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MODEL SELECTION AND COMPARISON FOR INDEPENDENTS SINUSOIDS
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T Aalborg University
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ABSTRACT

In the signal processing literature, many methods have been pro-
posed for estimating the number of sinusoidal basis functions from a
noisy data set. The most popular method is the asymptotic MAP cri-
terion, which is sometimes also referred to as the BIC. In this paper,
we extend and improve this method by considering the problem in a
full Bayesian framework instead of the approximate formulation, on
which the asymptotic MAP criterion is based. This leads to a new
model selection and comparison method, the lp-BIC, whose com-
putational complexity is of the same order as the asymptotic MAP
criterion. Through simulations, we demonstrate that the lIp-BIC out-
performs the asymptotic MAP criterion and other state of the art
methods in terms of model selection, de-noising and prediction per-
formance. The simulation code is available online.

Index Terms— Model comparison and selection, Bayesian in-
formation criterion, sinusoidal models, spectral estimation.

1. INTRODUCTION

Many physical and synthetic signals can accurately be modelled as
a weighted sum of sinusoidal basis functions. Such signals are en-
countered in a large number of areas such as speech and music pro-
cessing, electrocardiography, seismology, radar and sonar process-
ing, astronomy, meteorology, and economics. Often, the number
of sinusoidal basis functions is assumed known a priori, but in most
practical cases this is not true since this number is typically unknown
or time-varying. As the statistical performance of most estimators of
the sinusoidal parameters depends on the assumed number of basis
functions, detecting this number from the available data is an impor-
tant, yet often overlooked, problem in the scientific literature [1].

We consider a noisy data set © = [z(0) (N —1)] r
consisting of N real- or complex-valued data points, and we assume
that these data points originate from an unknown sinusoidal process.
Since we are unsure about the true model, we select a set of K candi-
date parametric models M1, Ms, ..., Mg which we wish to com-
pare in the light of the data . We assume that the candidate models
are weighted sums of [, independent sinusoidal basis functions in
additive noise. Therefore, the k£’th model can be written as

M z(n)=sk(n)+en), n=0,1,...,N—-1 (1)
where si(n) and e(n) form a Wold decomposition of the real-
or complex-valued data z(n) into a predictable part and a non-
predictable part, respectively. At the sampling index n, the pre-
dictable part is given by

i
Zai exp(jwin), z(n) € C
— =1

€]

sk(n) i
Zai cos(w;n) — by sin(w;n), z(n) € R
i=1

t Aalborg University
Audio Analysis Lab, Dept. of Arch., Design & Media Tech.
mgc@create.aau.dk

where C and R denote the set of complex- and real-valued numbers,
respectively, and j = /—1 is the imaginary unit'. The complex
amplitude «;, the linear weights a; and b;, the amplitude A;, and the
phase ¢; are related by o; = a; + jb; = A; exp(j¢;). The num-
ber [}, of sinusoidal basis functions is simply called the model order,
and many methods for detecting the sinusoidal model order has been
proposed and used in the signal processing literature. These meth-
ods can roughly be dichotomised into information criteria and sub-
space methods. In the information criteria, a penalty term is added
to a log-likelihood term to penalise model complexity and thereby
prevent fitting the noise in the data. The penalty term can be de-
rived in a number of ways, leading to a large collection of criteria
such as the Akaike’s information criterion (AIC) [3], the generalised
AIC (GAIC) [4], the minimum description length (MDL) [5, 6], the
Bayesian information criterion (BIC) [7], the asymptotic MAP cri-
terion [8, 9], and recently the EVT in [10]. The subspace methods
are based on an eigenvalue decomposition of the data covariance
matrix [11], and the model order can be detected by analysing the
eigenvalues [12], the eigenvectors [13], and recently the angles be-
tween subspaces [1]. From a computational viewpoint, the subspace
methods require typically less resources than the information crite-
ria since the computation of the maximum likelihood estimate of the
sinusoidal frequency is a costly operation. On the other hand, the
information criteria typically outperform the subspace methods in
terms of detection, de-noising and prediction performance.

The asymptotic MAP criterion [8, 9], which is sometimes also
referred to as the Bayesian information criterion [11, 14], is arguably
the most popular model order selection method, and it can be derived
in many ways based on MDL techniques [15], Kullback-Leibler in-
formation [11], and the Bayesian approach [8,9]. As in the lat-
ter approach, we here also consider model order selection for the
sinusoidal model in (1) in a Bayesian framework. In contrast to
the asymptotic MAP criterion proposed in [8, 9], however, we for-
mulate the problem in the full Bayesian framework recently pro-
posed in [16]. By using a few simple assumptions, we derive a new
model order selection and comparison method, the 1p-BIC, which
has a computational complexity similar to the information criteria
and contains only one user-defined parameter. Moreover, the asymp-
totic MAP criterion can also be derived in our framework as a spe-
cial case. Through simulations, we show that the lp-BIC in general
outperforms all other methods for both white and mildly coloured
Gaussian noise in terms of detection, de-noising, and prediction per-
formance.

