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Fig. 1. A renewable inverter-based generator connected to a Microgrid 
System 
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Abstract—This document analyses the large-signal stability 
for an inverter-based generator such as photovoltaic and wind 
power sources. The objective of this study is to determine the 
stability region taking into account the electrical and control 
signal of the generator. The generator uses the concept of the 
electrostatic machine for the model of the generator. Finally, the 
applied procedure to find the Lyapunov’s function is the Popov 
method, which not only permits to generate a valid function but 
also to determine the stability region of the system. 

Keywords— Microgrid control; Microgrid model; stability of 
Microgrids 

I.  INTRODUCTION 
Generally, the study of the control and the stability of the 

inverter-based generators is made by the use of a differential 
equation set that describes the output filter of the inverter and 
the control loop of the sharing power. This loop contains the 
equations of the droop curves, the PID controllers and the low-
pass filters [4-6]. The model of the generator is analyzed in 
terms of small-signal in order to evaluate the behavior of its 
poles and zeros under different variations of the generator’s 
parameters. 

The majority of the control strategies that have been used 
so far are working by imitating the asynchronous machine’s 
behavior and using the control loops to share the active and 
reactive power [7-10]. In recent studies, authors have tried to 
find equivalent models between the inverter-based generators 
and the synchronous machines in order to study their general 
stability and to improve their operation control [11-13]. 
Different types of controls, based on the small signal analysis 
have been proposed on the past to improve the stability of the 
systems. On [14-16] some studies of the root locus analysis 
were presented while other authors used non lineal techniques 
such as the method of Lyapunov [17-18]. 

The model that is presented in [13] introduces the concept 
of the electrostatic machine. This concept can be used as a tool 
to analyze the transferred energy from the DC link to the AC 
link even in case of large variations of supplied energy, i.e., 
large variations in DC voltage level. 

By the use of this methodology, it is able to access to the 
motion equations of the generators and to study the stability of 
the system from the energetic point of view.  

This paper is handling with the studying of large-signal 
stability for an inverter-base generator by means of the 
Lyapunov function. The objective of the study is to determine 
the stability region. The concept of the electrostatic machine 
and the stability analysis by means of the Lyapunov’s method 
have been used for the analysis. The Popov method, which 
permits to find a valid Lyapunov’s function and to determine 
the stability’s region of the system, has been used in this study. 

II. MODEL OF A GENERATOR INTO A MICROGRID

A Microgrid system with DC-AC inverted-based generators 
and power sharing loads has been considered. Figure 1 depicts 
a renewable generator that is being fed by a DC link. The 
prime energy of this generator, which can be solar or wind, is 
transferred as AC power through an inverter and an intelligent 
control system. The control system uses a PLL block and inner 
control loops of current and voltage to ensure the respective 
reference signals. The output current and voltage reference 
signals are configured by an outer control loop of sharing 
power which uses the basic idea of the synchronous generator 
concept to control the sharing power by using droop curves (“P 
vs. f” and “Q vs. V”). 
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Fig. 2. Equivalent circuit of the Microgrid is presented. 
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Fig. 3. Equivalent electric circuit of an inverter-based generator. 

A. Electrostatic machine concept applied to generator model 
The generator can be modeled by using the electrostatic 

machine concept as it was proposed in [13]. The electrical 
equivalent circuit of the generator is presented in Fig. 2. 

The swing equation of the magnetic synchronous machine 
(1) can be also applied for the electrostatic machine concept. 
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The above equation is normalized in term of per unit inertia 
constant H, defined as the “kinetic” energy in watt-seconds at 
rated speed divided by the rate power value (VAbase). The H 
value is calculated for the electrostatic machine by making 
equal the stored energy and the kinetic energy 
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The damping power is proportional to the frequency 
deviation Di and is closely associated with the “P vs. Q” droop 
curve. The inertia constant of the machine (Mi) is defined as 
Hi/πf0. By the use of the swing equation, it is possible to 
analyze the actual energy at the virtual rotor, i.e., the available 
DC energy, the control that is required to inject the energy to 

the AC link and finally the system’s behavior under different 
disturbances. The steady state analysis of the electrostatic 
machine permits to model its equivalent circuit, calculating the 
values of voltage, current and impedance and determining the 
power flows from the generator to the Microgrid. Figure 3 
depicts the equivalent circuit of the generator. 

The voltage and current of the machine’s stator can be 
expressed as phasors vt and it respectively in the standard DQ 
Cartesian plane, where vt=vd+jvq and it=id+jiq. 

