
Aalborg Universitet

Capturing Hotspots For Constrained Indoor Movement

Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

Published in:
21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM
SIGSPATIAL GIS 2013)

DOI (link to publication from Publisher):
10.1145/2525314.2525463

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ahmed, T., Pedersen, T. B., & Lu, H. (2013). Capturing Hotspots For Constrained Indoor Movement. In 21st
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM
SIGSPATIAL GIS 2013) (pp. 462-465). Association for Computing Machinery (ACM).
https://doi.org/10.1145/2525314.2525463

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://doi.org/10.1145/2525314.2525463
https://vbn.aau.dk/en/publications/c6f3a366-4976-42c6-8fac-0b16dcb927ec
https://doi.org/10.1145/2525314.2525463

Capturing Hotspots for Constrained Indoor Movement

Tanvir Ahmed, Torben Bach Pedersen, Hua Lu
Department of Computer Science

Aalborg University, Denmark
{tanvir, tbp, luhua}@cs.aau.dk

ABSTRACT
Finding the hotspots in large indoor spaces is very important for
getting overloaded locations, security, crowd management, indoor
navigation and guidance. The tracking data coming from indoor
tracking are huge in volume and not readily available for finding
hotspots. This paper presents a graph-based model for constrained
indoor movement that can map the tracking records into mapping
records which represent the entry and exit times of an object in a
particular location. Then it discusses the hotspots extraction tech-
nique from the mapping records.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph labeling; H.2.8 [Database Appli-
cations]: Spatial databases and GIS

General Terms
Algorithms, Design, Reliability, Theory

Keywords
Indoor tracking, graph based model, RFID, moving objects

1. INTRODUCTION
Technologies like RFID, Bluetooth, etc., enable a variety of in-

door tracking applications like people’s movement tracking in large
indoor space (e.g., airport, shopping mall, museum, etc.), airport
baggage tracking, items movement tracking in supply chain sys-
tem, etc. The huge amount of tracking data generated by these
types of systems is very useful for analyzing and decision making.
Detection of hotspots in an indoor space like airport baggage track-
ing will help the authority to manage the overloaded locations of
the baggage handling and handle the bags efficiently. In case of
airport people movement, detection of hotspots will give the idea
about where and when most of the peoples generally gather that
can help the authority to manage the crowd and for business it can
be a good idea for different location-based services.

It is unsuitable for indoor trajectories to use the geometric poly-
line representation that is used for outdoor trajectories. For exam-
ple if an object moves from one room to another then we will get

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11.
http://dx.doi.org/10.1145/2525314.2525463 .

two consecutive tracking records which represent the object loca-
tion in different rooms. But due to the drawback of indoor posi-
tioning technologies, the locations between these two records are
not obtained. As a result, it is not easily available when an object
enters and exits a particular location. Thus, it is also not easily
available how dense a location is. We take all of these complexities
into consideration and propose an approach for extracting hotspots
from indoor tracking data. To the best of our knowledge, this is the
first paper to consider how to capture hotspots from indoor tracking
data with constrained object movement.

Indoor space modeling for tracking of moving objects has been
proposed in [4,6]. We propose a graph based model which is highly
motivated by the model proposed in [4]. Their model converts the
raw RFID readings into tracking records containing the first and
last time of an object appeared within a reader’s activation range.
In our previous work [1], we converted the tracking records into
stay records containing the transition time between readers. In
the present paper, the tracking records are converted into mapping
records showing when an object actually entered and exited the
corresponding location. There are many works available for on-
line density queries and hot route queries on road networks [2,3,5].
However, the scenario of symbolic indoor tracking is different from
outdoor tracking as the geometric position of the object is not avail-
able in the indoor setting.

The remainder of the paper is organized as follows. Section 2
discusses the problem formulation. Section 3 describes the map-
ping of tracking records for semantic locations with graph-based
model. Section 4 presents the hotspot queries. Finally, Section 5
concludes the paper and discusses possible future research.

