

Aalborg Universitet

Finding dense locations in indoor tracking data

Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

Published in:
Proceedings of the 15th IEEE International Conference on Mobile Data Management (MDM)

DOI (link to publication from Publisher):
10.1109/MDM.2014.29

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Ahmed, T., Pedersen, T. B., & Lu, H. (2014). Finding dense locations in indoor tracking data. In Proceedings of
the 15th IEEE International Conference on Mobile Data Management (MDM) (pp. 189-194). IEEE Computer
Society Press. DOI: 10.1109/MDM.2014.29

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 22, 2018

https://doi.org/10.1109/MDM.2014.29
http://vbn.aau.dk/en/publications/finding-dense-locations-in-indoor-tracking-data(4f6711c2-c8b0-481d-b347-fbc0ecaac9b8).html

Finding Dense Locations in Indoor Tracking Data

Tanvir Ahmed Torben Bach Pedersen Hua Lu
Department of Computer Science, Aalborg University, Denmark

Email: {tanvir, tbp, luhua}@cs.aau.dk

Abstract—Finding the dense locations in large indoor spaces
is very useful for getting overloaded locations, security, crowd
management, indoor navigation, and guidance. Indoor tracking
data can be very large and are not readily available for finding
dense locations. This paper presents a graph-based model for
semi-constrained indoor movement, and then uses this to map
raw tracking records into mapping records representing object
entry and exit times in particular locations. Then, an efficient
indexing structure, the Dense Location Time Index (DLT -Index)
is proposed for indexing the time intervals of the mapping
table, along with associated construction, query processing, and
pruning techniques. The DLT -Index supports very efficient
aggregate point queries, interval queries, and dense location
queries. A comprehensive experimental study with real data
shows that the proposed techniques can efficiently find dense
locations in large amounts of indoor tracking data.

I. INTRODUCTION

Technologies like RFID and Bluetooth enable a variety of

indoor tracking applications like tracking people’s movement

in large indoor spaces (e.g., airport, office building, shopping

mall, and museums), airport baggage tracking, items move-

ment tracking in supply chain system, etc. The huge amount of

tracking data generated by these types of systems is very useful

for analyses and decision making. These analyses are useful

for different kinds of location-based services, finding problems

in the systems, and further improvement in the systems. Unlike

GPS based positioning for outdoor systems, indoor tracking

provides the symbolic locations of the objects in indoor space.

Examples of symbolic locations include security and shopping

areas in airports, and the different sections of rooms in mu-

seum exhibitions. In airports, the bags pass different symbolic

locations in each step like check-in, screening, sorting, etc.

Finding the dense or overloaded baggage handling locations

helps handling bags more efficiently. For passengers moving

in an airport, detecting dense locations shows where and when

passengers gather, and can be used for crowd management and

providing location-based passenger services.

In our previous short paper [1], we proposed a graph based

model and mapping technique for capturing dense locations

in constrained indoor movement only. In the present paper,

we additionally model semi-constrained indoor movement and

provide technique that maps the indoor tracking records into

mapping records with the entry/exit times of an object at a

symbolic location. The derived mapping records can be used

for finding dense locations as well as for other analyses like

stay duration estimation, etc. We also propose an efficient

indexing structure, the Dense Location Time Index (DLT -

Index), which stores aggregate information like the number of

objects entering, exiting, and present at a location at different

timestamps or time intervals. Additionally, we provide efficient

techniques for index construction and processing dense loca-

tion queries (as well as point and interval queries) on large data

sets, and an efficient pruning technique for the DLT -Index.

Finally, we perform a comprehensive experimental evaluation

with real data showing that the proposed solutions are efficient

and scalable.

The remainder of the paper is organized as follows. Section

2 gives the problem formulation. Section 3 describes the

graph-based models and the mapping of tracking records.

Section 4 presents the DLT -Index and the associated query

processing and pruning techniques. Section 5 presents the ex-

perimental evaluation. Section 6 reviews related work. Finally,

Section 7 concludes the paper.

II. PROBLEM FORMULATION

The movements of objects inside indoor space varies with

the structure of the paths. Based on the path structure we

categorize the indoor spaces into two categories.

