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AN ETHNOMATHEMATICAL STUDY OF PLAY IN MINECRAFT 
Louis Køhrsen and Morten Misfeldt  

Metropolitan University College and Aalborg University 

This paper explores how children engaged in playing Minecraft in an afterschool 

program develop mathematical approaches in their in-game activities. The 

investigation is framed as ethnomathematical in the sense that, rather than searching 

for specific curricular concepts, it explores the problem situations and explanatory 

systems that children develop. Aesthetics, symmetry, collaboration, copying, and 

efficient building strategies all lead to local problem-solving and explanatory systems 

and can therefore be characterised as steps towards ethnomathematics. In the 

explored example, collaboration between the children and the afterschool program’s 

attitude towards children’s collaborative gaming are crucial factors in the way 

Minecraft supports the development of mathematical thinking.   

Keywords: Ethnomathematics, Game based learning, Minecraft. 

 

INTRODUCTION: MINECRAFT AS CHILD CULTURE AND 

EDUCATIONAL DREAM 

Minecraft is a widespread phenomenon, with more than 13 million individual 

purchases of the game. There have been several attempts by educators to use 

Minecraft in formal mathematics teaching (Miller, 2012; see also 

www.minecraftedu.com), and the Lego-like block structures are sometimes identified 

as a reason for Minecraft being well suited for mathematics education. In this paper 

we aim at providing empirical knowledge which might inform such claims, by 

exploring the mathematical aspects of activities engaged in by children playing 

Minecraft. 

Minecraft can be played alone or with others on a local area network or as a 

massively multiplayer online game. The Minecraft world consists of one meter cubic 

blocks, generated in a world to create landscapes that may include mountains, 

meadows, deserts, lakes, and oceans. In the game, you can break, collect, and place 

the blocks, using them to construct buildings and landscapes or transforming them 

into other materials or tools. However, playing Minecraft is not a well-defined and 

uniform activity. With its open-world gameplay, the game itself allows players to 

design not only their physical surroundings but also their own narratives - for 

example, surviving in a world with limited food resources, going on adventures, 

building huge castles, or brewing potions that enable one to fly (Duncan, 2011). For 

teaching purposes, there is also an educational version called ‘MinecraftEdu’, which 

is a modification of the original game that allows for a more controlled game 

environment, in which teachers can prepare lessons and can more easily follow 

students’ activities. The game is typically used as a replacement for concrete 

materials when children are to work with areas, volumes, ratios, scale, histograms, 

and types of graphs. Children’s gaming activities are not included as activities in 



  

these learning resources, nor is the premise that the children are present in the virtual 

world taken into account (Miller, 2012). 

QUESTION 

The data presented in this paper were collected during a project that explored the 

question, “What mathematics do children use and develop when they play Minecraft 

in an afterschool program?” (Køhrsen, 2013). In this paper, we look for situations 

that can be considered mathematical, in the sense that systematic approaches are 

applied or problems are addressed, and we ask what situations may be characterised 

as mathematical in children’s free time play with Minecraft.  

THEORY 

According to d’Ambrosio (2001), different cultures, including nationalities, tribes, 

genders, organisations, and professions, develop knowledge systems and problem-

solving strategies that can be understood as parallel to those of western mathematics, 

and should be recognized as such. In line with Devlin (2011), we also understand 

children’s gaming culture as a legitimate culture, where mathematics activities and 

problem solving may occur. 

In our research, we are looking for situations that can help to clarify whether 

children’s activities when playing Minecraft foster a unique ethnomathematics, and 

how it might be characterised (d’Ambrosio, 2001). Any such investigation of 

children’s gaming culture, as a legitimate culture in which an ethnomathematics can 

be developed, is likely to encounter the problem of recognising a mathematics that 

differs from scholastic mathematics (Millroy, 1991). Bishop (1997) offers a 

framework in which mathematics can be analysed as a cultural phenomenon, offering 

a way of recognising core mathematical activities as part of the culture in their own 

right. 

