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Abstract—In this paper, we investigate the operation of eICIC
in a realistic deployment based on site specific data from a dense
urban European capital area. Rather than the classical semi-
static and common network-wide configuration, the importance
of having highly dynamic and distributed mechanisms that are
able to adapt to local environment conditions is revealed. We pro-
pose a promising opportunistic cell association algorithm and a
generalized method for fast muting adaptation. The performance
results show that the traditional semi-static eICIC configuration
leads to modest gains in realistic deployments, whereas the set of
proposed fast dynamic eICIC algorithms leads to capacity gains
on the order of 35-120% depending on the local environment
characteristics. In the analysis of the performance results for the
site specific use case, it is furthermore highlighted how those
deviate from typical findings from 3GPP standardized HetNet
scenarios.

I. INTRODUCTION

To address downlink co-channel macro and pico inter-
ference problems, the Third Generation Partnership Project
(3GPP) has standardized Enhanced Inter-Cell Interference Co-
ordination (eICIC) for LTE networks. The fundamental princi-
ple of eICIC is to perform muting of certain subframes at the
macro-layer to reduce interference towards the pico-users. One
of the advantages of eICIC is that it offers increased flexibility
for load balancing between macros and picos. Despite the
relatively short time since the introduction of eICIC, the open
literature includes an impressive number of related studies. To
give a few examples, an overview of the eICIC scheme is avail-
able in [1] - [2]. In [3], the search for the optimal macrocell
muting pattern is formulated as a utility maximization problem,
and dynamic programming is used to solve it. In [4], the joint
optimization of the muting configuration and assignment of
users to macro and pico cells is studied as a network-wise
utility maximization problem, subject to using the same muting
pattern on all macrocells. As assumed for the majority of eICIC
studies, the first implementations of eICIC will likely adjust
the muting configuration and load balancing on time-scales
of hours or days based on collected spatio-temporal network
data [5]. For example, a centralized SON-based scheme for
eICIC parameter optimization was presented in [6], along with
demonstration of the benefits by using input from a radio
network planning tool with data from a HetNet deployment
in New York City. To the best of our knowledge, only two
recent studies propose using fast eICIC muting adaptation in
coherence with rapid traffic variations to further boost the
performance [7] [8].

The main contribution of this article is a dynamic frame-
work for autonomous operation of eICIC in a highly irregular
network network deployment, based on data from a European
capital area. The dynamic framework includes enhanced load

balancing at each call setup and a general method for fast
eICIC muting adaptation. The performance of the proposed
fast dynamic algorithms is compared to semi-static SON-based
schemes, where the eICIC-related parameters are set using a
heuristic search approach to find the best parameters.

The rest of the paper is organized as follows: The algo-
rithms for fast dynamic adjustment of muting patterns and load
balancing are presented in Section II. Section III outlines the
network model and considered performance metrics. Section
IV presents the corresponding performance results, followed
by concluding remarks in Section V.

II. DYNAMIC EICIC STRATEGIES

A. User Association

In the majority of the published eICIC studies it is assumed
that the serving cell index for the users is determined according
to the following rule,

i∗ = arg max
i
{PRSRP,i +REi} , (1)

where PRSRP,i is the Reference Signal Received Power
(RSRP) from cell i (in dBm) while REi is the Range Extension
(RE) for cell i (in dB). Assuming REi = 0 dB for macrocells
and REi ≥ 0 dB for picocells, the setting of the RE parameter
essentially determines the inter-layer load balancing, while
neglecting potential benefits of intra-layer load balancing. A
picocell with large value of RE is typically only able to
schedule its users in the extended cell range area during
the subframes where the macro is muted, and the pico-users
therefore are exposed to significantly less interference. The
muted subframes at the macro are referred to as Almost Blank
Subframes (ABS) [2]. The value of the RE offset, which is
signaled to the UEs using the Radio Resource Control (RRC)
protocol, is adjusted on a relative slow time-scale in order to
avoid excessive RRC signaling overhead at the air-interface.

