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Performance Improvement of a Pre-filtered
Synchronous-Reference-Frame PLL By Using a

PID-Type Loop Filter
Saeed Golestan, Member, IEEE, Mohammad Monfared, Member, IEEE, Francisco D. Freijedo, and Josep M.

Guerrero, Senior Member, IEEE

Abstract—Control Parameters design of a three-phase syn-
chronous reference frame phase locked loop (SRF-PLL) with
a pre-filtering stage (acting as the sequence separator) is not a
trivial task. The conventional way to deal with this problem is
to neglect the interaction between the SRF-PLL and pre-filtering
stage, and treat them as two separate systems. This approach,
although very simple, is not optimum as the pre-filtering stage
and the SRF-PLL may have comparable dynamics. The aim of
this paper is to develop a systematic and efficient approach to
design the control parameters of a SRF-PLL with pre-filtering
stage. To this end, the paper first optimizes the performance
of the filtering stage in detection of the sequence components.
The paper then proceeds to reduce the interaction between the
filtering stage and SRF-PLL, which is achieved by employing a
derivative-filtered proportional-integral-derivative controller as
the loop filter (instead of the commonly adopted proportional-
integral controller) and arranging a pole-zero cancellation. The
suggested method is simple and efficient, and is applicable to the
joint operation of different sequence separation techniques and
the SRF-PLL. The effectiveness of the suggested design approach
is confirmed through extensive experimental results.

Index Terms—Loop filter, proportional-integral-derivative
(PID) controller, synchronization, synchronous-reference-frame
phase-locked loop (SRF-PLL).

I. INTRODUCTION

THE three-phase synchronous-reference-frame phase-
locked loop (SRF-PLL), also known as the dqPLL, is

probably the most widely used synchronization technique in
the three-phase power systems [1], [2]. The block diagram
description of this PLL is shown in Fig. 1. In the SRF-
PLL, the three-phase input voltages are transformed to the
synchronous (dq) reference frame by applying the Clarke and
subsequently the Park transformations. The dq reference frame
angular position is then regulated using a feedback control
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Fig. 1. Block diagram description of the conventional SRF-PLL.

loop, which forces vq to zero in steady-state. Typically, a
proportional-integral (PI) controller is used as the loop filter
(LF) in this PLL, as it guarantees a zero steady-state phase-
error in response to both phase jumps and frequency variations
[2]. The SRF-PLL is able to achieve a very high bandwidth
and, as a consequence, a very fast dynamic response when
the grid voltage is clean and balanced. However, it fails to
do so under distorted and/or unbalanced grid conditions: its
bandwidth need to be reduced to improve the disturbance
rejection capability.

To improve the performance of the SRF-PLL under unbal-
anced and/or distorted grid conditions, several approaches have
been proposed in literature. These approaches are mainly based
on adding specific filtering techniques either within the phase
control loop of the PLL or prior to its input, here called the
in-loop filtering and pre-filtering techniques, respectively.

The notch filters [3]-[4], the moving average filters [3],
[5], and the repetitive regulators [6] are the common in-
loop filtering techniques, which enable the PLL to achieve
a correct estimation of the grid voltage phase and frequency
under adverse grid conditions. However, they may not be
attractive solutions in applications where accurate estimation
of the fundamental frequency positive- and negative-sequence
components (hereafter called the FFPS and FFNS components,
respectively) are also essential.

The main advantage of the pre-filtering techniques over
the in-loop filtering techniques is that they add the sequence
detection capability to the PLL. Most often, the pre-filtering
techniques can be understood as a set of two or more adaptive
filters, working in a collaborative way, each of which is
responsible for extracting a selected sequential component
from the three-phase input signals. According to the reference
frame that they are implemented on, they can be generally
classified into three major categories, i.e., the synchronous
(dq), the natural (abc), and the stationary (αβ) reference
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frames techniques. Some of the well-known techniques in each
category are briefly discussed in the next section.

Control parameters design of the SRF-PLL with a pre-
filtering stage, particularly when the filtering stage is imple-
mented in either stationary or natural reference frame, is not
a trivial task. The conventional way to deal with this problem
is to neglect the interaction between the SRF-PLL and pre-
filtering stage, and treat them as two separate systems [7],
[8]. This approach, although very simple, is not optimum as
the filtering stage and the SRF-PLL may have comparable dy-
namics. Another approach is to use the numerical optimization
algorithms to design the control parameters [9]. This approach
is time consuming; it requires a large number of simulation
iterations. In [10], a design method is proposed which takes
into consideration the dynamics of the SRF-PLL and pre-
filtering stage simultaneously. This approach results in a better
performance than the conventional design approaches.