2. PROBLEM FORMULATION
Problem Scenario. We assume a setting where the paths be-

tween the locations are constrained and objects are continuously
moving from one location to another. We call such location as con-
strained path (CP) symbolic location. The objects cannot move
freely and the locations are in some sense one dimensional. The
size of a CP symbolic location is measured by length not by area.
Fig. 1 shows an example of a CP, which is a conveyor of an airport
baggage handling system. The conveyor is divided into different
symbolic locations like check-in 1, check-in 2, screening, sorter-1,
sorter-2 and chutes. More detail about the baggage tracking pro-
cess can be found in [1]. In our setting, the tracking devices are
strategically deployed at different fixed locations inside the indoor
space, e.g., each section of conveyor belts. The objects contain tags
or devices which can be tracked by the tracking devices. For exam-
ple, in case of RFID technology, the tracking devices are RFID
readers and the objects contain RFID tags. Different tracking de-
vices have different sensing ranges. After deployment of the track-

M

C
h

u
te

 9
C

h
u

te
 1

0
C

h
u

te
 1

1
C

h
u

te
 1

2

C
h

u
te 5

C
h

u
te 6

C
h

u
te 7

C
h

u
te 8

C
h

u
te 4

C
h

u
te 3

C
h

u
te 2

C
h

u
te

 1
3

C
h

u
te

 1
4

C
h

u
te

 1
5

C
h

u
te

 1
6

C
h

u
te 1

L2 = Check-in 2 conveyor

L1 = Check-in 1 conveyor

Sc
re

en
in

g
M

ac
h

in
e

L4 = Sorter 1 conveyorL5
 =

 S
o

rt
er

 2
 c

o
n

ve
yo

r

L3
=S

cr
ee

n
in

g
C

o
n

ve
yo

r

dev1

d
e
v3

d
e
v4

dev5

dev2

Check-in
Desks

Outdoor Area
L9=Gateway 1 L10 = Gateway 2

dev6 dev7

Wagon

L11 = Belt Loader1

Wagon

l*
,4

s
=

5
m

l d
4
=
3
m

l 4
,4

e
=
 2

2
m

l*,5s = 3mld5 = 3m

l 4
,5

e
=
 8

m

l 5
,*

e
=

2
2
m

d
ev
9

l*,1s = 4mld1=2ml1,*e = 4m

l*,2s = 4mld2=2ml2,*e = 4m

l2
,3

s =
 6

m

l 1
,3

s
=
 8

m

l
d
3

 =
 3

m

l3,*e = 3m

P3

P4

P
2

P
1

P6

P
7

P8

P5

Figure 1: Constrained Path in airport baggage management

ing devices, their positions are recorded in the database. In Fig. 1
the circles represent the deployment of the RFID readers and their
tracking ranges. When an object comes under a tracking device’s
activation range, it is continuously detected by the tracking device
with a sampling rate and it generates raw reading records with the
form: (trackingDeviceID, ObjectID, t). It means that a tracking de-
vice trackingDeviceID detects a moving object ObjectID in its ac-
tivation range at timestamp t. A TrackingRecord(recordID, Objec-
tID, TrackingDeviceID, tin, tout) table [1] is constructed from the
raw tracking sequence, where recordID is tracking record identifier
and tin, tout respectively represent the timestamps of first reading
and last reading of ObjectID by TrackingDeviceID in its activation
range. An example of a table containing tracking records of an ob-
ject o1 from Fig. 1 is shown in Table 1. In this table the record rec1
means that object o1 is observed by tracking device dev1 from time
4 to 5, and record rec3 means that o1 is observed by dev3 from time
15 to 18. Due to the limitation of indoor positioning systems, it is
unknown what position of o1 is between 6 and 14 without knowing
the floor plan.

Table 1: Tracking Records of Indoor Moving Objects

RecordID ObjectID TrackingDeviceID tin tout
rec1 o1 dev1 4 5
rec3 o1 dev3 15 18
rec5 o1 dev4 26 29
rec8 o1 dev4 51 54
...

Problem Definition. Let L be the set of all symbolic locations
inside a large indoor space, L = {l1, l2, l3, ... , lk}. The capacity
of location li is denoted by ci = capacity(li). The capacity of a
CP symbolic location is a function of length. For example, the
capacity of check-in 1 conveyor in Fig. 1 depends on its length.

Definition 1 (Capacity). The capacity of a location li is the num-
bers of objects that can be reside at li during a defined time unit.

For example, the capacity of check-in 1 conveyor in Fig. 1 can
be 20 objects per minute.

Definition 2 (Density). Let ni be the number of distinct objects
at location li during the time interval, w = [tstart , tend] and ci =
capacity(li) be the capacity of location li. Then density of location
li for interval w is defined as,
di = ni

∆t×capacity(li)
×100%, where ∆t = tend - tstart.