In this study we consider a more elaborated dynamic user
association algorithm at each connection setup (user arrival).
Inspired by the opportunistic scheduling scheme by Knopp and
Humblet [9], we propose an equivalent method for selecting
the serving cell that offers the highest throughput to the user.
We refer to this criterion as opportunistic cell selection, and it
can be formally written as

i∗ = arg max
i∈F
{R̂i} , (2)

where i∗ is the selected cell, R̂i is the estimated throughput
for the user in cell i and F is the set of feasible candidate
cells that the UE can detect with a received power difference
of maximum 15 dB as compared to the strongest received cell.



The estimated throughput for the user in cell i is simply ap-
proximated by using Shannon’s capacity formula and assuming
equal resource sharing between the users per cell, i.e.,

R̂i =
1

ui + 1
W log2(1 + Γ̂i), (3)

where W is the carrier bandwidth, and Γ̂i is the conditional
estimated wideband SINR for the UE if served by cell i. The
value of Γ̂i is obtained as

Γ̂i =
Pi∑

n 6=i Pn +N0
(4)

for all macrocells, where N0 is the thermal noise power
and Pi is the received power from cell i. If cell i is a
picocell, the expression of Γ̂i is modified to exclude the
interference from the dominant macrocell in the denominator
of (4), i.e. assuming ABS in the dominant macro. Note that
the throughput estimation in (3) is rather simple and does not
fully account for the dynamic system behavior: The estimate is
optimistic for macrocells, since it does not capture the cost in
terms of throughput when the macro mutes some subframes;
and optimistic for the picocells, too, where the dominant macro
is assumed to mute all the time.

B. Generalized Fast ABS

The distributed algorithm for fast autonomous ABS ad-
justment by each of the macrocells is based on the work
originally presented in [7] [8]. The scheme relies on semi-
static configuration of few subframes as normal transmission
and ABS - also referred to as normal and mandatory ABS.
During those semi-statically configured subframes, users are
requested to perform time-domain restricted channel quality
feedback measurements to reflect the quality depending on
whether the macrocell is muting or not [8]. The remaining
majority of subframes are called optional ABS. The optional
ABS can be used as normal or ABS in accordance with the
desired optimization criterion. The macrocells decide shortly
before the beginning of the optional ABS if it shall be used
for normal transmission or ABS. It is assumed that each
macrocell makes such decisions autonomously without any
explicit coordination with its neighboring macrocells. The
macrocell bases its decisions on load measurements from the
picocells within its geographical coverage area, as well as
knowledge of its own carried load.

In the original algorithm [7], the load is monitored per
cluster, where each cluster is composed of one macrocell and
the associated picocells. However, in irregular deployments
like the scenario considered in this study, it is likely that users
associated to a picocell perceive different macro cells as the
strongest interferer. To deal with it, we propose an enhance-
ment to the algorithm such that the load report accounts only
for the victim pico-users that have the particular macrocell
requesting the load measure as their dominant interferer (i.e.
the victim users of that aggressor cell). This is important since
the macrocell uses the picocell load measures to quantify the
benefit of using macrocell muting.

In further outlining the algorithm, we use the following
notation: z and n denotes the number of subframes used
as ABS and normal in the current ABS period, respectively.