In his analysis of mathematics as a cultural phenomenon, in which he searches for 

mathematical similarities, Bishop describes six forms of activity that seem to occur 

across all cultures.  

1. Counting - referring both to the development of number systems and to actions 

around counting (for instance, using objects to support counting); 

2. Locating - referring to different ways of coding and symbolising special 

environments, and to different ways of describing and understanding physical 

space and/or objects in space; 

3. Measuring - referring both to the words used to describe different measurements 

and to the tools or body parts used for measuring; 

4. Designing - referring to the development from imagined form and shape and to the 

reshaping of the environment; 

5. Playing - both strategic games and gambling games; 

6. Explaining - where questions and answers are part of extending human cognition 

beyond experience and environment (Bishop, 1997).  



  

 

Following Bishop, the aim of this paper is to find and describe examples of 

mathematical situations and activities in children’s informal play and construction 

work in Minecraft. We would expect such situations to provide relevant focal points 

for an empirically based understanding of the systems and problem-solving strategies 

constituting a Minecraft ethnomathematics.  

METHOD 

An ethnographic methodology was employed to investigate this question. This mend, 

that rather than describing and analysing the children’s products or measuring their 

conceptions or competencies, we attempted to gain access to their practice and 

culture in a longer term way. This was done with a view to developing a holistic 

description of the mathematical activities that these children engage in and how these 

activities are contextualised when they play Minecraft in an afterschool program 

(Hastrup, 2010).  

To this end, we followed seven 10-year-old boys over a period of three weeks as they 

played Minecraft in their afterschool program. They were selected on the basis of 

availability and high levels of gaming activity. In this particular program, playing 

Minecraft was mainly a boys’ activity, and no girls were available who met these 

criteria. The data collected include interviews, hand-held camera recordings of 

situations where Minecraft is played, and observations (field notes). The video data 

were analysed in three steps: first, the events captured on video were summarised in 

written form (with time codes); second, using Bishops framework, the mathematical 

aspects of Minecraft play were summarised; and third, two cases where children 

perform activities that we interpret as mathematical were fully transcribed and 

analysed in depth (Rønholt, Holgersen, Fink-Jensen & Nielsen 2003). 

The interviews were video-recorded, comprising an oral record of the child's relation 

to the game and an action record based on the strategies and preferences observed 

during gameplay. The oral part of the interviews was transcribed, and action reports 

were compiled for each sub-question. 

FINDINGS AND ANALYSIS 

This section is presented in three parts. First, the context of the findings is described 

by describing the gaming culture of the afterschool program; second, a range of 

examples is given of mathematical constructions in the children’s gameplay; and 

finally, the analysis of findings, using Bishop’s categories of mathematics activities, 

is presented. 

Context for mathematical actions in Minecraft 

Observations during the afterschool program showed that the program endorse that 

children play computer games, and that the physical environment enabled friends to 

play these games together. In the interviews, the children explained that they play less 

at home than in the afterschool program. They also explained that gameplay in the 



  

afterschool program tends to involve larger constructions and longer-lasting games 

than when they play at home. This highlights the fact that the findings from this study 

are bound to these specific players in this specific context. Here, when the children 

played Minecraft, they often played together in larger groups, over an extended 

timespan of days or weeks. During such games, large constructions were often built 

by collaborating and working for several days towards a certain goal - for instance, to 

finish a bridge or a castle. In the observed games, these large constructions were 

demanding to construct as the children took account of both symmetry and 

proportions. 

Mathematical activities  

The mathematics-related activities that we found in the children’s play fell into 

several categories. These included construction activities involving symmetries, 

geometric reflections, approximations of round shapes in a cubic virtual environment, 

and decorative patterns; activities involving mining, including the use of compound 

numbers when referring to large amounts of a material (e.g. ‘don’t stop [digging] 

until you have at least two times 64 iron [blocks]’); and ways of finding materials and 

navigating through the mines. In this section, we will elaborate on the mathematics 

and methods used when constructing, and on the acquisition of new knowledge about 

construction. The data include many more observed examples of mathematical 

activity, but here we will focus solely on the activities around constructing because 

construction is the dominant form of activity in the game.  