In this paper, a systematic and efficient approach to design
the control parameters of the SRF-PLL with a pre-filtering
stage is proposed. Similar to [10], the suggested design ap-
proach takes into consideration the dynamics of the SRF-PLL
and pre-filtering stage simultaneously. However, it reduces the
dynamic interaction between these parts, which improves the
whole system performance. This improvement is achieved by
employing a derivative-filtered proportional-integral-derivative
(PID) controller as the LF (instead of the commonly adopted
PI controller) and arranging a pole-zero cancellation. The
suggested method is simple and efficient, and is applicable to
the joint operation of different sequence separation techniques
and the SRF-PLL.

The suggested design approach is performed first on the
multiple complex coefficient filters (MCCF) PLL [7], i.e., the
SRF-PLL with the MCCF as the pre-filtering stage, and is then
extended to other types of filtering techniques such as those
presented in [8], [11]-[13].

II. A BRIEF OVERVIEW OF DIFFERENT SEQUENCE
SEPARATION TECHNIQUES

One of the well-known approaches to extract the FFPS and
FFNS components of the utility voltage in the synchronous
reference frame is that proposed by Rodriguez et al. [14],
[15]. This approach, referred to as the decouple double syn-
chronous reference frame (DDSRF) technique, employs two
synchronous reference frames rotating at the same angular
speed, but in opposite directions, and a decoupling cross-
feedback network to extract the FFPS and FFNS components.
Another sequence detection technique in the synchronous
reference frame is that proposed by Xiao et al. [16]. This
approach, known as as the multiple reference frame (MRF)
technique, utilizes the same idea of the DDSRF technique,
except that it benefits from a more straightforward implemen-
tation.

The detection of the FFPS and FFNS components in the
natural reference frame is mainly based on the symmetrical
components theory in the time domain [17], i.e., v+a

v+b
v+c

 =
1

3

 1 a a2

a2 1 a
a a2 1

 va
vb
vc

 (1)
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3
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 va
vb
vc

 (2)

where a = ej120
◦
= −1/2+(

√
3/2)ej90

◦
, known as the 120◦

phase shift operator, can be implemented by employing an
appropriate filter to generate the phase shift of 90◦. Indeed,
the main difference among the different sequence detection
techniques in the natural reference frame typically lies in how
the phase-shift of 90◦ is realized. Lee et al. [18] suggest to
employ the all-pass filters (APFs) to generate the 90◦ phase-
shifted version of each phase. The main drawback of this
approach is that the APFs cannot block the distortions and
harmonics. To overcome this drawback, Karimi-Ghartemani
et al. [11] suggest to replace the APFs with the enhance
PLLs (EPLLs). Each EPLL receives one phase of three-phase
voltages, and adaptively extracts the fundamental and the 90◦

phase shifted version of it. Another approach is that proposed
by Yazdani et al. [12], in which three adaptive notch filters
(ANFs) are employed to extract the fundamental and the 90◦

phase-shifted version of the three phases.
The sequence detection techniques in the stationary refer-

ence frame are typically preferred to the synchronous and
natural reference frame techniques, since they do not require
the several reference frame transformations, and they operate
on a two-phase system instead of a three-phase one. The
dual second order generalized integrator (DSOGI) proposed
by Rodriguez et al. [8] is among the existing well-known
sequence detectors in the stationary reference frame. This
technique works based on the theory of the symmetrical com-
ponents in the stationary reference frame. Another successful
technique is that proposed by Guo et al. [7], in which the
MCCF are employed to extract the sequence components. The
unique characteristic of the complex coefficient filters (CCFs)
is that they can make the distinction between the negative and
positive sequences for the same frequency. Another approach
is a frequency adaptive discrete filter (FADF) which has
been proposed by Jorge et. al [13]. The advantage of this
technique over the DSOGI and MCCF techniques is its lower
computational burden.

Several other sequence separation techniques can be found
in [19]-[23].

III. MCCF-PLL

This section deals with the study of MCCF-PLL (i.e, the
SRF-PLL with MCCF as its pre-filtering stage). The small-
signal modelling of this PLL is also presented in this section.

A. Overview of MCCF-PLL

The complex filters are the key building blocks of the
MCCF-PLL. So, the study is started with a brief review of
these filters.