Constrained Path Space(CPS): In a constrained path space

(CPS), objects move continuously from one symbolic location

to another. The objects cannot move freely inside the locations

and the locations are in some sense one dimensional. The size

of locations inside CPS is measured by length not by area.

Example of a CPS can be the conveyor belt system of

an airport baggage handling system. The conveyor is divided

into different symbolic locations like check-in belts, screening

belts, sorter belts, etc. More detail about the constrained indoor

movement can be found in [1] and about the baggage tracking

process in [2].

Semi-Constrained Path Space (SCPS): In a semi-

constrained path space (SCPS), the objects move more freely

compared to a CPS. The objects move from one symbolic

location to another and they can also stay some period of

time inside the locations. The locations are two-dimensional.

The size of SCPS locations is measured by area not by length.

Examples can be movement of people between rooms in

office space or museums, different sections in airports etc.

Fig. 1 shows an example of an SCPS. The indoor space

is divided into different symbolic locations e.g., rooms, hall

ways etc. For entering and exiting a room, an object has to

cross the entry/exit points (e.g., doors). Some entry/exit points

are unidirectional and some are bi-directional. The arrows

represent the unidirectional movements.

In our setting, the tracking devices are strategically deployed

at different fixed locations inside the indoor space, e.g., each

Outdoor area: L0

L2 L1

L3

L4

L5

dev10

de
v9

dev8

de
v6

de
v3

de
v5

dev4

de
v7

dev11

de
v2

dev1

Fig. 1: Semi-constrained space

section of conveyor belts, door of a room, between sections

of a hallway etc. The objects contain tags (e.g., RFID tags,

Bluetooth devices, etc.,) that can be tracked by the tracking

devices (e.g., RFID readers, Bluetooth access points etc.,).

In Fig. 1 the circles represent the deployment of the RFID

readers and their tracking ranges. When an object comes under

a tracking device’s activation range, it is continuously detected

by the tracking device with a sampling rate and it generates

raw reading records with the form: (trackingDeviceID, ObjID,
t). It means that a tracking device trackingDeviceID detects a

moving object ObjID in its activation range at timestamp t. A

TrackingRecord(recordID, ObjID, TrackingDeviceID, timein,
timeout) table is constructed from the raw tracking sequence,

where recordID is record identifier and timein, timeout re-

spectively represent the timestamps of first reading and last

reading of ObjID by TrackingDeviceID in its activation range.

An example table for tracking records of an object o1 at floor

plan of Fig. 1 is shown in Table I. Here, the record rec3 means

that o1 is observed by device dev3 from time 15 to 18.

TABLE I: Tracking Records of Indoor Moving Objects

RecordID ObjID TrackingDeviceID timein timeout

rec1 o1 dev1 4 5
rec3 o1 dev3 15 18
rec5 o1 dev4 26 29
rec8 o1 dev4 51 54

Problem Definition. Let L be the set of all symbolic

locations inside a large indoor space, L = {l1, l2, l3, ... , lk}.

The capacity of location li is denoted by ci = capacity(li).
Definition 1 (Capacity). The capacity of a location li is the

numbers of objects that can appear in li during a given time

unit.

For example, the capacity of room L3 of Fig. 1 can be 20

persons per 15 min.

Definition 2 (Density). Let ni be the number of objects

appearing in location li during the time interval, w = [tstart,
tend] and ci = capacity(li) be the capacity of location li. Then

the density of location li for interval w is defined as,

di = ni

Δt×capacity(li)
×100%, where Δt = tend - tstart.

Thus, the density shows how dense a location is, as a

percentage value.

Definition 3 (Dense Location). A location li can be con-

sidered as a dense location (DL) for interval w if di exceeds

a given threshold θ.

Definition 4 (Dense Location Query). A dense location
query (DLQ) finds all the dense locations ⊆ L, for time

interval w.

III. SEMANTIC LOCATION MAPPINGS

A location is typically not fully covered by a tracking

device. Moreover, a tracking record contains only the first and

last times an object appeared inside the activation range of a

tracking device. As a result it is not directly available when

an object actually entered (timestart) and exited (timeend) the

corresponding location. So mapping strategies are required for

retrieving such location and timing information.