The input current (ii) equation can be calculated in function 
of the rotor’s voltages and its capacitive impedances: 
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1

fqXc
1
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The equivalent reactance’s and voltage’s equations are 
described on detail on (4), where their values depend on the 
inverter’s parameters. 
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Where d is the average duty cycle of the inverter. Finally, 
the equivalent resistance and reactance can be expressed as 
follows, combining the above equations: 
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B. Model of the generators 
Every generator that includes a power electronic interface 

like the one presented in Fig. 1, has an equation that describes 
its movement and can be used to analyze its stability range. In 
order to formulate this equation, the equivalent electric circuit 
is used (Fig. 4), determining the power flows during the steady 
state. The admittances of each branch in this circuit can be 
expressed as follows: 
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The matrix of the minimum impedances of the circuit can 
be calculated by simplifying the equivalent circuit. This matrix 
is presented in (6). 
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The expression to calculate the reactive power of the 
generator can be expressed as: 
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Finally, the generator’s model can be described as follows, 
by using the equation (1). 
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C. Model of the generators 
The parameters that describe the inertial and damping 

values of the generator are expressed as M and D respectively 
in the following equations. 

The D constant indicates a frequency’s deviation in 
function of the delivery power by each generator. In this type 
of generators that are based on DC/AC interfaces, the 
frequency’s deviation occurs because of the droop curves that 
are used on the droop curves in the shared power’s control. The 
block diagram of Fig. 5 presents the relation of the reference’s 
frequency in function of the power that is shared to the 
Microgrid. The relations that express the power and the 
frequency deviation (Δω) are presented in (9). 
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Combining the movement´s equation that is described in 
(6) and the equation of the power control, it is able to calculate 
the Mi and Di parameters as follows: 

pfp

fp

K
1D,

K
1HK2

M =
+

=
ω
ω

(10)

The parameters F and G make reference to the existed 
relation between the impedance of the line that connects the 
grid, the output filters of the generator and the load impedance. 

The power Pm can be determined with the maximum value 
of the available power on the DC bus and the maximum values 
of the signals dd and dq of the control. 

D. Equilibrium points of the System 
The equilibrium points can be found by expressing the 

derivatives of the system as equal to zero. In this way, the 
power of the input of the DC link of the generator is equal to 
the AC power that is supplied to the grid by the generator 
(P1=Pe1). The obtained equation expresses relation of the 
angles of each generator. The solution of this set of equations 
in an interval of π to -π is: 

1842



uBAYY 1−= C

)(σf

3yY0=
+

−

)(sW

)(σf−
u

Fig. 6. Block diagram representation of a multi-power systems model. 

-250 -200 -150 -100 -50 0 50 100 150 200
-1.5

-1

-0.5

0

0.5

1
III

III IV

૛࢒ ൌ െ૚ૡ૙º െ ૛࢙ࢾ
૚࢒ ൌ ૚ૡ૙º െ ૛࢙ࢾ

15º=࢙ࢾ

º࢞

ࢌ ࢞ ൌ ࡲ ܖܑܛ ࢞ െ ࢙ࢾ െ ܖܑܛ ࢙ࢾ

Fig. 7. The nonlinearity of function f(x) 

( )( )
( ) ( )

( ) ( )
12

12
2
12

2
12

e

12
12

2
12

2
12

e

12
12

G
F1

GF
Pu

2
u
1

G
F1

GF
Ps

2
s
1

G
F1

21
2
12

2
12e

tansin)ii(

tansin)i(
tansinGFP

−
+

−
+

−

−−=−

−=−

+−+=

πδδ

δδ

δδ
 (11) 

It is easily verified by linearization of (8) that ( )ss
21 δδ −  is the 

stable point and ( )uu
21 δδ −  is the unstable equilibrium point. 

III. LYAPUNOV STABILITY OF A GENERATOR INTO THE
MICROGRID 

A. Transfer of the stable equilibrium point to the origin 
For Lyapunov stability issues, the mathematical model of 

the Microgrid is transferred from the stable equilibrium point to 
the origin point, by using the transformation sy δδ −= . The
state variables representation can be formulated as follows: 
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The model can be expressed in matrix formulation as: 
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Where 
i

i
M
D

i =λ

B. Lyapunov Stability 
Considering that the network between the generators has an 

inductive behavior, (i.e. 2πθ =
BZ ) then the value of the 

parameter G12 is equal to zero. This consideration has as a 
result that the system in (13) can be expressed as it is presented 
in Fig. 6. The transfer function of the linear part is given by: 

( ) ( ) 1
1 BAsICsW −−= (14)

So far, the generator has been modeled and represented as a 
block diagram (presented in Fig. 6) which consists of a linear 
transfer function and a nonlinear function in the feedback path. 

If the nonlinear function lies in the first and the third 
quadrant of Fig. 7, then it is possible to construct the 
Lyapunov´s function by applying a systematic procedure. 

One of these systematic procedures that are commonly used 
is the Popov´s method. This method allows to generate the 
Lyapunov´s function and to construct a region of attraction for 
the equilibrium point. 