Designing houses: All the houses built by the children used three blocks (3 meters in 

game scale) from ground to ceiling. Since an avatar in the game is 1.7 meters in game 

scale, it is possible to enter a building that has a height of only two blocks. The 

children explained the chosen height by saying that it “looks right”, and that inside it 

they can jump, which would not be possible in a house with a height of only two 

blocks.  

Symmetry: This matters when constructing a house, and the children spent a lot of 

time making patterns and other adornments. The houses, which tended to imitate 

family houses, were clearly designed with an understanding of symmetry, as the 

children explained that where they placed doors and windows was not coincidental or 

random. In one example, where three children built a house together, the width of the 

house was adjusted to accommodate three windows of equal size on one side, 

equidistant to each other. The colour of the house’s corner pillars differed from that 

of the walls, making it possible to develop a pattern with one block between each 

window on both the interior and exterior of the structure. 

The only observed quadratic house was built at the top of a tree, using the crown of 

the tree as a guide to measurement to ensure a perfect quadratic form for the 

pyramidal roof, and to ensure that the roof would require only one block rather than 

four at its highest point. In fact, oak trees in Minecraft have a quadratic crown of an 

odd side length. The boy in question didn’t seem to know that, but explained that he 



  

could not build a house with only one block at its peak without using an oak tree for 

guidance.  

Interior decoration: In most of the constructions observed, the children devoted a 

lot of time to interior design. In one case, three boys built a house together, in four 

storeys, with an internal measurement of 3 x 7 game scale meters. Each storey had its 

own purpose (processing of materials, keeping valuable materials, keeping other 

materials and tools, and a sleeping quarters). In the middle of one of the gables, a 

ladder connected all the floors of the house. Each storey was decorated along two 

axes of symmetry, shown in Figure 1 left. The figure shows the floor plans of the 

sleeping quarters. The room needs a bed and a coffin to be in perfect symmetry; one 

of the children mentioned this, saying that he hoped a new player would join their 

game so that the sleeping quarter could be completed. 

Construction of castles and circles: Unlike the houses, the children used different 

rules for the choice of height in other buildings, such as castles, which generally have 

a larger height from floor to ceiling. When asked, the children did not have exact 

words for the proportional relation between the ground and the height of the castle, 

except to say that it just “looks right”. In effect, this means that a castle may have a 

height of ten blocks to the roof, as compared to the three blocks used for houses.  

The castles provided a few examples of approximations of round towers. Not all the 

children succeeded in building round towers, and when asked most would build a 

quadratic shaped tower diagonal to the game grit instead (Figure 1, top right). The 

children could see that this shape was not round, but could not see what needed to be 

changed. One child learned to use approximate circle shapes (Figure 1, bottom right) 

by copying the shape, block by block, from another child. A third child had 

knowledge of how to construct two sizes of a circle, but he could not apply that 

knowledge to construct circles of other radiuses.  

 

Figure 1: Symmetry in design of house interior (left), diamond shape (top right) and 

approximated circle shape used to construct round towers (bottom right). 

The propagation of strategies for the construction of circle shapes is one example of 

knowledge sharing and sharing of strategy, and of the need to learn new things. 

Constructions of known measures: Certain constructions in the game require exact 

measurements. This provides other challenges beyond constructing on the basis of 



  

aesthetics or the approximation of sizes and shapes. One example of this was seen in 

the construction of a fountain. Based on his knowledge of how far water falls from a 

water source, the child knew the radius of the fountain but not the circumference. 

This led him first to place tree blocks on top of each other to form the centre of the 

fountain; then, from the centre he counted the radius of the fountain in four 

directions, placing a block each time, and completing the circumference by 

connecting the four blocks. 