As mentioned earlier, in our previous short paper [1] we

modeled constrained indoor movement like CPS and described

how to convert tracking records into mapping records that

contain the entry time (timestart) and exit time (timeend) of

objects at different locations. For CPS, some locations contain

only one tracking device deployed at any point in each of

them and some adjacent locations may not contain tracking

devices. An extended reader deployment graph (ERDG) was

proposed that contains various topological information like

entry lag distance(ENLD), exit lag distance(EXLD), covered

distance(CD) etc. The timing information from the tracking

records and the corresponding CD from the ERDG is used

to calculate the speed of the object at the corresponding

location. Depending on the topological structure, the nodes

were categorized into 5 types. All this information helped for

finding the entry and exit time of an object at a CPS location.

All details can be found in [1].

In an SCPS, a tracking device is deployed at each entry and

exit points of a location. Moreover, the movement can be both

uni-directional and bi-directional. For example in Fig. 1 the

door containing dev1 can be used for both entering and exiting

the location L1 and the door with dev6 can be used only to

enter L2. Since in SCPS the tracking devices are deployed in

the entry and exit points of a location, it is easier to find the

entry and exit times of objects for this type of locations from

the tracking records compared to CPS. Thus, calculating the

speed of the objects is not needed and thus the parameters

ENLD, EXLD and CD are not useful for SCPS. However, we

also need to consider that there can be multiple entry and

exit points in an SCPS location. A Reader Deployment Graph

(RDG) [5] is used for modeling SCPS. Fig. 2 shows the RDG
for the floor plan given in Fig. 1. The RDG is a directed graph

where each symbolic location is represented as node and the

connection between the locations are represented as edge. Each

edge is labeled by the tracking devices deployed between the

locations. For mapping, we define a mapping function called

Dest: {l, d}→l′, where l, l′∈L and d∈D. The functionDest(l,
d) returns node l′ from the graph where d is the label for the

edge E (l, l′)∈E. It means that, an object traveling from l to

l′ should be detected by d. For mapping, initially the location

of an object o is assumed to be in the outdoor location L0.

Then each tracking record of o is accessed and it is determined

where o is entering with the help of Dest function. Then the

timein in the tracking record becomes timestart and the timein

of the next tracking record becomes timeend for the entered

location. For example in Table I, record rec1 represents that o1
was tracked by dev1 from time 4 to 5. The initial location of o1
is considered as L0. From the graph in Fig. 2, Dest(L0, dev1)
= L1. From tracking record, timestart = timein = 4. However,

the timeend = timein from rec3 = 15. So the mapping record

says that o1 was at L1 from time 4 to 15. Table II shows the

SCPS mapping results for Table I.

L0

L1

L2
L3

L4

L5

dev1, dev10

dev1, dev10, dev11

de
v6

, d
ev

7
dev2

, d
ev3

dev5

dev8

dev9

dev2
, d

ev3

de
v4

de
v4

dev5

Fig. 2: Graph based model for SCPS

TABLE II: MappingTable for Table I considering SCPS

MappingID ObjectID LocationID timestart timeend

map1 o1 L1 4 15
map3 o1 L4 15 26
map5 o1 L5 26 51
map5 o1 L4 51 ...

IV. EFFICIENT DENSE LOCATION EXTRACTION

The dense locations can now be extracted from the mapping

records in MappingTable. As seen, a mapping record contains

the entire stay of an object inside a location. For a CPS

location like baggage on a conveyor belt, it is not common

an object appears multiple times at same location whereas it

is common for an SCPS location. In our setting, an object

visiting a location multiple times is treated as multiple objects

for density computation for that location, since a reappearance

contributes to the density.

A DLQ has to access aggregate information for a given time

interval from a large amount of data from the mapping table.

We develop an indexing technique for that, where the temporal

indexing part is motivated by the time index described in [3].

Instead of indexing all the records of the mapping table

we index all the intervals of each location using separate

trees and store aggregate values instead of pointers to the

leaf nodes. Moreover, unlike the B+-tree we link the nodes

of intermediate levels. All these improvements let us avoid

accessing detailed data records and further offers significant

pruning opportunities. This new index structure is called the

Dense Location Time Index (DLT -index).