Although relatively new in electric power system applica-
tions, the complex filters have a long history of use in the
field of communications [24]. These filters, contrary to the
real filters, are not constraint to have the complex-conjugate
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(a)

(b)

Fig. 2. Bode plots of first-order CBFs of (3) and (4). Parameters: ωp = 2π50
rad/s and ω = 2π50 rad/s

poles/zeros. Therefore, they may have an asymmetric fre-
quency response around zero, which enables them to make dis-
tinction between negative and positive polarities (sequences)
for the same frequency. For example, Fig. 2 shows the Bode
plots of two first-order complex bandpass filters (CBFs) of the
form

CBF+(s) =
ωp

s− jω + ωp
(3)

CBF−(s) =
ωp

s+ jω + ωp
. (4)

In these plots, the response to negative frequencies can be
interpreted as the response to the negative sequence input
signal. As expected, the CBFs have asymmetric frequency
responses with respect to 0 Hz: CBF+ (CBF−) provides
a unity gain with zero phase shift at the positive (negative)
sequence fundamental frequency, while it provides a certain
level of filtering at the same frequency of negative (positive)
sequence.

Fig. 3(a) shows a simple block diagram description of
the MCCF-PLL [7]. Here, for the sake of simplicity in
the analysis, the MCCF is considered to be composed of
only two CBFs tuned at the positive- and negative-sequence
fundamental frequencies. The implementation block diagram
of the CBFs are shown in Fig. 3(b). Notice that the complex
operator “j” is realized using the cross-coupling between the
αβ axes.

The two-modules MCCF can provide accurate detection of
the FFPS and FFNS components under unbalanced yet not
distorted (or slightly distorted) grid conditions. However, it
fails to do so under highly distorted grid conditions. In such a
case, the performance of the MCCF can be simply improved
by adding extra CBFs tuned at the harmonic frequencies. To
extract the grid voltage phase and frequency, the extracted
FFPS voltage vector by the MCCF, i.e., v̂+αβ,1, is fed to the
SRF-PLL. The estimated frequency ω̂ is then fed back to the

(a)

(b)

Fig. 3. (a) Block diagram description of MCCF-PLL. (b) implementation
block diagram of the CBFs.

MCCF to make it frequency adaptive.

B. Small-Signal Modeling of MCCF-PLL

From Fig. 3(a), the extracted FFPS and FFNS vectors in the
αβ reference frame can be expressed as

v̂+αβ,1(s) =

CBF+(s)︷ ︸︸ ︷
ωp

s− jω̂ + ωp

(
vαβ(s)− v̂−αβ,1(s)

)
(5)

v̂−αβ,1(s) =
ωp

s+ jω̂ + ωp︸ ︷︷ ︸
CBF−(s)

(
vαβ(s)− v̂+αβ,1(s)

)
(6)

where vαβ(s) = vα(s)+jvβ(s), v̂+αβ,1(s) = v̂+α,1(s)+jv̂
+
β,1(s),

and v̂−αβ,1(s) = v̂−α,1(s) + jv̂−β,1(s). Notice that, to obtain (5)
and (6), the estimated frequency ω̂ was assumed to be constant.
Substituting (5) into (6), and (6) into (5), and performing
some mathematical manipulations, yield the complex transfer
functions describing the dynamics of the MCCF as

v̂+αβ,1(s)

vαβ(s)
=

CBF+(s)︷ ︸︸ ︷
ωp

s− jω̂ + ωp

CNF−(s)︷ ︸︸ ︷
(s+ jω̂)(s− jω̂ + ωp)

s2 + 2ωps+ ω̂2
(7)

v̂−αβ,1(s)

vαβ(s)
=

ωp
s+ jω̂ + ωp︸ ︷︷ ︸
CBF−(s)

(s− jω̂)(s+ jω̂ + ωp)

s2 + 2ωps+ ω̂2︸ ︷︷ ︸
CNF+(s)

(8)

The second term on the right hand side of (7) has a zero at
s = −jω̂, and provides a unity gain with a zero phase shift
at s = +jω̂. So, it can be considered as a complex notch
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(a)

(b)

Fig. 4. Bode plots for CNFs for ω̂ = 2π50 rad/s and three different values
of ωp: ωp = 0.4ω̂ (dotted lines), ωp = 0.7ω̂ (dashed lines), and ωp = ω̂
(solid lines).

filter (CNF) with notch frequency at −ω̂, which completely
blocks the FFNS input vector and does not affect the FFPS
input vector. Similarly, the second term on the right hand side
of (8) can be considered as a CNF with notch frequency at
+ω̂. Fig. 4 shows the frequency response of these CNFs for
ω̂ = 2π50 rad/s and three different values of ωp: ωp = 0.4ω̂
(dotted lines), ωp = 0.7ω̂ (dashed lines), and ωp = ω̂ (solid
lines). Notice that the width of the notches increase as ωp
increases.