From the definition we can see that, the value of density gives us

how dense a location is as a percentage value.
Definition 3 (Hotspot). A location li can be considered as a

hotspot for interval w if di exceeds a given threshold θ.
Definition 4 (Hotspot Query). Find all the hotspots H ⊆ L, for

time interval w.

3. SEMANTIC LOCATION MAPPINGS
A tracking device covers a very small portion of a location. As a

result it is not sufficient to know when an object actually entered
(timestart) and exited (timeend) the corresponding location. So
there must be a mapping strategy for retrieving such location and
timing information.

Modeling Symbolic Locations. In our setting each symbolic lo-
cation contains only one tracking device deployed in it. For ex-
ample in Fig. 1 check-in 1 is represented by dev1. After passing
dev1 and dev3 when a bag goes to sorter-1 it will be read by dev4
and then it may go to sorter-2 or chute or it may circulate within
sorter-1. For mapping between tracking records and the seman-
tic locations, a reader deployment graph (RDG) can be constructed
from the indoor plan given in Fig 1. Relevant details about the
concept of reader deployment graph can be found elsewhere [4].
Although an RDG is capable of mapping the location of an object
from the tracking records, it does not provide sufficient information
for mapping the tracking entry and exit time to the actual entry and
exit time. For more precise entry time and exit time we extend
the RDG with a more detailed model called the Extended Reader
Deployment Graph (ERDG). For this, some definitions are needed:

Definition 5 (Covered distance). Given a path p and a tracking
device d, the Covered distance (CD) is the length of the part of p
that is covered by d’s detection range. CD for a tracking device
devi is denoted as ldi. For example in Fig. 1 ld1 = 2m shows the
CD of dev1 at L1.

Definition 6 (Entry lag distance). The entry lag distance (ENLD)
from location Lx to Ly denoted as lx,ys

is the distance from the
ending point of Lx to the first reading point at Ly .

For example, consider Fig. 1. The journey of an object at lo-
cation L3 can start from either points P1 or P2 depending on
whether the object is coming from L1 or L2. While moving at
L3 the object will be first tracked by dev3 when it comes at point
P3. Here the distance between the point P1 and P3 is the Entry
lag distance (ENLD) which is denoted as l1,3s and similarly ENLD
between P2 and P3 is denoted as l2,3s. It can be seen that a lo-
cation Ly can have many ENLDs depending how many locations
end at Ly . In our running example l1,3s = 8m and l2,3s = 6m.
However we use a special notation l∗,ys, which indicates that the
ENLD at Ly is same regardless of where an object is coming from.
In our example l∗,4s = 5m is the ENLD of location L4 from any
location ended at L4.

Definition 7 (Exit lag distance). Conversely the exit lag distance
(EXLD) from location Lx to Ly denoted as lx,ye

is the distance
from the last reading point at Lx to the exit point of Lx that leads
to location Ly .

Similar to ENLD, let us consider Fig. 1. The journey of an object
at location L3 ends when it passes the point P5 and reaches loca-
tion L4. While traveling through L3 the object was last detected by
dev3 when it was at point P4. Here the distance between P4 and
P5 is the Exit lag distance (EXLD) of L3 which is denoted as l3,4e.
As L3 has only one destination, the EXLD of L3 is always same
regardless of destination. So instead of using l3,4e we use l3,∗e in
this case. In our example the value of l3,∗e is 3 meters. Similar to
ENLD, a location can have many EXLDs. For example an object
can leave location L4 by going to L5 through P7 or can circulate
in L4 and leave within any point between P6 and P8. As a result

L4 has two EXLDs l4,5e = 8m and l4,4e = 22m.
The ERDG is formally defined by a labeled directed graph G =

(L, E, T, lbE):
1. L is the set of locations where each location is represented as

a vertex in the graph. If a location does not contain any track-
ing device deployed in it then the corresponding location is
labeled as a virtual location Lvx where x is an integer.

2. E is the set of directed edges: E = {(li,lj) | li, lj∈L}.
3. T is a set of tuples of the form 〈D, Flag, Ldx, {Ls}, {Le}
〉, where D is a tracking device, Flag indicates whether it is
a CP or not, {Ldx} is the CD of D, {Ls} is a collection of
ENLDs and Le is a collection of EXLDs.