Further, TABS ∈ N is the repetition period of the ABS pattern,
uaggressor is the total number of users served by the aggressor
macrocell, uvictim is the sum of users from the surrounding
picocells that have the macrocell as their dominant aggressor,
and U = uaggressor +uvictim is the total amount of affected users.
Given these definitions, the dynamics of the algorithm is as
follows: For each optional ABS, the algorithm ensures first of
all that the ratio of macro users is served with an appropriate
ratio of normal transmission subframes, i.e.

uaggressor / U < n / TABS , (5)

If (5) is fulfilled, then it is checked whether the ratio of ABS
resources assigned so far is lower than the ratio of victim users,
i.e.

uvictim / U > z / TABS . (6)

If (6) is true, the current subframe is muted, and the victim
users will have an opportunity to be scheduled in the next
subframe. Otherwise, normal transmission is applied in the
subframe. The algorithm ensures first of all the service of
macro-users, since the coverage area of the macro eNB is much
larger, and the macro cell-edge users do not have the option
of being scheduled with reduced interference conditions. Each
of the macrocells acquire the value of uvictim from load
reports coming from the individual picocells; i.e. via inter-cell
signaling.

III. NETWORK MODEL AND PERFORMANCE METRICS

A. Site-specific network model

A three-dimensional (3D) topography map is used for
the considered dense urban European capital area. The map
contains 3D building data (i.e. building footprint and height)
as well as information on streets, open squares, parks, etc.
The area is dominated by multi-floor buildings. The building
height varies, with an average height of 14 meters. Macro base
stations are placed according to typical operator deployment
in the considered area to provide complete blanket coverage
[13]. The macro site antennas are deployed at different heights,
taking the local environment characteristics into account in
order to have good wide area coverage. The average macro
antenna height is in the order of 30 meters, using a few degrees
of antenna down-tilt. The considered network area includes
hundreds of macro-sites with sectorized antennas. However,
our performance analysis is based on data-collection only
from a 1.2 km2 segment of the area as pictured in Figure 1,
consisting of a number of macro-sites as well as 30 pico cells
with omni directional antennas. As indicated with solid lines in
Figure 1, the total network area is further divided into 5 sub-
regions, denoted Area 1 to 5. The areas have been selected
to represent localized areas with different characteristics that
are important for the performance of dynamic eICIC. To give
a few examples, Area 4 has the highest density of picos per
macro cell area, while Area 1 has picos deployed further away
from the dominant macro.

The pico cells are deployed outdoors at 5 meters height
in street canyons or at open squares according to the algo-
rithm in [13] to improve the overall fifth-percentile (5%-ile)
outage throughput of the network. Both macros and picos
are transmitting at the same 10 MHz carrier at 2.6 GHz.
The radio propagation characteristics are obtained by using



Fig. 1. Spatial location of macro and pico cells. The macro cells are marked
with circles and a line pointing in the direction of the main lobe of the
antenna (a.k.a. broadside). The triangular symbols mark pico cells with omni
directional antennas.

Fig. 2. Dominance area of the macro cells. Each colour represents different
macro cells.

ray-tracing techniques based on the Dominant Path Model
(DPM) [14] [15]. In coherence with observations from field
measurements, outdoor-to-indoor propagation is modeled by
including an additional 20 dB wall penetration loss as well as
0.6 dB per meter for the users placed inside the building [16].
Figure 2 shows the dominance area for the macrocells, where
each colour represents different cells. Notice that the coverage
area of each macrocell varies significantly, and deviates from
the assumption of regular hexagonal cells as typically assumed
for the generic 3GPP network models [11] [12].

B. Traffic modeling

A dynamic birth-death traffic model is assumed, where
generation of new users is according to a standard Poisson
point process with arrival rate λ. A fixed payload of B
bits is assumed for each user. Once the payload has been
successfully delivered to the user, the call is terminated and
the user is removed. The average offered traffic load therefore
equals L = λ · B. Whenever a new user is generated, the
spatial location of the user in the horizontal plane is chosen
randomly according to a discrete two-dimensional probability
mass function. The probability mass function expresses the
traffic density for each (horizontal) pixel of 10 x 10 meters

for the considered area in line with [13]. For users that are
placed at locations that coincide with multi-floor buildings,
there is equal probability of placement per floor. The spatial
traffic distribution is non-uniform with high variability of the
traffic density per pixel. In fact, 80% of the users are indoor,
although only 40% of the pixels represent areas with buildings.
Furthermore, the 10% of the pixels with highest traffic density
account for nearly 50% of the total offered traffic.