To determine the MCCF-PLL small-signal model, the
MCCF dynamics should be transferred to the dq coordinates.
It is well-known that the coordinate transformation from the
stationary reference frame to the synchronous reference frame
corresponds to a frequency shift equal to the rotating speed
of the synchronous reference frame (here, ω̂) in the frequency
domain [25], [26]. Therefore, the complex transfer function

(7) can be transformed to the synchronous reference frame as

v̂+dq,1(s)

vdq(s)
=
v̂+αβ,1(s+ jω̂)

vαβ(s+ jω̂)

=
ωp

s+ ωp

(s+ j2ω̂)(s+ ωp)

s2 + 2(ωp + jω̂)s+ j2ωpω̂
(9)

where v̂+dq,1(s) = v̂+d,1(s) + jv̂+q,1(s), and vdq(s) = vd(s) +
jvq(s).

The second term on the right hand side of (9) is a CNF with
notch frequency at −2ω̂. This term complicates the design
procedure. So, the effects of this term is neglected, and the
transfer function (9) is approximated by

v̂+dq,1(s)

vdq(s)
≈ ωp
s+ ωp

. (10)

The accuracy of this approximation is evaluated in Fig. 5. In
this figure, the solid lines show the frequency response of the
complex transfer function (9), and the dashed lines show the
frequency response of the approximate transfer function (10).
As shown, the accuracy of the approximation depends on the
value of ωp, i.e., the lower the value of ωp, the more accurate
the approximation.

Here, the q-axis component is the voltage of interest be-
cause, during locked conditions, it provides the phase-error
information in the form [27]

vq(t) ≈ V +
1 (θ+1 − θ̂

+
1 )︸ ︷︷ ︸

θe

+D(t) ⇒ vq(s) ≈ V +
1 θe(s) +D(s)

(11)
where V +

1 (θ+1 ) is the amplitude (angle) of the FFPS compo-
nent of the grid voltage, D represents the disturbance terms,
and ∧ denotes the estimated quantity.

By substituting (11) into (10), v̂+q,1, which is the LF input
signal, can be obtained as

v̂+q,1(s) ≈
ωp

s+ ωp
vq(s) ≈

ωp
s+ ωp

(
V +
1 θe(s) +D(s)

)
. (12)

Using (12) and Fig. 3(a), the small-signal model of the MCCF-
PLL can be obtained as shown in Fig. 6. Accuracy of this
model will be examined later.

Fig. 5. Frequency responses of the transfer function (9) (solid line) and the approximate transfer function (10) (dashed line) for ω̂ = 2π50 rad/s and different
values of ωp.
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Fig. 6. Small-signal model of the MCCF-PLL.

IV. PROPOSED DESIGN METHOD

A. Adjustment of MCCF Parameter

The first step of the suggested design procedure is to
optimize the performance of the MCCF in detecting the
sequence components. In this stage, the grid frequency is set to
its nominal value (i.e., ω = ωff ), and the effects of variation
of ωp on the dynamic performance of the MCCF is studied
by simulation results.

Fig. 7 shows the dynamic performance of the MCCF in
extraction of the sequence components when the grid voltage
undergoes an unbalanced voltage sag. It can be observed that
a high value of ωp makes the dynamic response oscillatory,
while a low value makes it slow and damped. Based on these
plots, it sounds reasonable to set ωp equal to 0.707ωff , as this
value makes the dynamic response fast and well-damped.

This selection can also be made using the complex transfer
functions describing the dynamics of MCCF, i.e., (7) and (8).
These transfer functions can be simplified to

v̂+αβ,1(s)

vαβ(s)
=

ωp(s+ jω̂)

s2 + 2ωp︸︷︷︸
2ζωn

s+ ω̂2︸︷︷︸
ω2

n

(13)

v̂−αβ,1(s)

vαβ(s)
=

ωp(s− jω̂)
s2 + 2ωp︸︷︷︸

2ζωn

s+ ω̂2︸︷︷︸
ω2

n

. (14)

Notice that (13) and (14) are similar to a standard second
order transfer function with the natural frequency of ω̂ and the
damping ratio of ωp/ω̂. It is well known that the best tradeoff
between the settling time and the overshoot is obtained using
the damping ratio of 0.707. Therefore, as already shown using
simulation results, ωp = 0.707ω̂ is the optimum choice.

B. LF Selection

Once the optimum value of ωp is determined, the next step
is to select an appropriate controller as the LF.

In most applications, the PI controller is selected as the LF
of the PLL. However, it may not be a suitable choice in our
case. The reason is that to compensate the phase delay caused
by the MCCF (the MCCF dynamics were modeled by a first
order low pass filter (LPF) with cutoff frequency of ωp in
the forward path of the PLL small-signal model) using a PI
type LF, the gain crossover frequency ωc should be sufficiently
lower than the cutoff frequency ωp [10]. As the selected value
for ωp is a rather small value in our case, the crossover
frequency will be very small, which slows down the dynamic
performance of the PLL. Therefore, in this paper, using a PID-
type LF (instead of the PI-type LF) is recommended. Notice

(a)

(b)

(c)

Fig. 7. Dynamic performance of the MCCF in estimation of the sequence
components. (a) grid voltage, (b) amplitude of FFPS component, and (c)
amplitude of FFNS component.

that the PID-type LF provides an additional degree of freedom
which enables the designer to compensate the phase delay
caused by the MCCF without reducing the PLL bandwidth.