Note that the real-valued signal model can be cast into the form of the
complex-valued signal model by computing its discrete-time “analytic” sig-
nal, which can also be down-sampled by a factor of two [2].



2. SINUSOIDAL MODEL COMPARISON

In this section, we derive the the Ip-BIC which can be used for both
model order selection and comparison. In contrast to model selec-
tion, where only the most likely model is found, a probability for
each candidate model is computed in model comparison. Conse-
quently, all of the models can be used for model averaged parame-
ter estimation, de-noising, and prediction. For both model selection
and comparison, the elicitation of proper prior distributions on the
model parameters is very important as improper prior distributions
such as a flat prior on the linear parameters cause the simplest model
to be preferred, regardless of the information in the data [16,17]. We
therefore give a few arguments for the prior model in Sec. 2.1, but a
much more thorough derivation can be found in [16].

2.1. Bayesian Model
2.1.1. The Observation Model

We assume a (complex-valued) normal distribution with probability
density function (pdf)

_eHe 5
€xp ro? _ CN(G;0,0' IN) , = 1
['I"TI'O'Q]N/T B N(e;O7U2IN) ’ r=2

for the non-predictable part e which is defined analogously to «.The
notation ()H denotes conjugate transposition, and I n is the N x N
identity matrix. To simplify the notation, we use the non-standard
notation NV;.(+) to refer to either the complex-valued normal distri-
bution with pdf CN(-) for r = 1 or the real-valued normal dis-
tribution with pdf A/ (-) for r = 2. Besides being mathematically
tractable, arguments such as maximisation of the entropy [18,19] and
the Cramér-Rao bound [20] favour the white Gaussian noise (WGN)
assumption on e [21]. If the noise is known to be coloured, the meth-
ods in this paper are still useful if combined with a linear pre-filter.
The WGN assumption implies that the observation model is

plelo?) = 3)

p(xlak, wk, 0, Mi) = N (@; Zrou, 0’ In) “)
where we have defined
wi = w1 - wlk]T &)
T
o |:a1 e alk] s b S CN
ap = ' T N (6)
[al e ay, —by e —blk] , zER
22 [1 exp(jwi) exp(jwi(N — 1)]" (7
7 a z1 . zlk] , xr € (CN
e 2
Re(z1) --- Re(z;,) Im(z1) --- Im(zlk)} , xcRY

The notation (-)” denotes transposition, and Re(-) and Im(-) take the
real and imaginary part, respectively, of a complex-valued number.

2.1.2. The Prior

As the dimension of the vector oy, of linear parameters varies be-
tween models, a proper prior distribution must be assigned on it [17].
For regression models, the Zellner’s g-prior given by [22]

planlwr,0”, 9, Mi) = No(a; 0,90° (2 Zi] ') (8)

has been widely adopted since it leads to analytically tractable
marginal likelihoods and is easy to understand and interpret [23,24].
For mathematical convenience, the hyper-g prior given by [23]

ple)=0-1)(1+g ", §>1 ©)

is assigned to g. The hyperparameter § should be selected in the
interval 1 < & < 2 [23]. Besides having some desirable analyti-
cal properties, p(g) reduces to the Jeffreys’ prior and the reference
prior when § = 1 [25]. However, since this prior is improper, it
can only be used when the prior probability of the all-noise model is
zero. When this is the case, the Ip-BIC has no user-defined parame-
ters. The noise variance o is a common parameter and has the same
meaning in all models and can therefore be given an improper prior
[16, 17]. We therefore use Jeffreys’ prior p(c?) = (¢%)~' which
is scale invariant. That is, it includes the same prior knowledge
whether we parametrise the model in terms of the noise variance
o2, the standard deviation o, or the precision parameter A = o2,
For the frequencies, we assume the uniform prior

Ui
1
pwilMi) = 3= [T o (@) (10)
=1

where I, (w;) is the indicator function on the interval ; C [0, 27),
and W}, is the normalisation constant. The overall frequency param-
eter space is therefore 2, = Q1 x Q2 x .-+ x . Finally, the
prior on the models is also a uniform prior of the form p(Mj) =
K 'Ixc(k) where K = {1,..., K}. However, another prior can
easily be used in our framework (see (11) below).

