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Heartbeat Signal from Facial Video for Biometric 

Recognition 

Mohammad A. Haque, Kamal Nasrollahi, Thomas B. Moeslund 

Abstract. Different biometric traits such as face appearance and heartbeat sig-

nal from Electrocardiogram (ECG)/Phonocardiogram (PCG) are widely used in 

the human identity recognition. Recent advances in facial video based meas-

urement of cardio-physiological parameters such as heartbeat rate, respiratory 

rate, and blood volume pressure provide the possibility of extracting heartbeat 

signal from facial video instead of using obtrusive ECG or PCG sensors in the 

body. This paper proposes the Heartbeat Signal from Facial Video (HSFV) as a 

new biometric trait for human identity recognition, for the first time to the best 

of our knowledge. Feature extraction from the HSFV is accomplished by em-

ploying Radon transform on a waterfall model of the replicated HSFV. The 

pairwise Minkowski distances are obtained from the Radon image as the fea-

tures. The authentication is accomplished by a decision tree based supervised 

approach. The potential of the proposed HSFV biometric for human identifica-

tion is demonstrated on a public database.   

Keywords: biometric, identification, Radon transform, heartbeat, facial video 

1 Introduction 

Human identity recognition using biometrics is a well explored area of research to 

facilitate security systems, forensic analysis, and medical record keeping and monitor-

ing. Biometrics provides a way of identifying a person using his/her physiological 

and/or behavioral features. Among different biometric traits iris image, fingerprint, 

voice, hand-written signature, facial image, hand geometry, hand vein patterns, and 

retinal pattern are well-known for human authentication [1]. However, most of these 

biometric traits exhibit disadvantages in regards to accuracy, spoofing and/or unobtru-

siveness. For example, fingerprint and hand-written signature can be forged to breach 

the identification system [2], voice can be altered or imitated, and still picture based 

traits can be used in absence of the person [3]. Thus, scientific community always 

searches for new biometric traits to overcome these mentioned problems. Heartbeat 

signal is one of such novel biometric traits. 

 

Human heart is a muscular organ that works as a circulatory pump by taking deoxy-

genated blood through the veins and delivers oxygenated blood to the body through 

the arteries. It has four chambers and two sets of valves to control the blood flow. 

When blood is pumped by the heart, some electrical and acoustic changes occur in 

and around the heart in the body, which is known as heartbeat signal [4]. Heartbeat 



signal can be obtained by Electrocardiogram (ECG) using electrical changes and 

Phonocardiogram (PCG) using acoustic changes, as shown in Fig. 1.  

 

a) 

 

b) 

 

Fig. 1. Heartbeat signal obtained by a) ECG and b) PCG 

Both ECG and PCG heartbeat signals have already been utilized for biometrics 

recognition in the literature. ECG based authentication was first introduced by Biel et 

al. [5]. They proposed the extraction of a set of temporal and amplitude features using 

industrial ECG equipment (SIEMENS ECG), reduced the dimensionality of features 

by analyzing the correlation matrix, and authenticated subjects by a multivariate anal-

ysis. This method subsequently drew attention and a number of methods were pro-

posed in this area. For example, Venkatesh et al. proposed ECG based authentication 

by using appearance based features from the ECG wave [6]. They used Dynamic 

Time Wrapping (DTW) and Fisher’s Linear Discriminant Analysis (FLDA) along 

with K-Nearest Neighbor (KNN) classifier for the authentication. Chetana et al. em-

ployed Radon transformation on the cascaded ECG wave and extracted a feature vec-

tor by applying standard Euclidean distance on the transformed Radon image [7]. 

They computed the correlation coefficient between such two feature vectors to au-

thenticate a person. Similar to [5], geometrical and/or statistical features from ECG 

wave (collected from ECG QRS complex) were also used in [8]–[10]. Noureddine et 

al. employed the Discrete Wavelet Transformation (DWT) to extract features from 

ECG wave and used a Random Forest approach for authentication [11]. A review of 

the important ECG-based authentication approaches can be obtained from [12]. The 

common drawback of all of the above mentioned ECG based methods for authentica-

tion is the requirement of using obtrusive (touch-based) ECG sensor for the acquisi-

tion of ECG signal from a subject.   

 

The PCG based heartbeat biometric (i.e. heart sound biometric) was first introduced 

by Beritelli et al [13]. They use the z-chirp transformation (CZT) for feature extrac-

tion and Euclidian distance matching for identification. Puha et al. [14] proposed 

another system by analyzing cepstral coefficients in the frequency domain for feature 

extraction and employing a Gaussian Mixture Model (GMM) for identification. Sub-

sequently, different methods were proposed, such as a wavelet based method in [15] 

and marginal spectral analysis based method in [16]. A review of the important PCG-

based method can be found in [17]. Similar to the ECG-based methods, the common 

drawback of PCG-based methods for authentication is also the requirement of using 

obtrusive PCG sensor for the acquisition of ECG signal from a subject. In another 

words, for obtaining heart signals using ECG and PCG the required sensors need to be 



directly installed on subject’s body, which is obviously not always possible, especial-

ly when subject is not cooperative.  