The transfer function of the PID-type LF is considered to
be of the form

GPID(s) = kp
1 + τis

τis

1 + τds

1 +DFFτds
(15)

where kp is the proportional gain, and τi and τd are the
integral and derivative time constants, respectively. The term
1 + DFFτds in the denominator produces a high frequency
pole in order to filter the derivative action of the PID controller.
For this reason, it is referred to as the derivative filter, and
DFF (DFF < 1) denotes the derivative filter factor. Notice
that the higher the value of DFF, the higher the filtering
capability of the derivative filter will be.

C. Adjustment of LF Parameters

The aim of this section is to design the LF parameters,
i.e., kp, τi, τd, and DFF, such that the phase delay caused
by the MCCF is compensated and a fast and smooth transient
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response is achieved. During the design procedure, it should be
remembered that there is a CNF which the small-signal model
does not include it [see (9)]. Therefore, to ensure the stability,
the MCCF-PLL bandwidth should be sufficiently smaller than
the notch frequency 2ω, i.e., 2π100 rad/s in a 50 Hz system.

Considering the LF transfer function as (15), the open-loop
transfer function of the MCCF-PLL can be obtained, from the
small-signal model of Fig. 6, as

Gol(s) = V +
1

ωp
s+ ωp︸ ︷︷ ︸
MCCF

× kp
1 + τis

τis

1 + τds

1 +DFFτds︸ ︷︷ ︸
LF

× 1

s︸︷︷︸
VCO

.

(16)
In order to compensate the phase delay caused by the MCCF, a
pole-zero cancelation is arranged. This cancelation is obtained
by selecting the derivative time constant equal to inverse of the
cutoff frequency ωp, i.e., τd = 1/ωp = 1/(0.707ωff ). With
this selection, and considering that the derivative filter (which
corresponds to a high frequency pole) has a relatively small
effect on the PLL dynamics, the open-loop transfer function
(16) can be simplified to

Gol(s) ≈ V +
1 kp

1 + τis

τis

1

s
. (17)

Using (17), the PLL closed loop transfer function can be
obtained as

Gcl(s) =
Gol(s)

1 +Gol(s)
≈ 2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

(18)

where ωn =

√
V +
1 kp
τi

and ζ = 1
2

√
V +
1 kpτi.

The closed-loop transfer function of (18) is a standard
second-order transfer function having a zero, which countless
publications cover its properties and discuss its design aspects
(see for example [2], [28]). Typically, a damping ratio of 0.707,
and selecting the natural frequency ωn as a trade-off between
the bandwidth and the filtering capability are recommended
in literature. Following this design procedure, and considering
that the MCCF-PLL bandwidth should be sufficiently smaller
than 2ω, we select ζ = 0.707 and ωn = 2π20 rad/s, which
yields kp and τi as follows{

τi =
2ξ
ωn

= 0.01125

kp =
2ξωn

V +
1

= 0.5727
(19)

Notice that, for the sake of consistency with [7], V +
1 was

considered to be 380
√

2
3 V. The DFF is also set to 0.2 to

provide a relatively high degree of filtering.

D. Accuracy of Small-Signal Model

In this section, the accuracy of the derived small-signal
model (Fig. 6) is shown. To achieve this goal, Figs. 8(a) and
(b) provide a performance comparison between the MCCF-
PLL (solid black line) and its small-signal model (dashed gray
line) under a phase angle-jump of +10◦ and a frequency step
change of +1 Hz, respectively. The designed values of control
parameters are used in this comparison. As shown, the model
is accurate enough in predicting the PLL behavior. It should
be noted that the accuracy small-signal model decreases with

(a)

(b)

Fig. 8. Performance comparison between the MCCF-PLL and its small-
signal model under (a) a phase angle-jump of +10◦, and (b) a frequency
step change of +1 Hz. Parameters: V +

1 = 380
√

2
3

V, ωff = 2π50 rad/s,
kp = 0.5727, τi = 0.01125, τd = 1/ωp = 1/(0.707ωff ), and
DFF = 0.2.

increasing the MCCF-PLL bandwidth. This error is mainly due
to the approximation made during the modeling procedure, i.e.,
neglecting the CNF effect.

E. Summary

The proposed design method can be summarized as follows.