2.2. Bayesian Model Comparison

From Bayes’ theorem, the posterior distribution on the models has
the probability mass function (pmf)

BF[M; My|p(My)
Zf{:l BF[M;; Mp|p(M;)

where M), is some base model, all other models are compared
against, and the Bayes’ factor is given by

_ p(@IMy) 5 mye)

p(@M:)  mi(e)
The function m () is an unnormalised marginal likelihood whose
normalisation constant must be the same for all models. Work-
ing with my () rather than the normalised marginal likelihood
p(x|My) is simpler. Moreover, p(a| M) does not even exist if an
improper prior such as the Jeffreys’ prior on the noise variance is
used. Given g and wy,, the marginal likelihood is given by

p(My|®) =

1)

BF[M; M)

12)

p(m|Wk,g,Mk) :/ / p(m|ak7wk7027Mk)
0 A

x p(ek|wi, 02, g, My )p(0?)dewda®  (13)

where Ay, is either the k-dimensional set of real- or complex-valued
numbers. By performing the integration in (13), it can be shown that

A2 N/r
p(x|w, g, M) o my(x|ws, g) = (mzv(:n) ( &% g))

where we have defined

H g
L2 2 X (In— mpk)"’ a2 g 2
Gk (Wi, g) = N =on |1 1+ng
H
R A% KT 5” (14)
rtax
mn(z) £ T(N/r)(N7é3) V" (15)

The matrix Py, is the orthogonal projection matrix for the column
space of Zy, and &7 (wy, g) is asymptotically equal to the ML es-
timate of the noise variance in the limit 62; = limg 00 &,% (WK, 9)
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Fig. 1. Model detection and prediction performance of various model selection methods for white Gaussian noise.

with wj, being the ML estimate of the frequency parameters. The
estimate % is the estimated noise variance of the null model M y
which is the all-noise model (Ix = 0) and has the unnormalised
marginal likelihood my (). If we select the null model to be the
base model, the Bayes’ factor given wy and g is thus

(6% /62w, 9)] ™"
(1+g)

To find the Bayes’ factor in (12) for M; = My, we have to mul-
tiply (16) with the priors on wy and g and integrate this product
over these parameters. Unfortunately, this cannot be done analyti-
cally, and we, therefore, evaluate the integral using the Laplace ap-
proximation. As in [26], the integral can also be evaluated using
Markov chain Monte Carlo methods, but this is much more compu-
tationally intensive and typically requires the specification of many
user-defined parameters.

BF[M; Mn|wk, 9] = (16)

2.2.1. The Laplace-BIC (Ip-BIC)

Since the marginal posterior pdf over g is not symmetric and in order
to avoid edge effect near g = 0, the re-parametrisation 7 = In g with
the Jacobian dg/dr = exp(7) is made [23]. This re-parametrisation
suggests that the posterior distribution over g is approximately a log-
normal distribution. Thus, if we define the integrand

q(wk, ) = BFMp; M |wi, exp(7)]p(wr|Mi)p(r) ,  (17)
the Laplace approximation to the Bayes’ factor in (12) is [16]
BF[My; Mn] = / / q(wi, T)drdwy, (18)
Qp J—0

40 — 1)(2m) 14072

~ BF[M; Mu |y, g —
[ k N|wk g] (1+g)6Wk
—-1/2
X \A@IE) [~ H @) T+ 1)

19)

where we have defined

§=—(Br + VP2 —4a;)/(2a-) (20)
ar =1 —Ry)(1—1x —0) (21)
Br = (N/r—1)Ri + (2 — lx — ) (22)
G;ZIAP = arg nslzamePkm (23)
wi €82
L AMAPy _ T N(1 - R}) N -7l =1 -t
WD =g (e mpE T v | Y
2
H(wk‘g) — M i (25)

The factor I'(Ix 4+ 1) in (19) accounts for that the integrand ¢(wp, T)
is invariant to permutations of the frequency parameters. There-
fore, the Laplace approximation is made to the I;! identical peaks of
q(wg, 7). The MAP estimate &})“F is the same as the ML estimate
of the frequency parameters from (4). Finding an analytical expres-
sion for the Hessian H (wy|g) is a tedious task, and we refer the
interested reader to [16] for a derivation. When the signal-to-noise
ratio (SNR) is high enough, enough data is available, and the fre-
quencies are well-separated (relative to V), it can be approximated
by
N
6262 (@Y™, g)(1 + 9)
where &, is the ML estimate of the linear parameters. Inserting the
Bayes’ factor in (19) into (11) allows us to select the most likely

model and to compute the posterior probabilities of all models.
Moreover, note the following.

H(@y™g) ~ diag(|ax|?)  (26)

1. For g — oo, it is interesting to note that —H ~*(&}YAF|g) is
approximately identical to the asymptotic Cramér-Rao bound
of the frequency parameters with the true values of the noise
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Fig. 2. Model detection and prediction performance for mildly coloured noise (see Fig. 1 for legends).

variance and amplitudes replaced by their ML estimates. In
our experience, the approximation in (26) works very well in
practice and not much is gained by using the exact expression
for the Hessian.