4. lbE is a function lbE : E → T that labels an edge by a tu-
ple from T . An edge (li, lj) ∈ E is labeled by a tuple
Ti,j〈dk, ldk , li,js, lj,∗e〉 ∈ T where dk is a tracking device
deployed at location lj , ldk is the CD for dk, li,js is an ENLD
and EXLD for all the out-going locations from lj is shown
as lj,∗e . An edge is labeled by a tuple Tvx,j ∈ T if virtual
tracking device devvx is assumed to be deployed at location
Lvx . Fig. 2 shows an example of the ERDG of the floor plan
of Fig. 1. Let us consider edge (L1,L3) where the tuple T1,3

is assigned. The content of the tuple is the tracking device
dev3 which is deployed at L3, ld3 which is CD for dev3,
l1,3s is the ENLD from L1 to L3 and l3, ∗e is the EXLD
from L3 to any next destination.

Desks

L1

L2

L3

L4

L5

T0,1

T0,2

T1,3

T2,3

T3,4

T4,5 T4,v1

T 4
,4

T5,5

Lv1
T5,v2Lv2

T0,1 = (dev1, CP, l*,1s = 4m, ld1 = 2m, l1,*e = 4m);
T0,2 = (dev2, CP, l*,2s = 4m, ld2= 2m, l2,*e = 4m);
T1,3 = (dev3, CP, l1,3s = 8m, ld3= 3m, l3,*e = 3m);
T2,3 = (dev3, CP, l2,3s = 6m, ld3= 3m, l3,*e = 3m);
T3,4 = (dev4, CP, l*,4s = 5m, ld4= 3m, l4,5e = 8m, l4,4e = 22m);
T4,4 = (dev4, CP, ld4= 3m, l4,5e = 8m, l4,4e = 22m);
T4,v1 = (devv1, SCP);
T4,5 = (dev5, CP, l*,5s = 3m, ld5= 3m, l5,*e = 22m);
T5,5 = (dev5, CP, ld5= 3m, l5,*e = 22m);
T5,v2 = (devv2, SCP); Tv1,9 = (dev9, SCP); Tv1,10 = (dev10, SCP)
Tv2,9 = (dev9, SCP); Tv1,10 = (dev10, SCP)

L9

L10

Tv2,9

Tv2,10 Tv1,10

Tv1,9

Figure 2: Extended Reader Deployment Graph (ERDG)
We define three mapping structures: location to device-InL2DIn:

L→ D, location to device-Out L2DOut: L→ 2D and Device to
Location D2L: D→ L, where L is the set of all locations and D
is the set of all tracking devices. For a location l, L2DIn(l) re-
turns the tracking device deployed at l. From the graph it returns
the tracking device which is labeled in any edge(s) where l is the
destination. Since a CP location contains only one tracking device,
all the incoming edges of a location will be labeled by same track-
ing device. On the other hand L2DOut(l) returns all the tracking
device(s) which are labeled in edge(s) where l is the source. These
devices are deployed in the adjacent next locations of l. In the third
mapping for a tracking device dev, D2L(dev) returns the location
of dev, that means the destination vertex of the edge that has dev in
its label. In the running example of Fig. 2 L2DOut(L4) = {dev4,
dev5, devv1}, L2DIn(L4) = dev4, and D2L(dev4) = L4.

Mapping for CP Symbolic Locations. For mapping the timein
and timeout of an object o at a tracking device dev into the timestart
and timeend of o at location l we use the topological information
described in the ERDG in Fig. 2. However both of these values
depend on the speed of o at l. We use Eq. (1), (2) and (3) for
deriving the speed, timestart and timeend respectively. In all these
equations timein and timeout are taken from tracking records at
L2DIn(l). In Eq. (1) CD (devx) represents the CD of L2DIn(l) =
devx. In Eq. (2) the ENLD depends on where the object is coming
from and the value is taken from tuple TprevLoc,l. In Eq. (3) the
EXLD is taken from tuple Tl,nextLoc.