A. The DLT-Index.

In the DLT -Index for each location, we maintain a separate

tree, called DLT -tree. Let us consider a set of mapping

records at location L1 shown in Fig. 3a. Fig. 3b shows the

DLT -Index constructed for the data given in Fig. 3a. In our

DLT -tree, each leaf node entry at time point ti is of the form:

〈ti, Ci〉, where Ci〈ctotal, center, cexit〉 is a tuple with some

aggregate information of the objects valid during [ti,t
+
i) where

t+i is the next indexed time point, ctotal and center are the total

number of objects available and entered at ti respectively and

cexit = total number of objects that exited at ti-1. Besides,

each non-leaf entry at time point ti contains a tuple Cnl(ti)
which is of the form:〈c′total, c′enter〉 and their values can be

described as:

1) For the left-most entry of a level: c′total = c′enter = total

number of objects entered or available until ti-1.

2) For the entries other than left-most entry: c′total and c′enter
are the total number of objects available and entered during

interval [t−i , ti) respectively, where t−i is the immediate left

entry of ti in the same level.

In addition to Cnl, the right-most entry ti of each non-leaf

level also contains another tuple Cr〈c′′total, c′′enter〉 where c′′total
= total number of objects available from ti to max time stamp

in the tree and c′′enter = total number of objects entered from

ti to the max time stamp in the tree.

Tree construction and insertion of a new entry in the DLT -

tree is very similar to the B+-tree. The time points are keys

and aggregate information C are the data values. The value of

C for the leaf levels can be precomputed or can be computed

while inserting. After constructing the tree, the aggregate

information of the non-leaf entries and the links between the

non-leaf nodes have to be established.

B. Tree Construction from Historical Data

During the tree construction the historical data are indexed.

Let the set of all intervals available in the data set be

I = {I1, I2, ..., In}. For an interval Ii, the value of Ii.ts
and Ii.te represents the start and end time respectively.

Additionally the value of I�i = Ii.te + 1 represents the next

timestamp after Ii.te. The DLT -Index has to index all the

time points of P where P can be defined as follows:

P = {ti|∃Ij ∈ I((ti = Ij .ts) ∨ (ti = I�j))}
For example, considering the table in Fig. 3a, the points that

need to be indexed are P = {2, 5, 8, 9, 11, 12, 19, 21, 22,
24, 27, 30, 67, 71}. As seen for MapID r1, the timeend =7

is not included in P as we index the next timestamp of 7

which is 8. Also at time point 8, o18 has entered the location

(MapID r3). Before the tree construction all the time points

of P are sorted in ascending order into Ps. Each of the time

point ti∈Ps additionally contain a Ci where center and cexit
are directly known while getting each element of Ps from

the data set. For example, at the time point 8: center = 1 and

cexit = 1, at time point 21: center=0 and cexit = 2 as two

objects has timeend at 21-1 = 20. The ctotal at time point ti
is calculated by Eq. (1). For example, at initial stage C0 =

〈0, 0, 0〉. For the first time point 2, center=1 and cexit = 0. So,

ctotal = 0+1-0=1. As a result C1 = 〈1,1,0〉. Similarly for time

point 5 ctotal = 1+1-0=2 and C2 = 〈2,1,0〉. The complete list

of Ci can be found in the leaf nodes of Fig. 3b.

ctotal(ti) := ctotal(ti−1) + center(ti)− cexit(ti) (1)

The insertion of the time points are now same as B+-tree
where the time points are keys and C are the data values. In

MapID ObjID LocID timestart timeend

r1 o1 L1 2 7
r2 o2 L1 5 11
r3 o18 L1 8 20
r4 o15 L1 9 18
r5 o16 L1 11 20
r6 o12 L1 67 70
r7 o19 L1 22 26
r8 o20 L1 24 29

(a) Example mapping records of location L1

2
1 10

5
210

8
211

9
310

11
410

12
301

19
201

21
002

22
1 10

24
210

27
1 01

30
001

67
110

71
001

82
2 113

2
224

1 272
2

195
5 5

3

2
1

c) Q[25] = Ctotal(24) = 2b) Q[6,12] = Ctotal(5)+Center(8)+Center(9)+Center(11)+Center(12) = 2+1+1+1+0 = 5

a)