2. The Bayes’ factor in (19) has only the single user parameter
§. As discussed in [23], it should be selected in the interval
1 < ¢ < 2, and we usually select it as 3/2.

3. If we select g = N, assume that N > rl, only make the
Laplace approximation to a single mode of wy, and neglect
all first-order terms, the resulting model selection rule is ba-
sically the same as the asymptotic MAP method.

3. SIMULATIONS

We here present some typical simulation results for the subset of
the model selection methods, we believe have the best performance,
but we also encourage the interested reader to try other configu-
rations and methods by modifying the simulation code which is
available at http://kom.aau.dk/~jkn/publications/
publications.php. Specifically, we compare the performance
of the popular asymptotic MAP criterion [8, 9] (see also [11, 15]),
the recently proposed EVT [10], the angle between subpaces (MU-
SIC AbS) method [1], and the 1p-BIC method proposed in this
paper. To keep the plots simple, we do not show the performance
of the AIC [3], the naive MDL [5], the GAIC [4], and the ESTER
method [13] since we have found that their performance is generally
worse than that of the other methods.

3.1. Monte Carlo Simulation for White Gaussian Noise

In the first simulation, the model detection performance, the de-
noising performance, and the prediction performance were evalu-
ated for white Gaussian noise (WGN) using a Monte Carlo simula-
tion consisting of 5000 runs at SNRs from -10 dB to 30 dB in steps
of 2 dB. In each run, N = 30 data points were generated from a
complex-valued sinusoidal model. As recommend in [27], most pa-
rameters were generated at random in each run. The model order was
generated uniformly from the set {1, 2, ..., 5}, the amplitudes were
set to ones, and the phases and frequencies were generated uniformly
from the interval [0; 27). For all of the model selection methods, the
set of candidate model orders were I, € {1,...,8}. The all-noise
model (I = 0) was not included since the MUSIC AbS method is
unable to handle such a model. The ML estimates of the frequency
parameters were found using the RELAX algorithm [4]. The subvec-
tor length of the MUSIC AbS method were set to the typical value
of N/2, and the hyperparameter ¢ of the Ip-BIC was set to 3/2.

Fig. 1 shows the results. In the upper left plot, the percentage
of correctly detected model orders is shown. Clearly, the 1p-BIC
outperformed the other methods with the EVT being slightly better
than the asymptotic MAP method and much better than the MUSIC
AbS method. The same trend is also seen in the lower left plot where
the mean-squared error (MSE) of the detected model order given by
E(Ix) = (Ix — I})? is shown. In the upper right plot, the de-noising
performance is shown. To facilitate a better comparison, we have
shown the results relative to the performance of an Oracle who knew
the true model order. Thus, if a curve is below the 0 dB line, the
corresponding method performed better than the Oracle. The Ip-BIC
method performed slightly better than the EVT and the asymptotic
MAP method, which performed equally well, and much better than
the MUSIC AbS method. The same trend is also found in the lower
right plot where the prediction performance relative to the Oracle’s
performance is shown at an SNR of 6 dB. Although not presented
here, we observed similar results for white Laplacian noise.

3.2. Monte Carlo Simulations for Mildly Coloured Noise

Using the same simulation setup as above, we also ran a Monte Carlo
simulation for mildly coloured noise. Specifically, each noise vector
was a realisation from a first-order and complex-valued autoregres-
sive process whose parameter was drawn uniformly from the interior
of circular region with a radius of 0.95. In Fig. 2, the model detection
and prediction performance are shown. The performance of 1p-BIC
and in particular the MUSIC AbS method were less affected by the
violated WGN assumption than the asymptotic MAP criterion and
the EVT. For model detection, the MUSIC AbS method performed
better than the 1p-BIC whereas the 1p-BIC outperformed the MUSIC
AbS method in terms of prediction performance.

4. CONCLUSION

We have here presented a new model selection and comparison
method for independent sinusoidal models. The method, the Ip-BIC,
was derived in a full Bayesian framework in which the popular
asymptotic MAP criterion can also be derived using a number of
asymptotic assumptions. Although the Ip-BIC is not as simple as
the asymptotic MAP criterion, its computational complexity is of
the same order. Through simulations, we demonstrated that the
Ip-BIC outperformed the asymptotic MAP criterion and other state
of the art model selection methods in terms of model order detec-
tion, de-noising, and prediction performance. The lp-BIC was also
demonstrated to be much more robust to coloured noise than other
information criteria such as the asymptotic MAP criterion.
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