1) Select ωp = 0.707ωff .
2) Consider the LF as a derivative-filtered PID type con-

troller. Select DFF = 0.2.
3) Select τd = 1/ωp.
4) Define kp = 2ζωn/V

+
1 , and τi = 2ζ/ωn.

5) Select ζ = 0.707.
6) Select ωn as a tradeoff between the bandwidth and the

filtering capability. It should be noticed that the value
of ωn cannot be arbitrary increased, as it may cause
stability problems. ωn = 2π20 rad/s is recommended in
this paper.

7) Calculate kp and τi from the definition of step 4.

V. APPLICATION OF THE PROPOSED METHOD TO OTHER
TYPES OF FILTERING TECHNIQUES

There is a variety of sequence filtering techniques that
can be used instead of the MCCF as the pre-filtering stage
of the SRF-PLL. It is shown in this section that some of
these techniques are mathematically equivalent to the MCCF.
Therefore, when they are used as the pre-filtering stage of
the SRF-PLL, the obtained small-signal model for the MCCF-
PLL, and consequently, the proposed design method are valid
for them as well.
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(a)

(b)

Fig. 9. (a) Block diagram description of the DSOGI-PNSC. (b) implementa-
tion of the SOGI-QSG block.

A. DSOGI-PNSC

Fig. 9(a) shows the block diagram description of the
DSOGI-PNSC, in which two second order generalized inte-
grators (SOGIs) configured as the quadrature signal generator
(QSG) along with a positive/negative sequence calculator
(PNSC) are used to extract the FFPS and FFNS components
of the grid voltage [8]. The implementation of the SOGI-QSG
block is shown in Fig. 9(b), where k is the damping factor,
and v′ and qv′ are the filtered direct and quadrature versions
of the input signal v, respectively. The characteristic equations
of the SOGI-QSG are

D(s) =
v′(s)

v(s)
=

kω̂s

s2 + kω̂s+ ω̂2
(20)

Q(s) =
qv′(s)

v(s)
=

kω̂2

s2 + kω̂s+ ω̂2
. (21)

In this approach, the αβ coordinate voltages, i.e. vα and
vβ , are passed through two SOGI-QSG blocks to obtain the
filtered direct and quadrature versions of them, i.e. v′α, v′β ,
qv′α, and qv′β . These signals are then applied to the PNSC
to calculate the FFPS and FFNS voltage vectors according to
the symmetrical components theory in the stationary reference
frame, as follows:[

v̂+α,1
v̂+β,1

]
=

1

2

[
v′α − qv′β
v′β + qv′α

]
(22)[

v̂−α,1
v̂−β,1

]
=

1

2

[
v′α + qv′β
v′β − qv′α

]
. (23)

According to (22) and (23), and considering the characteristic
Eqs. of the SOGI-QSG, i.e. (20) and (21), the matrix Eqs.
describing the input-output relations of the DSOGI-PNSC can
be obtained as[

v̂+α,1(s)

v̂+β,1(s)

]
=

1

2

kω̂

s2 + kω̂s+ ω̂2

[
s −ω̂
ω̂ s

] [
vα(s)
vβ(s)

]
(24)

(a)

(b)

Fig. 10. (a) Block diagram description of the ANF-PNSC. (b) structure of
the ANF.

[
v̂−α,1(s)

v̂−β,1(s)

]
=

1

2

kω̂

s2 + kω̂s+ ω̂2

[
s ω̂
−ω̂ s

] [
vα(s)
vβ(s)

]
(25)

These matrix Eqs. can be expressed in complex notation as

v̂+αβ,1(s)

vαβ(s)
=

1

2

kω̂(s+ jω̂)

s2 + kω̂s+ ω̂2
(26)

v̂−αβ,1(s)

vαβ(s)
=

1

2

kω̂(s− jω̂)
s2 + kω̂s+ ω̂2

(27)

Notice that, for ωp = kω̂/2, these complex transfer functions
are the same as those of the MCCF, i.e. (13) and (14).
Therefore, it can be concluded that, the DSOGI-PNSC and
two-module MCCF are mathematically equivalent systems.

B. ANF-PNSC

Fig. 10(a) shows the block diagram description of the ANF-
PNSC, in which three ANFs along with a PNSC in the
natural reference frame are used to extract the FFPS and FFNS
components of the grid voltage [12]. The structure of the ANF
is shown in Fig. 10(b).

From Fig. 10(b), the characteristic transfer function describ-
ing the dynamics of the ANF can be obtained as

D′(s) =
v′(s)

v(s)
=

kω̂s

s2 + kω̂s+ ω̂2
(28)

Q′(s) =
qv′(s)

v(s)
=

kω̂2

s2 + kω̂s+ ω̂2
(29)

which are the same as those of the SOGI-QSG, i.e. (20) and
(21). On the other hand, the PNSC in Fig. 10(a) is the natural
reference frame equivalent of the PNSC in Fig. 9(a). Thus,
it can be concluded that, the DSOGI-PNSC and the ANF-
PNSC (and as a result, the MCCF and the ANF-PNSC) are
mathematically equivalent systems, which perform the same
function on the different reference frames.
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Fig. 11. Block diagram description of the 2-section FADF.