C. Performance metrics

The primary performance metric is the downlink end-user
experienced data rate for each call. Based on a large number
of samples of the users’ data rates, the empirical cumulative
distribution function (cdf) is built, enabling us to compute the
5%-ile outage and 50-percentile (50%-ile) experienced user
throughput. The system capacity is defined as the maximum
offered load that can be tolerated while still being able to serve
at least 95% of the users with 2 Mbps. As the considered
dense urban capital area is highly irregular, one has to be
careful if samples from the entire network area are used for
computing the defined performance metrics. The following
two approaches are considered: (i) Global performance based
on samples from users in the entire considered area, and (ii)
Localized performance based on samples from users positioned
in the defined Areas in Figure 1.

IV. SIMULATION RESULTS AND ANALYSIS

A. Simulation Methodology and Assumptions

The performance of the proposed solution is evaluated
with a system-level simulator following the LTE specifications,
including detailed modeling of major RRM functionalities
[17]. For each subframe of 1 ms, the experienced SINR for
each scheduled user is calculated per sub-carrier, assuming an
interference rejection combining (IRC) receiver [18]. Given the
SINR per subcarrier, the effective exponential SINR model
[19] for link-to-system-level mapping is applied to deter-
mine if the transmission was successfully decoded. Failed
transmissions are retransmitted using hybrid ARQ with ideal
Chase Combining (CC). The pico-users are configured to
report separate channel quality measurement feedback when
the macrocell is using normal transmission and ABS (and no
measures taken during optional ABS) [2], [7], [8]. Closed loop
2x2 single user MIMO with pre-coding and rank adaptation is
assumed for each link. Ideal cancellation of common reference
signals (CRS) interference from ABS is further assumed for
the pico-users [20]. Each cell schedules its users according
to the Proportional Fair algorithm. The time-variant traffic
model outlined in Section III-B is applied, assuming a payload
size of B =4 Mbits for each call. In order to obtain statisti-
cally reliable results, simulations are run for a time-duration
corresponding to at least 2800 completed calls. The default
assumptions for the simulations are summarized in Table I.

B. Global Performance Statistics

We first present performance results based on the collection
of statistics from the entire network, i.e. global performance.
Figure 3 shows the 5%-ile and 50%-ile user throughput as a
function of the average offered load in the whole network.
The selected range of offered load corresponds to a system in



Fig. 3. Summary of attained network performance for all considered dynamic eICIC strategies. (a) 5%-ile user throughput (b) 50%-ile user throughput

TABLE I. SUMMARY OF DEFAULT SIMULATION ASSUMPTIONS

Transmit power macro eNB: 46 dBm; pico eNB: 30 dBm
Bandwith 10 MHz at 2.6 GHz carrier frequency
Subframe duration 1 ms (11 data plus 3 control symbols)
Modulation and coding
schemes

QPSK (1/5 to 3/4), 16-QAM (2/5 to 5/6), 64-
QAM (3/5 to 9/10)

HARQ modeling Ideal chase combining with maximum 4 trans-
missions, 10% block error rate target

Transmission mode 2x2 closed loop with rank adaptation
Antenna gain Macro: 14 dBi; pico: 5 dBi; UE: 0 dBi
Antenna pattern Macro: 3D pico and UE: omni directional
eNB packet scheduler Proportional Fair (PF)
UE capabilities Interference Rejection Combining; UEs with