Pr
oc

es
sin

g
DL

Q
[1

0,
 1

9,
 �

]
Co

nv
er

t �
 to

 �
, L

et
 �

 =
5

Level 1: 5+3 = 8 > �
Go to next level

Level 2: 3+1 = 4 < �
Return “Not DL”

(b) DLT -Index

Fig. 3: Example mapping records and DLT -Index

addition to the insertion, the nodes at the non-leaf levels have

to be linked like level 2 of Fig. 3b. Moreover, for the entries

of the non-leaf levels, the values of Cnl and Cr have to be

calculated. Maintaining the aggregate information in the leaf

nodes gives advantage for such calculation. For any non-leaf

entry ti, if it is the left-most entry in its level then the Cnl

can be calculated as follows:

Cnl(ti).c′total = Cnl(ti).c′enter = ctotal(t1) +
∑i−1

j=2 center(tj)

Besides, for any non-leaf entry ti, if it is not the left-most

entry in its level then the Cnl can be calculated as follows:

Let t−i be the entry immediately before ti in its level and

k be the position of t−i in the leaf node entries. Then,

Cnl(ti).c
′
total = ctotal(tk) +

∑i−1
j=k+1 center(tj)

Cnl(ti).c
′
enter =

∑i−1
j=k center(tj)

Similarly for the right-most entry ti of a non-leaf level, Cr

can be calculated as follows:

Cr(ti).c
′′
total = ctotal(ti) +

∑max
j=i+1 center(tj)

Cr(ti).c
′′
enter =

∑max
j=i center(tj)

where tmax represents the maximum value of the indexed time

point in the leaf level.

For example in Fig. 3b at level 2, 8 is the left-most entry.

So Cnl(8).c
′
total = Cnl(8).c′enter = ctotal(2) + center(5) = 1+1

= 2. Considering 22 of level 2 which is not the left-most

entry, Cnl(22).c
′
total = ctotal(11) + center(12) + center(19) +

center(21) = 4+0+0+0 = 4. In the example tree 27 is the right-

most entry of level 2. The value of Cr(27).c
′′
total = ctotal(27)

+ center(30)+ center(67) +center(71) = 1+0+1+0 = 2.

C. Query Processing

Here we will discuss how an aggregate point and interval

query can be executed from our DLT -Index and then show

the dense location query processing with and without pruning.

Aggregate query: There are two types of aggregate queries:

a) point queries b) interval queries. A point query finds the

total number of objects at a particular time point. An interval

query finds the total number of objects in a particular time

interval. For processing a point query Q[qt], a B+-tree search

is performed for finding the appropriate leaf node for qt. Then

it finds the last entry qa ≤ qt in the node and returns Ctotal(qa)
as the result. For example consider a point query Q[25]. The

B+-tree search will find the node shown in Fig 3bc. From the

resulting node, entry 24 is the last entry which is ≤ 25. So

the query will return ctotal(24) = 2. Conversely for an interval

query Q[qs, qe], it will first process a point query Q[qs] and

take Ctotal(qa). However, instead of returning the result it

continues further processing and finds the last entry qb ≤ qe
from the leaf nodes. For this purpose it may has to access

consecutive leaf nodes one after another. If qa = qb then it

returns Ctotal(qa) as result. Otherwise it adds all the Center for

each entry after qa until qb. For example consider an interval

query Q[6, 12]. The B+-tree search will find the leaf node

containing {2, 5} as shown in Fig. 3bb. Then it finds the entry

12 which is the last entry ≤ 12. So the calculation of the

result will be: Q[6, 12] = ctotal(5) + center(8) + center(9) +
center(11) + center(12) = 2+1+1+1+0 = 5.

Dense Location Query: The naive approach of processing a

DLQ[qs, qe, θ] over the DLT -Index is to just get the results of

an interval query Q[qs, qe] for each of the locations, compute

the density from the result, and then determine which locations

are DLs. However, for each of the cases, the query has to

access the leaf nodes and then compute the aggregation. The

access of the nodes of the leaf level as well as other level

can be reduced by our pruning technique. As described the

DLT -Index contains some aggregate information in the non-

leaf node entries for pruning purpose. We first introduce the

following two observations.
Observation 1 (obs 1): If the number of objects in an

interval i1 is less than a threshold k, a smaller interval i2
that is fully covered by i1 must have less than k objects.