Bridge structures: Minecraft generates worlds with mountains, ravines, valleys, and 

lakes, requiring the children to construct bridges. In the next example, a group of 

children constructed a series of bridges between mountain peaks. When two bridges 

met in the air, two approaches were used to determine how they should intersect. One 

method was to ensure that the bridges were at the same height. The children did this 

by using the avatar’s ability to fly without changing altitude to measure the correct 

height, placing the head of their avatar at the same height as a bridge and then flying 

in a straight line required for the bridge. The other approach involved creating a 

suspension bridge with stairs at both ends, adjusting the height by creating the 

necessary steps at each side. In this second approach, however, the children expressed 

concerns about their wish to have identical stairs at each end of the bridge. 

Construction methods: The game player’s perspective created an extra challenge for 

the children in their desire for identical or mirroring constructions because it is 

impossible to see the construction being mirrored while building the new one. In this 

section, two observed methods will be examined in more detail: a ‘trial and error 

method’ and a method that involves copying by memorising segments of a larger 

construction. 

In one example of ‘trial and error’, a child was attempting to build a spiral staircase in 

an approximate round tower. His strategy can be described as continuous adjustment 

by correcting an ongoing construction, but it also indicates a realisation that certain 

strategies were not working, as he started again from scratch with the knowledge 

acquired without yet having a plan for the construction as a whole.  

 First he attempted to create steps in a straight line. Every step has a left edge and a 

depth of one block; when he reached the first corridor where he had to turn, he 

realised that his strategy did not work and made attempts to adjust the steps to 

follow the turn (Figure 2, left). 

 After the turn, he continued with a strategy in which every new block in forward 

direction was a block higher than the previous one. At the next turn, this led to 

further problems (Figure 2, left), and he decided to remove the whole staircase and 

start over. 

 This time, he started a little closer to the turn. He kept a straight left edge on the 

stair while attempting to build the staircase up in height to fit the turn. Afterwards, 

he investigated the construction, and adjusted the steps (Figure 2, right).  



  

 As seen on the right in Figure 2, the adjusted step causes him to start again a bit 

lower down the staircase, adjusting the steps at the beginning of the staircase to 

accommodate the new knowledge obtained. 

      

Figure 2: first attempt to create a spiral staircase (left), and the process of readjusting 

the staircase (right). 

In this case, the boy explained that he was not sure how the stairs was going to look 

like, and that he was experimenting to find a strategy for building the staircase. 

In an example of the second method (copying by memorising segments of a larger 

construction), another boy wanted to copy the approximated round tower and its 

spiral staircase. It was not possible for him to see the staircase he was copying when 

building, and he had to not only turn his head, but run across to another tower to 

investigate the construction he was copying. Given the complexity of the 

construction, it was not possible for him to memorise it in its entirety. As he started to 

copy the stair, the boy memorised how many blocks would be required for a given 

step. Memorising each step would take some time, counting while focusing on one 

block at a time, making it possible for him to memorise two or three steps at once 

(Figure 3). After building the steps, he could not be sure whether or not it was 

correctly built, running one more time to check. Searching for a more effective 

method, the boy discovered a three step pattern in the steps, which he continued, 

calling it ‘One-One-Tee’ as a reference to the shape of the steps (Figure 3). The use 

of segment names made the construction of the rest of the staircase much faster, in 

the end enabling the boy to repeat the pattern four times without checking the original 

construction. 

 

Figure 3: Method of memorising by counting blocks on each step (left), and method of 

memorising segments ‘One-One-Tee’ (right). 

  



  

Table 1 

Findings relating to Bishop’s categories 

Category   Example  Analysis 

Counting Mining  Counting objects occurs regularly in the game. Because 

of the game design the player has a maximum number of 

items they can hold in each slot. A new form of 

compound number is used when talking about huge 

amounts: 64 for ‘many’, counting by saying 2 times 64 

as opposed to 128, or more than 64 to signify a lot of an 

item, giving 64 the same function as 100 in normal use. 

Measuring Fountain & 

bridge 

building 

Two aspects of measuring become clear from these data. 