Speed :=
CD(devx)

(timeout − timein)
(1)

Adev1 devv

dev1

dev1

(a) type 1 node

Adev1

devv

dev1

dev1

d
ev 1

(b) type 2 node

Adev1

dev4
dev1

dev1

d
ev 1

devv

dev3

(c) type 3 node

Adev1

dev4
dev1

dev1

d
ev 1

dev2

dev3

(d) type 4 node

A
dev2

dev1

dev1

dev3
dev4

dev1

(e) type 5 node

Figure 3: Types of Nodes in CP symbolic locations

timestart := timein −
ENLD
Speed

(2)

timeend := timeout +
EXLD
Speed

(3)

For example, consider the second tracking record 〈o1, dev3, 15,
18〉 of Table 1. From the graph, CD of dev3 = 3 meters and
D2L(dev3) = L3. So the speed of o1 at location L3 is : speed =

3
18−15

= 1 meter/second (we assume the duration is measured in
seconds). Similarly we can find the timestart of o1 in D2L(dev3)
= L3. The previous tracking record says that the object o1 was
tracked at dev1 before dev3. So from ERDG we need to get the
information from the edge, E(D2L(dev1) = L1, D2L(dev3) = L3).
The ENLD from L1 to L3 is l1,3s = 8m. Now with the help of
Eq. (1) and (2), the timestart = 15 - 8m

3m/(18−15)
= 7.

Depending on the topological structure of the location, an object
may have many timeouts from the same tracking device. For ex-
ample L4 and L5 has loops where an object can circulate in the
location which may results in multiple tracking records for same
object from the devices L2DIn(L4) and L2DIn(L5). Based on
the topological connectivity of a location we classified the nodes of
the deployment graph into five types. Fig. 3 shows the five node
types. Different types of nodes and the way of deriving the exit
time of objects from that node is explained next.

Node Types. Node type 1 contains only one outgoing edge and
the outgoing edge is labeled by devvx . A location l falls in Node
type 1 ifL2DOut(l) = {devvx}. Fig. 3a shows an example of Node
type 1. As the next location of this type of node has no tracking
device deployed, it is certain that the object left the location through
virtual tracking device devvx which actually does not generate any
tracking record. In Eq. (3) the timeout of an object oi at this type of
location li is taken from the tracking record of oi at L2DIn(li) and
EXLD li, ∗e is taken from the tuple TLprev,li of edge(Lprev, li).

Node type 2 contains two outgoing edges. One outgoing edge is
labeled by devvx and another one is a loop. A location l falls in
Node type 2 if L2DOut(l) = {L2DIn(l), devvx}. Fig. 3b shows
an example of Node type 2. In our example, L5 is this type of
node. Here an object can circulate within the location which gen-
erates multiple tracking records and at the end the object leaves the
location through devvx . The timeend of the object is calculated
using Eq. (3), where timeout is taken and speed is calculated from
the last tracking record of the object from the tracking device of that
location. Suppose an object o2 contains a single record from dev5:
(o2, dev5, 36, 39). It means that o2 did not circulate at D2L(dev5)
= L5 and left the location to any one of the chutes. It is not possible
to know when the object actually left L5. However we can get the

maximum possible value of timeend with the help of EXLD from
the edge (*, L5) which is l5,∗e = 22m and CD for dev5 = ld5 = 3m.
So the timeend = d39 + 22m

3m/(39−36)
e = 61.

Node type 3. In addition to the two outgoing edges like Node
type 2, it has one or more edge(s) where destination locations have
tracking devices deployed. A location l is considered to be Node
type 3 if |L2DOut(l)| > 2 and {L2DIn(l), devvx}⊂L2DOut(l).
Here an object can circulate in the same location and it can leave
the location through devvx or other tracking devices. Fig. 3c shows
an example of Node type 3. In our running example L4 falls in this
type of node. As the object may circulate within the location we
take timeout in the similar way of Node type 2. However, the EXLD
in Eq. (3) depends on the destination of the object. If the object has
any tracking record from L2DOut(l) \ {devvx} (where l is Node
type 3) then the object did not leave the location l through devvx .
Otherwise it has left the location through devvx without generating
any tracking record. For the first case we take the corresponding
EXLD otherwise we take the EXLD for the loop. For example,
for L4, L2Dout(L4) ={dev4, dev5, devv} where dev4 = L2In(L4).
As the object o1 in Table 1 has no tracking record from dev5, the
object o1 should circulate at L4 and left the location through devvx
without generating any tracking record. So, the timeend of object
o1 from L4: timeend = d54 + 22m

3m/(54−51)
e = 76.