Observation 2 (obs 2): If the number of objects in an

interval i1 is greater than a threshold k, a larger interval i2
that fully covers i1 must have more than k objects.

In our pruning technique the first observation helps to

prune out the non-leaf levels, whereas the second observation

helps to prune at the leaf level. Note that the cases covered

by obs 1 and 2 are mutually exclusive. In a DLQ[qs, qe, θ]
the given θ is a density threshold, not a number of objects.

Before starting the query processing we convert θ to a number

of object threshold σi for each location li. The value of σ for

a location Li for a DLQ[qs, qe, θ] can be derived from the

density formula which is given below:

σ(Li, θ) =
Δt×capacity(Li)×θ

100 , where Δt= qe - qs.

While processing a DLQ[qs, qe, θ], the value of σ for each

location has to be calculated. The query has to traverse the

tree of each location. The way of accessing the next level is

similar to B+-tree search for qs. At each non-leaf level li of

the DLT -tree of a location Loci, the smallest interval [ta, tb)
that can cover [qs, qe] has to be found. After that, the total

0

50

100

150

200

250

300

2M 4M 6M 8M 10MFu
ll

tre
e

co
ns

tru
ct

io
n

tim
e(

s)

Number of mapping records
Aggregation�time Tree�construction�time

(a) Tree construction time

10

30

50

70

90

110

130

150

170

40% 50% 60% 70% 80% 90% 100%

N
um

be
r o

f n
od

e
ac

ce
ss

Density threshold (�)

Q1�P

Q1�NP

Q2�P

Q2�NP

Q3�P

Q3�NP

(b) Effect of θ in DLQ processing

10

30

50

70

90

110

130

150

170

190

3 4 5 6 7

N
um

be
r o

f n
od

e
ac

ce
ss

Interval duration(hours)

Q1�P

Q1�NP

Q2�P

Q2�NP

Q3�P

Q3�NP

(c) Effect of Δt in DLQ processing

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Q1�NP Q1�P Q2�NP Q2�P Q3�NP Q3�P

7962

17

8686

16

6804

15N
um

be
r�o

f�N
od

e�
Ac

ce
ss

(d) Interval group query

Fig. 4: Experimenting with different aspects of the DLT -Index.

number of objects n(li) during [ta, tb) is calculated from the

Cnl stored in all the entries between ta and tb in level li. The

value of n(li) is compared with σ. If n(li) < σ then Loci is

marked as ’Not DL’ based on obs 1 and further processing of

the tree is pruned. However, if n(li)
< σ then the next level is

accessed and continue further processing in the similar way.

If the query reaches the leaf level then it starts calculating the

total number of objects during [qs, qe]. During the calculation,

at each step it compares the sum with σ and if sum > σ then

based on ’emphobs 2 the location Loci is marked as DL. As

a result it skips the access of the next entries and nodes and

avoids further calculation. If the condition sum ≤ σ then the

full sum is calculated to decide whether Loci is DL or not.

Consider Fig. 3ba, where the processing of DLQ[10, 19, θ]
is shown for location L1. Let σ = 5 be derived from θ. At the

root level, the smallest interval that covers [10, 19] is [min,
max) where min and max are the starting and ending time

points of the tree respectively. For min the Cnl.c
′
total from

the left-most entry is taken, and for max Cr.c
′′
enter is taken

from the right-most entry of the current level. So in our case

the total number of objects during this period is Cnl(19).c
′
total

+ Cr(19).c
′
enter = 5+3=8. As 8
< σ, the query has to go to

the next level based on B+-tree search for 10. In this level

[8, 22) is the smallest interval that covers [10, 19]. Now the

total number of objects for the period is Cnl(11).c
′
total +

Cnl(22).c
′
enter =3+1=4. As 4 < σ is true, the location L1

is not a DL during [10, 19]. As a result, it does not need

to access the next level and do further processing for L1.

Now consider another query DLQ[6, 12, θ] and let σ = 3.

