mode, achieving higher efficiency of the renewable 

energy utilization.  

VI. CONCLUSION 

In this paper, the operation and energy management control strategy is proposed for the PSU-based hybrid microgrid in 

the islanded mode. The PSU composed of three SPBTB converters that are delta connected is installed at the PCC bus. The 

aim of the PSU is mainly to realize the coordinated control of load power sharing among different phases. The structure, 

principle and operation of the proposed PSU installed in the hybrid microgrid are discussed in detail firstly. Then the 

design of the PSU nonlinear controllers is also presented by using the droop control method and the modified adaptive 

backstepping-sliding mode control approach, which can achieve the coordinated power sharing and enhance robustness. 

With the application of the proposed PSU, it is not only the coordinated load power sharing and power flow control among 

phases that can be realized but also the load that can be supplied uninterruptedly. Besides, the efficiency of energy 

utilization can be greatly increased and the voltage and frequency isolation can be provided by the PSU. Finally, the 

simulation and experimental results demonstrate the validity of the proposed application of PSU in the hybrid microgrid 
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and its energy management control scheme. The proposed delta-connected back-to-back conversion system provides high 

reliability, fault tolerance, reduced dc-link capacitance, and hot-swap features. Furthermore, the proposed approach can be 

installed in existing grids feed by DGs from third parties, and does not require the change of commercial DGs to 

customized ones. 

APPENDIX A 

The calculation methods of all the terms in Eq. (3) are given as follows: 
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where AL is the inductance,  is the uncertainty,  1g x ,  2g x ,  3g x ,  f x and  f x are continuously 

differentiable functions. 

APPENDIX B 

The calculation methods of all the terms in Eq. (4) to Eq. (8) are given as follows, and the symbol “L” represents the Lee 

derivative.
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APPENDIX C 

TABLE II 

EXPERIMENTAL TEST SYSTEM PARAMETERS 

System Quantities Values 

DGs 

DC voltage 

Rated power (DGa1-small WTG) 

Rated power (DGa2-Battery bank) 

Rated power (DGa1-PV array) 

 

Vdc1=Vdc2=Vdc3=400V 

PDGa1-rated=5kW 

PDGa2-rated=3kW 

PDGc1-rated=2kW 

Loads 

Load1 

Rated voltage 

Rated frequency 

Load power 

220V rms (L-N) 

50 Hz 

2-3 kW, 1-2 kVar 

Load2 

Rated voltage 

Rated frequency 

Load power 

220V rms (L-N) 

50 Hz 

2.5-5 kW, 1-2 kVar 

Load3 

Rated voltage 

Rated frequency 

Load power 

220V rms (L-N) 

50 Hz 

1 kW, 1 kVar 

PSU system 

Droop controllers 

 

 

Rated power 

DC-link voltage 

Interlinked inductance 

 

m1=6·10-5, n1=1·10-3, 

m2=9·10-5,n2=1.5·10-3,  

m3=6·10-5, n3=1·10-3 

4 kVA 

Vdc=400 V 

LA, LB=4 mH,  

RA, RB=330 mΩ 
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