C. FADF

Fig. 11 shows the block diagram description of the 2-section
FADF proposed by Jorge et al. [13], in which

b = 1− e−ωpTs (30)

R(ω̂) =

[
cos(ω̂Ts) − sin(ω̂Ts)
sin(ω̂Ts) cos(ω̂Ts)

]
(31)

where Ts is the sampling time, ωp is the design constant, and
R(ω̂) is a rotation matrix with rotation angle of ω̂Ts. Notice
that R(−ω̂) = R−1(ω̂).

From Fig. 11, the discrete-time equations describing the
dynamics of the FADF can be obtained as

v̂+
αβ,1(k + 1) = R(ω̂)

[
v̂+
αβ,1(k) + beαβ(k)

]
(32)

v̂−αβ,1(k + 1) = R(−ω̂)
[
v̂−αβ,1(k) + beαβ(k)

]
. (33)

where v̂+
αβ,1(k) = [v̂+

α,1(k), v̂
+
β,1(k)]

T , v̂−αβ,1(k) =

[v̂−α,1(k), v̂
−
β,1(k)]

T , and eαβ(k) = [eα(k), eβ(k)]
T . Substi-

tuting eαβ(k) = vαβ(k)− v̂+
αβ,1(k)− v̂−αβ,1(k) into (32) and

(33), and performing some simple mathematical manipulations
yields

v̂+
αβ,1(k + 1) = R(ω̂)

[
av̂+

αβ,1(k) + be+αβ(k)
]

(34)

v̂−αβ,1(k + 1) = R(−ω̂)
[
av̂−αβ,1(k) + be−αβ(k)

]
(35)

where a = 1−b = e−ωpTs , e+αβ(k) = vαβ(k)− v̂−αβ,1(k), and
e−αβ(k) = vαβ(k)− v̂+

αβ,1(k).
Multiplying both sides of (34) and (35) with R−(k+1)(ω̂)

and R+(k+1)(ω̂), respectively, yields

R−(k+1)(ω̂)v̂+
αβ,1(k + 1)︸ ︷︷ ︸

v̂+
dq,1(k+1)

= aR−k(ω̂)v̂+
αβ,1(k)︸ ︷︷ ︸

v̂+
dq,1(k)

+bR−k(ω̂)e+αβ(k)︸ ︷︷ ︸
e+
dq(k)

(36)

R+(k+1)(ω̂)v̂−αβ,1(k + 1)︸ ︷︷ ︸
v̂−
dq,1(k+1)

= aR+k(ω̂)v̂−αβ,1(k)︸ ︷︷ ︸
v̂−
dq,1(k)

+bR+k(ω̂)e−αβ(k)︸ ︷︷ ︸
e−
dq(k)

(37)

which can be rewritten as

v̂+
dq,1(k) =

b

z − a
e+dq(k) (38)

Fig. 12. The synchronous reference frame equivalent of the FDAF.

Fig. 13. Block diagram description of the MRF technique.

v̂−dq,1(k) =
b

z − a
e−dq(k). (39)

Notice that b/(z − a) is the zero-order hold (ZOH) discrete-
time equivalent of continuous filter LPF (s) = ωp/(s + ωp)
[13].

According to (36)-(39), the synchronous reference frame
equivalent of the FDAF can be obtained as shown in Fig. 12,
which is the discrete-time equivalent of the MRF structure (see
Fig. 13) [16]. Considering that the MRF and MCCF are two
equivalent systems (see [10] for proof), it can be concluded
that the FADF and MCCF are also equivalent.

VI. EXPERIMENTAL RESULTS

In this section, the effectiveness of the suggested design
approach is confirmed through extensive experimental studies
on the DSOGI-PLL and MCCF-PLL. For each PLL, the
obtained results using the conventional design approaches
[7], [8] are also shown, and compared with those obtained
using the suggested strategy. The experiments are based on
a TMS320F28335 digital signal controller (DSC) from the
Texas instruments. Throughout the experiments, the nominal
frequency is set to 2π50 rad/s, and the sampling frequency is
fixed to 10 kHz.

In order to ensure the discrete accuracy, and to avoid an
algebraic loop, the third-order Adams-Bashforth method [7],
[30] is used to approximate the continuous-time integrals in
both DSOGI and MCCF structures, i.e.,

1

s
⇔ Ts

12

23z−1 − 16z−2 + 5z−3

1− z−1
. (40)

The control parameters are summarized in Table I.
In experimental verifications, the three-phase input signals

are generated internally in DSP. They are then fed to the
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TABLE I
CONTROL PARAMETERS.