During the processing of this query on the tree for L1 shown

in Fig. 3b, the pruning with obs 1 does not work and the query

will access the leaf level. However, the query does not have

to fully compute the total number of objects during [6, 12] as

the sum up to time point 9 is: 2+1+1=4 (Fig. 3bb) and 4 > σ.

So, it can be deduced that the location is a DL during [6, 12]
without further processing.

V. EXPERIMENTAL STUDY

Experimental Setup: We implemented the mapping for

CPS and pre-computed the aggregate information from the

mapping records using C# and the DLT -Index using C. For

all SQL queries, we use a leading RDBMS. The experiments

were conducted on a laptop with an Intel Core i7 2.7 GHz

processor with 8 GB main memory. The operating system is

Windows 7 64 bit.

We use real RFID based baggage tracking data from the

transfer system of terminal-3 of Copenhagen Airport (CPH).

It has 11 CPS locations with 11 RFID readers deployed. After

filtering some erroneous records there are 2.1 M tracking

records for 220 K distinct bags collected during Dec 21, 2011

to Dec 02, 2013. As we do not have the exact values, the

parameters ENLDs and EXLDs are generated. As most of

the locations contain loops, after converting 2.1 M tracking

records there are 787K Mapping records produced.

DLT -Index: The page size was set to 4KB and each entry

of the DLT -tree was 20 bytes. This yields 204 entries per

node.We use the above mapping table produced from the

airport baggage tracking data and scaled it to 10M mapping

records. For scaling, Max(ObjId) is added with existing ObjId

for uniqueness and random time between 50 to 120 seconds

are added with both timestart and timeend for each record. The

semi-real data contains 3M distinct objects and total 17.3 M

distinct time points distributed to the 11 symbolic locations.

Tree Construction: Before the tree construction the ag-

gregate information C for each time point is precomputed.

Then the trees are constructed for the time points including

the aggregate information. Fig. 4a shows the effect of number

of mapping records on the full tree construction time along

with the aggregate information generation time. It shows that

the tree construction time increases linearly with the increase

in number of mapping records. Generating the aggregate

information takes good amount of time as it has to access

each record for finding distinct time points, sort and union

them and compute the value of ctotal, center and cexit at each

time point.

Query Processing: Three random DLQs are generated for

semi-real data and are processed with both pruning (P) and

without pruning (NP). The node access for each of them is

reported in Fig. 4b and 4c. In all cases, pruning accesses

much fewer nodes compared to without pruning. In Fig. 4b the

query time interval is kept fixed and the density threshold(θ)

is changed. It shows that, for without pruning, a query has

to access same number of nodes regardless of change in θ
as it always has to compute total number of objects for full

interval. However, for pruning, the number of node access

decreases with increase in θ as the number of dense location

decreases and σ increases (effect of pruning with obs 1) and at

some point it becomes constant. In Fig. 4c, θ is kept fixed and

the time interval length is changed. It seems that for without

pruning, node access increases with increase in interval length

as the query has to cover more time points to complete the

interval. However, for pruning, node access decreases and

become constant at some point. Here, any of the observation

(obs 1 or obs 2) can be the reason depending on the number

of dense locations. The query is effected by obs 1 if number

of dense location decreases and by obs 2 if number of dense

location increases. We also process three random queries that

finds number of objects at each location for one month large

interval with a given condition on the aggregate results (like

group by with having condition in SQL) to see the effect of

pruning on larger interval in the DLT -Index. Fig. 4d shows

that the pruning technique access significantly less number of

nodes compared to without pruning.

We randomly generate 3 point queries and also 3 interval

queries that find number of objects at each location for a

given time interval. The interval queries are for one year

large interval. The queries are processed by both the DLT -

Index and the relational DBMS. At first we have processed

the queries inside the DBMS without creating any indices

in the MappingTable. Then we have created both clustered

index and non-clustered index on different columns and on

combination of columns and processed the queries. However,

the queries were fastest without any indices. So, we have

reported the query processing durations without an index. For

the fair comparison, the first query processing time for each

query in the SQL is ignored for warm up and to load the data

into main memory. Then we execute each query five times

and take the average query time. Fig. 5a and 5b shows that

the point query processing in DLT -Index is more than 340

times faster and some cases the interval query processing time

is around 300 times faster.