When constructing objects of specific size, the children 

tend to measure objects as an area, or in terms of the 

width of the empty space between the blocks. They have 

an idea of the empty space in the middle, but not of the 

outer length or of the number of blocks necessary to 

build the object, and use the empty space to create the 

rest of the construction.  

When connecting bridges or building outer walls of 

castles and other huge or tall buildings, altitudes are 

measured by use of the in-game ability to fly at an 

unchanging level. 

Locating Construction 

of circles, 

bridges  

In the many collaborative construction projects, visual 

block design is used to explain the construction process. 

Words are used to locate and describe objects or 

placement of single building blocks, along with use of 

the cubic design.  

Designing Houses, 

castles, 

bridges 

Altering of landscape and constructions is a key game 

feature in Minecraft, so that designing is a common 

activity in the observed games.  

The children’s culture of the afterschool program 

favoured huge constructions such as castles and extra 

detail, making these important aspects of designing. 

Symmetry and recurring design elements were part of 

almost every observed construction.  

Unlike Lego, the game design challenges the design 

process by making it impossible for the player to see 

anything other than the immediate area they are 

building, requiring the children to develop strategies for 

remembering construction parts and design patterns. 

Explaining  Spiral 

staircase, 

Explaining is one of the social norms in the group. 

Constructing together demands language and ways of 



  

build a 

circle, 

collaboration 

telling and showing to explain different methods of 

construction, usually involving a high degree of showing 

to provide visual support for words of location and 

amounts of different blocks used. 

Playing As the frame is a game in itself, and no specific game or play activities 

were observed within the game, there is no analysis under this heading 

 

CONCLUSIONS 

The mathematical actions discovered in the investigation are influenced both by the 

design of the game and the social and cultural conditions in the afterschool program. 

The game challenges the children to visualise and systematise constructions, as they 

try to realise their desire for unity, symmetry and aesthetics. New constructions and 

construction methods are learned from other children, by showing and telling as well 

as through trial and error. Demanding constructions originate from the children’s own 

game narratives, which they often develop in groups and in admiration of each 

other’s work. 

The game culture in the club differs from the children’s experience of playing alone 

at home, influencing the complexity of the children's constructions, their 

collaboration and knowledge sharing. The children explain that if they play at home, 

they create smaller constructions, and they create them alone. If they lack the 

knowhow to create specific constructions they wish to build, they use the Internet but 

are limited by having to comprehend English. In this manner, the after school 

program is where Minecraft itself becomes a place for shared actions and mutual 

challenges, impacting both on what is played and how it is played. 

Two aspects of the game’s design play a central role in providing challenges for the 

children’s construction activities. The game’s first-person perspective means that the 

player can see only that part of their construction that is directly in front of them. In 

relation to their idealised forms for identical staircases, towers, and so on, it means 

that the children cannot see the construction they are mirroring or copying while 

building. They are therefore forced to develop strategies in how to memorise the 

original construction, and this mediation of their actions changes the premise for 

construction in relation to, for example, working with building blocks. 

Because the game only features three-dimensional cubic elements or blocks, it is 

impossible to construct circles, lines and points. When the children compare widths, 

they often describe the width as the distance between the two outer lines of the 

blocks. This is problematic when, for example, determining the number of blocks 

needed for a construction with an inner spacing of 2 x 3, where the perimeter of the 

structure has a size in itself, going against their school knowledge of perimeters as 

having zero size. Building with cubes also changes how the children construct a 

circle, which is a difficult shape that has to be learned. 



  

In conclusion, it is worth reflecting on whether these data constitute evidence of an 

actual ethnomathematics, in line with d’Ambrosio’s (1985) descriptions of distinctive 

mathematical actions of indigenous people. This question is not easily answered. If 

Minecraft-mathematics is to be seen as an ethnomathematics, it is because it mediates 

the children’s actions, requiring problems to be solved in a different way than in the 

surrounding reality. It remains an open question whether the observed methods and 

systemisation constitute a coherent mathematical approach to the Minecraft world, or 

whether they are merely fragments of various approaches used by different children 

in different situations.  
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