MCCF-PLL DSOGI-PLL
suggested conventional [7] suggested conventional [8]

V +
1 = 380

√
2/3 V V +

1 = 380
√

2/3 V V +
1 = 100 V V +

1 = 100 V
ωp = 2π35.35 rad/s ωp = 2π50 rad/s k =

√
2 k =

√
2

kp = 0.5727 kp = 0.455 kp = 1.777 kp = 2.22
τi = 0.01125 s ki = 32 τi = 0.01125 s ki = 61.69

τd = 4.502× 10−3 s τd = 4.502× 10−3 s
DFF = 0.2 DFF = 0.2

Fig. 14. Experimental setup.

external digital-to-analogue (D/A) converter via the serial
peripheral interfaces (SPI) to generate the analog test signals.
These signals are acquired by the DSP to perform the PLL
algorithms [see Fig. 14].

A. Frequency Step Change

Figs. 15(a) and (b) show the experimental results for
the MCCF-PLL and DSOGI-PLL, respectively, when the
grid voltage undergoes a frequency step change of +5 Hz.
As shown, the suggested design approach provides a more
damped transient response with a shorter settling time for
both PLLs. The 2% settling time is about 1.75 cycles of the
nominal frequency for both PLLs using the suggested design
approach, while it is about 2.5 and 2.75 cycles for the MCCF-
PLL and the DSOGI-PLL, respectively, using the conventional
design approach. The frequency overshoot is about 32% for
both PLLs using the suggested design approach, while it is
about 50% and 42% for the MCCF-PLL and the DSOGI-PLL,
respectively, using the conventional design approach.

B. Phase-Angle Jump

Figs. 16(a) and (b) show the experimental results for the
MCCF-PLL and the DSOGI-PLL, respectively, when the grid
voltage undergoes a phase-angle jump of +40◦. Again, the
suggested design approach provides a more damped transient
response with a shorter settling time for both PLLs. The 2%
settling time is about 1.75 cycles of the nominal frequency
for both PLLs using the suggested design approach, while it is
about 2.5 and 2.75 cycles for the MCCF-PLL and the DSOGI-
PLL, respectively, using the conventional design approach. The
phase overshoot is about 30% and 28% for the MCCF-PLL
and the DSOGI-PLL, respectively, using the suggested design
approach, while it is about 47% and 36% for these PLLs using
the conventional design approach.

C. Unbalanced and Distorted Grid Condition

Fig. 17 evaluates the detection accuracy of the DSOGI-PLL
and the MCCF-PLL under an unbalanced and harmonically
distorted grid condition (~V +

1 = 1∠0◦, ~V −1 = 0.1∠−90◦,

(a)

(b)

Fig. 15. (a) MCCF-PLL, and (b) DSOGI-PLL performances when the grid
voltage undergoes a frequency step change of +5 Hz.

~V −5 = 0.05∠−90◦, and ~V +
7 = 0.05∠0◦). As shown, in terms

of the amplitude detection accuracy, both approaches yield
good results (see Table II for details). In terms of the phase
detection accuracy, the obtained results using the suggested
design approach are not as good as those obtained with the
conventional design approach, however they are acceptable for
most applications. Nevertheless, if the application requires, the
detection accuracy can be improved by adding extra CBFs and
SOGIs (tuned at the harmonic frequencies) to the two-module
MCCF and DSOGI-PNSC, respectively.

The obtained results along with a comparison between
the phase margin of the PLLs using the suggested and the
conventional design approaches are summarized in Table II.
Notice that the phase margin of the PLLs are obtained using
the small-signal model of Fig. 6.

VII. CONCLUSION

In this paper, a systematic design approach for the SRF-PLL
with pre-filtering stage was proposed. The suggested design
approach was first developed for the MCCF-PLL (i.e., the
SRF-PLL with MCCF as the pre-filtering stage), and then
extended to the joint operation of several other sequence sep-
aration techniques (i.e., DSOGI-PNSC, ANF-PNSC, FADF,
and EPLL-PNSC) and the SRF-PLL. The effectiveness of the
suggested design approach was confirmed through extensive
experimental results.
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(a) (b) (c)

Fig. 17. Experimental results under unbalanced and harmonically distorted grid conditions. (a) Input voltages. (b) MCCF-PLL. (c) DSOGI-PLL.

(a)

(b)

Fig. 16. (a) MCCF-PLL, and (b) DSOGI-PLL performances when the grid
voltage undergoes a phase-angle jump of +40◦.
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