0

100

200

300

400

Q1 Q2 Q3

340 345
365

<1 <1 <1Q
ue

ry
�ti

m
e�

(m
s)

SQL�Query HT�Index

(a) Point query

0

500

1000

1500

2000

2500

3000

Q1 Q2 Q3

2972

1505

1033

10 9 7

Q
ue

ry
�ti

m
e�

(m
s)

SQL�Query HT�Index

(b) Interval group. query

Fig. 5: DLT -Index vs. RDBMS

VI. RELATED WORK

Several papers address density queries and hot route queries

on road networks [4], [7] in outdoor spaces. There are spatio-

temporal data access methods for point and interval queries

on temporal dimension in outdoor settings [9], [11] and in

indoor settings [6]. These indexing techniques are capable to

efficiently access individual records for a range of locations

as well as for a time period. However, for a DLQ, aggre-

gate information for each location has to be accessed. Our

DLT -Index itself contains aggregate information and avoids

accessing individual data records. There are also works for

indexing spatio-temporal data for aggregate queries [8]. The

aRB-tree [8] stores the aggregate information in the tree nodes.

However, it counts same objects multiple times if the objects

remain in the same location in several timestamps during the

query interval. This problem is solved by an approximate

approach in [10]. Unlike to the traditional range and point

queries where the query generally does not access all the

locations, the DLQ has to access all the locations’ information

to determine whether each location is a DL or not. So like the

aRB-tree, we also maintain a separate tree for each location

except the R-Tree part. The distance functions in the symbolic

space are very far from the Euclidean distance, so the MBRs

cannot approximate the distances well. Thus, the MBRs used

in aRB-tree is not applicable in our case. As mentioned

earlier our temporal indexing structure is motivated by [3],

but we extend it to a symbolic spatio-temporal space and

we additionally maintain necessary aggregate information in

nodes to facilitate counting distinct objects for a time interval.

The aggregate information stored in the non-leaf nodes helps

achieve effective pruning in processing DLQs as well as

interval and group by with having conditions.

VII. CONCLUSION

We proposed an approach to extract the dense locations from

indoor tracking data. We developed a graph-based models for

mapping the tracking records with the semantic location so

that it is possible to know the entry and exit times of an

object at a symbolic location. Then we proposed an indexing

technique, the Dense Location Time Index (DLT -Index), that

indexes aggregate information with the time points. We also

proposed efficient techniques for index construction and query

processing and pruning, for dense location queries on the

DLT -Index. Our experimental evaluation on large amounts

of real data shows that the DLT -Index can process queries

efficiently and much faster than an RDBMS. The DLT -Index

is also useful for general time interval indexing for efficient

processing of queries like the number of distinct records for a

specified time point or time interval.

ACKNOWLEDGMENT

This work is supported by the BagTrack project funded by

the Danish National Advanced Technology Foundation under

grant no. 010-2011-1.

REFERENCES

[1] T. Ahmed, T. B. Pedersen, and H. Lu. Capturing hotspots for constrained
indoor movement. In SIGSPATIAL/GIS, pages 462–465, 2013.

[2] T. Ahmed, T. B. Pedersen, and H. Lu. A data warehouse solution for
analyzing rfid-based baggage tracking data. In MDM (1), pages 283–
292, 2013.

[3] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. The time index: An access
structure for temporal data. In VLDB, pages 1–12, 1990.

[4] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective density queries
on continuouslymoving objects. In ICDE, page 71, 2006.

[5] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor tracking.
In MDM, pages 122–131, 2009.

[6] C. S. Jensen, H. Lu, and B. Yang. Indexing the trajectories of moving
objects in symbolic indoor space. In SSTD, pages 208–227, 2009.

[7] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density-based
discovery of hot routes in road networks. In SSTD, pages 441–459,
2007.

[8] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal
data warehouses. In ICDE, pages 166–175, 2002.

[9] M. Romero, N. R. Brisaboa, and M. A. Rodrı́guez. The smo-index: a
succinct moving object structure for timestamp and interval queries. In
SIGSPATIAL/GIS, pages 498–501, 2012.

[10] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-temporal
aggregation using sketches. In ICDE, pages 214–225, 2004.

[11] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method
for timestamp and interval queries. In VLDB, pages 431–440, 2001.