ideal CRS IC

equilibrium, where the carried traffic equals the offered load.
Higher values of load would lead to congestion. The legend
Network-wise RE refers to the case where user association is
according to (1), assuming the same value of RE for all the
picocells that maximizes the overall 5%-ile user throughput.
Similarly, semi-static eICIC refers to the case where the same
ABS muting pattern is used for all the macros. As expected, the
user throughput decreases as the load in the network increases.
When using network-wise RE and semi-static muting, the
optimal value of the parameters varies with the offered load.
At low offered load, a small value of RE is better, and there
is little gain from applying macro muting. This is due to the
fact that there is only marginal other-cell interference, and the
gain in these low-loaded cases comes from the application of a
small RE offset at the picocells. As the offered load increases,
both macrocells and picocells start having higher probability
of transmitting (and thus causing interference), and the system
converges to use more ABS at the macrocells and higher RE
at the picocells. In contrast to previous studies using 3GPP
simulation scenarios [2], semi-static eICIC provides gains only
for the 5%-ile user throughput, but not for the 50%-ile user
throughput. Instead, the importance of fast ABS in highly
irregular networks is clearly observed, leading to significant
gains for both the 5%-ile and 50%-ile user throughput at the
full range of considered offered traffic loads. Based on a closer
inspection of the global user throughput statistics, it is found
that the 5%-ile user throughput is primarily dominated by users
positioned in Area 2 (see Figure 1). This is due to the highly

irregular nature of the considered network; both in terms of
site locations and the non-uniform spatial traffic distribution.

C. Local Performance Statistics

To gain further insight into the performance, we next
analyze the local performance statistics collected for each of
the defined network areas as illustrated in Figure 1. Figure 4
shows the gain in user throughput performance of the eICIC
schemes for the different areas. These results are obtained by
loading the network up to the maximum tolerable load for
each area without using eICIC, followed by enabling eICIC
to quantify the experienced increase in end-user throughput.
Notice that Area 5 has no picocells and consequently there is
no reason for applying eICIC (not shown in the Figure). In
general, the eICIC performance gain is higher for the 5%-ile
user throughput, although worth-while gains are also observed
for the 50%-ile user throughput metric.

In Figure 5 the capacity gains for the different areas
are plotted. Recall that capacity is defined as the maximum
tolerable offered load while still being able to serve at least
95% of the users with a data rate of 2 Mbps. The capacity
gain is given in terms of the relative improvement from having
semi-static eICIC or dynamic eICIC as compared to no eICIC
(and no RE). The results show substantial capacity gains of the
dynamic eICIC for the considered areas, in the order of 35% to
120%. Here the fast ABS is responsible for most of the gains
from using dynamic algorithms. The opportunistic dynamic
cell selection techniques also provide benefits as it is the case
of Area 2, thanks to their inter-cell load balancing capabilities.
The highest gain from applying eICIC is observed for Area 2
and 4 as these regions are characterized by a relative higher
number of picocells that are exposed to dominant macrocell
interference. The highest capacity gain is achieved for Area 4.

The relatively large variability of the eICIC performance
gain from one local area to another emphasizes the importance
of basing the conclusions not only on the global performance
statistics, but also on the analysis of the local performance
statistics. Furthermore, as promising performance gains are
observed for local network areas of different characteristics,



Fig. 4. 5%-ile and 50%-ile user throughput relative gains per area, as
compared to baseline configuration with no eICIC.

it suggests that the proposed scheme is generally applicable
for other dense urban environments.

V. CONCLUSIONS

In this paper we have presented a fully dynamic framework
with fast adjustment of the ABS muting at the macrocells and
opportunistic cell association at each connection setup (user
arrival). We have evaluated the performance of the proposed
algorithms in a realistic network model based on data from
segments of a irregular dense urban European capital area.
As compared with semi-static SON-based schemes, where the
eICIC-related parameters are set per network area using a
heuristic search approach to find the best setting, the fast
dynamic algorithms can track fast traffic fluctuations and
autonomously adapt to the local network conditions. The joint
use of opportunistic cell selection and generalized fast ABS
provides a significant improvement in the studied KPIs (5%-
and 50%-ile users throughput, and capacity gain). The findings
shed additional light on the required network algorithms to
harvest the full potential of eICIC in a practical setting.
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