In order to detect the boundaries of the stability region of 
the generator, a conservative system without energy loss is 
considered as the most critical possible scenario. In this case, 
the stored energy in the DC bus is transferred to the AC bus. 
As it is presented on (15), the DC energy is considered as 
kinetic, while the AC energy is considered as potential. The 
equations of these energies, potential and kinetic, are combined 
to construct the Lyapunov´s function by applying the Popov´s 
method. 
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Fig. 8. Equivalent circuit of the steady state of the generator 

θ ' = ω                                    
ω ' = - (E/M) (sin(θ + delta) - sin(delta))

M = 5.3655
E = 8.3655

delta = 1.5162
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Fig. 9. Portrait plane of the generator. 
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This function fulfills the following properties: 

• 0)0(V =  

• 0)y,y(V 21 > for all y1, y2 

• 0)y,y(V
dt
d

21 ≤
 
along all trajectories of the system. 

Then the point (y1, y2) = 0 is locally stable. 

According to the initial condition of the function f(x), it 
should be lying on the first and third quadrant. This function is 
used to detect the attraction area, evaluating the angles 11 and 
12 at the Lyapunov´s function and finding which one takes the 
minimum values of the function between those angles. 

From the above calculations, it can be observed that every 
value of angle that is evaluated by the Lyapunov´s function and 
results to be higher than the limit (11 or 12), will be outside of 
the attraction area and will create an unstable condition for the 
system. 

In the next step, the analysis of the generator that is 
connected to a Microgrid will be presented, finding the stability 
region of the system. 

IV. SIMULATIONS 
Simulations based on Hardware in the loop (HIL), by using 

a dSPACE ds1006, MATLAB/Simulink and dSPACE Control 
Desk, are performed to evaluate the proposed method for study 
the large-signal stability. In the case of study, an inverter-based 
generator is connected to a Microgrid working in island-mode. 

Electrical setup and control systems parameter are listed in 
table I. 

TABLE I.  ELECTRICAL SETUP AND CONTROL SYSTEM PARAMETERS 

Type Parameters Value 

El
ec

tr
ic

al
 S

et
up

 DC voltage (Vdc) 650 V 
AC voltage (VµG) 311 V 
AC frequency (F) 50 Hz 

DC capacitance (Cdc) 5000 µF 
AC filter capacitance(Lf) 25 µF 
AC filter impedance (Lf) 1.8 mH 

AC output impedance (Lf) 1.8 mH 

In
ne

r 
Lo

op
s Active power droop control(KP) 0. 00001 W/rad 

Reactive power droop control(KQ) 0.0001 VAr/rad 
Virtual resistance(Rv) 0.1 Ω 
Virtual inductance(Lv) 4 mH 

 

Analyzing the data that were obtained from the HIL 
systems, the equivalent circuit of the stable state was 

calculated. The equivalent circuit of the generator for the stable 
state is depicted in Fig. 8. The equilibrium points of the 
generator are: 

• Stable equilibrium point: 5162.1s =δ  

• Unstable equilibrium point: 6254.1u =δ  

To analyze the model by means of Lyapunov’s 
methodology is necessary to locate the model on its stable 
equilibrium point. The model on its steady state can be 
expressed as follows by using the electrostatic concept. 
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Fig. 10  Analysis of Lyapunov to the data of frequency and power angle. 

 The D parameter depends on the control unit. The case 
where the D is equal to zero is very interesting, because it 
permits to generate the maximum region of stability on the 
system in function of the available energy. 

Using the Popov´s method, it is able to determine the 
stability of the equilibrium point as well as the region in which 
it is possible to recuperate the system (return to a stable 
condition from a disturbance condition). 

Figure 10 presents the Lyapunov´s function of the 
generation system, in which it can be observed the existence of 
a region with a conical shape. In this region, whichever 
disturbance that doesn’t cause an overpass of the frequency’s 
and angles boundaries can be recuperated, returning the system 
to the equilibrium point. It can be observed that the conical 
region has as superior limit the value ( )( )4e02,9,V −=ωφ   
which was determined by the restriction of f(y) function and 
defines the limits of l1 and l2. 

The blue curve presents the data of the frequency and angle 
variables during the initial moment of the simulation and till 
the reach of the steady state. The system starts outside of the 
attraction region but as it enters, it tends towards the 
equilibrium point. Whichever disturbance that forces the 
system to take values of ω and θ outside of this space has as a 
result the driving of the system to an unstable condition 
without the possibility of recuperation. 

V. CONCLUSIONS 
This article contributes to the study and control of the 

generators with DC/ AC power interfaces, using a model that is 
based on the electrostatics’ machine concept. Also, on this 
work, the stability of the system is analyzed by the Lyapunov’s 
theory. To find the Lyapunov’s function, the Popov’s method 
has been used, permitting also to calculate the attraction region 
of the system and its equilibrium point. 
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