Node type 4 and Node type 5 do not contain any outgoing edge
with devvx in label. These two node types are very similar ex-
cept that Node type 4 contains a loop and Node type 5 does not.
Fig. 3d and Fig. 3e show examples of Node type 4 and Node type
5 respectively. In our running example L1, L2, L3 falls in Node
type 5. As Node type 4 contains a loop, the timeend of an object o
from a location l of Node type 4 is calculated from the last timeout
from the tracking records like Node type 2 and 3. However the
EXLD ll,Lnexte is taken from the edge(Lprev , l). For Node type 5
the timeout is directly taken from the tracking record as there is
no loop in it. The EXLD in Node type 5 is taken similarly as in
Node type 4. In our running example the timeend of o1 from L3 is
calculated as: timeend = d18 + 3m

3m/(18−15)
e = 21.

Table 2 shows the results after mapping from Table 1.

Table 2: MappingTable for Table 1

MappingID ObjectID LocationID timestart timeend

map1 o1 L1 2 7
map3 o1 L3 7 21
map5 o1 L4 21 76

4. HOTSPOT QUERIES
The hotspots can now be extracted from the tracking records af-

ter mapping into MappingTable. A hotspot query HQ[qs, qe, θ]
finds the hotspots between time qs and qe where θ is the density
threshold. In the inner part of a HQ, there is a density query (DQ),
a count query (CQ) and a tracking record query (RQ). Fig. 4 shows
the approach for processing a hotspot query. When aHQ[qs, qe, θ]
query is asked, the system issues aDQ[qs, qe], theDQ[qs, qe] then
issues a CQ[qs, qe] which issues an RQ[qs, qe]. The RQ gets the
mapping table from the database and returns the mapping records
where [timestart, timeend] intersects with [qs, qe]. From the rel-
evant records, the CQ counts the number of objects for each lo-
cation. The DQ then finds the density of each location from the
count results with the help of capacity of the corresponding loca-
tion. The HQ then returns the locations with density>θ. All of
these queries can be combined into a single query and can be ex-
ecuted jointly. For a relational database the joint query becomes
the following SQL statement. In the joint query, the RQ becomes

the part of the WHERE condition, the COUNT(DISTINCT Objec-
tID) is used for CQ, the DQ is represented in the column list and is
computed with the help of CQ and a Capacity(Location) function.
The results are grouped based on location using GROUP BY and
temporary stored in an inline view. Finally the HQ is completed
with the help of a WHERE condition on the results from the inline
view.

Hotspot Query
HQ[qs, qe, θ]

Density Query
DQ[qs, qe]

Count Query
CQ[qs, qe]

Tracking Record
Query RQ[qs, qe]

Database

Mapping Table

Issue

Issue

Issue Request
data

Return
Mapping Table

Return number
of objects for
each location

Return density for
each location

Return locations
where density>θ

What are the
hotspots between

time qs and qe

where the density
threshold is θ

Issue

Return tracking
records for [qs, qe]

Figure 4: Query steps

SQL:SELECT location, density FROM (SELECT location, (COUNT
(DISTINCT ObjectID) / (te-ts)) / Capacity (location) * 100 AS den-
sity FROM MappingTable m WHERE (m.tin BETWEEN ts AND
te) OR (m.tout BETWEEN ts AND te) OR (ts BETWEEN m.tin
AND m.tout) GROUP BY location) WHERE density > θ

5. CONCLUSION AND FUTURE WORK
We proposed an approach to extract the hotspots from indoor

tracking data. We developed a graph-based model for mapping the
tracking records with the semantic location so that it is possible to
know the entry and exit times of an object at a constrained path
symbolic location. Then the mapping records are used for hotspots
extraction. The mapping records are also very useful for other kind
of analyses e.g., stay duration, travel time estimation etc.

Future work will be to model more complex indoor topologies
for mapping the same information we did for constrained path. An
indexing technique for efficient query processing can be developed.
Hotspot query for online indoor tracking data will be another rele-
vant future work.

Acknowledgment
This work is supported by the BagTrack project funded by the
Danish National Advanced Technology Foundation under grant no.
010-2011-1.

6. REFERENCES
[1] T. Ahmed, T. B. Pedersen, and H. Lu. A data warehouse

solution for analyzing RFID-based baggage tracking data. In
MDM (1), pages 283–292, 2013.

[2] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J.
Tsotras. On-line discovery of dense areas in spatio-temporal
databases. In SSTD, pages 306–324, 2003.

[3] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective
density queries on continuously moving objects. In ICDE,
page 71, 2006.

[4] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor
tracking. In MDM, pages 122–131, 2009.

[5] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road networks. In
SSTD, pages 441–459, 2007.

[6] M. F. Worboys. Modeling indoor space. In ISA, pages 1–6,
2011.