 

A recent study at Massachusetts Institute of Technology (MIT) showed that circulat-

ing the blood through blood-vessels causes periodic change to facial skin color [18]. 

This periodic change of facial color is associated with the periodic heartbeat signal 

and can be traced in a facial video. Takano et al. first utilized this fact in order to gen-

erate heartbeat signal from a facial video and, in turns, calculated Heartbeat Rate 

(HR) from that signal [19]. A number of other methods also utilized heartbeat signal 

obtained from facial video for measuring different physiological parameters such as 

HR [20], respiratory rate and blood pressure [21], and muscle fatigue [20].  

 

This paper introduces Heartbeat Signal from Facial Video (HSFV) for biometric 

recognition. The proposed system uses a simple webcam for video acquisition, and 

employs signal processing methods for tracing changes in the color of facial images 

that are caused by the heart pulses. Unlike ECG and PCG based heartbeat biometric, 

the proposed biometric does not require any obtrusive sensor such as ECG electrode 

or PCG microphone. Thus, the proposed HSFV biometric has some advantages over 

the previously proposed biometrics. It is universal and permanent, obviously because 

every living human being has an active heart. It can be more secure than its traditional 

counterparts as it is difficult to be artificially generated, and can be easily combined 

with state-of-the-art face biometric without requiring any additional sensor. This pa-

per proposes a method for employing this new biometric for person’s identity recog-

nition by employing a set of signal processing methods along with a decision tree 

based classification approach.  

 

The rest of this paper is organized as follows. Section 2 describes the proposed bio-

metric system and Section 3 presents the experimental results. Section 4 concludes the 

paper and discusses the possible future directions.   

2 The HSFV based Biometric Identification System 

The block diagram of the proposed HSFV biometric for human identification is 

shown in Fig. 2. Each of the blocks of this diagram is discussed in the following sub-

sections.  

2.1 Facial Video Acquisition and Face Detection  

The proposed HSFV biometric first requires capturing facial video using a RGB cam-

era, which was thoroughly investigated in the literature [21]–[23]. As recent methods 

of facial video based heartbeat signal analysis utilized simple webcam for video cap-

turing, we select a webcam based video capturing procedure. After video capturing, 

the face is detected in each video frame by the face detection algorithm of [22]. 

 



 

Fig. 2. The block diagram of the proposed HSFV biometric for human identification 

2.2 ROI Detection and Heartbeat Signal Extraction  

The heartbeat signal is extracted from the facial video by tracing color changes in 

RGB channels in the consecutive video frames using the method explained in [21]. 

This is accomplished by obtaining a Region of Interest (ROI) from the face by select-

ing 60% width of the face area detected by the automatic face detection method. The 

average of the red, green and blue components of the whole ROI is recorded as the 

RGB traces of that frame. In order to obtain a heartbeat signal from a facial video, the 

statistical mean of these three RGB traces of each frame is calculated and recoded for 

each frame of the video.   

 

The heartbeat signal obtained from such a video looks noisy and imprecise com-

pared to the heartbeat signal obtained by ECG, for example that in Fig. 1. This is due 
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to the effect of external lighting, voluntary head-motion, and the act of blood as a 

damper to the heart pumping pressure to be transferred from the middle of the chest 

(where the heart is located) to the face. Thus, we employ a denoising filter by detect-

ing the peak in the extracted heart signal and discarding the outlying RGB traces. The 

effect of the denoising operation on a noisy heartbeat signal obtained from RGB trac-

es is depicted in Fig. 3. The signal is then transferred to the feature extraction module.   

 

 

Fig. 3. A heartbeat signal containing outliers (top) and its corresponding signal obtained af-

ter employing a denoising filter (bottom).  

2.3 Feature Extraction 

We have extracted our features from radon images, as these images are shown in the 

ECG based system of [7] to produce proper results. To generate such images we need 

a waterfall diagram which can be generated by replicating the heartbeat signal ob-

tained from a facial video. The number of the replication equals to the number of the 

frames in the video. Fig. 4 depicts an example of a waterfall diagram obtained from 

the heartbeat signal of Fig. 3. From the figure, it can be seen that the heartbeat signal 

is replicated and concatenated in the second dimension of the signal in order to gener-

ate the waterfall diagram for a 20 seconds long video captured in a 60 frames per 

second setting. In order to facilitate the depiction on the figure we employ only 64 

times replication of the heartbeat signal in Fig. 4. The diagram acts as an input to a 

transformation module in order to extract the features. 

 

Fig. 4. Waterfall diagram obtained from an extracted heartbeat signal of a given video.  
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The features used in the proposed system are obtained by applying a method called 

Radon transform [24] to the generated waterfall diagram. Radon transform is an inte-

gral transform computing projections of an image matrix along specified directions 

and widely used to reconstruct images from medical CT scan. A projection of a two-

dimensional image is a set of line integrals. Assume 𝑓(𝑥, 𝑦) is a two-dimensional 

image expressing image intensity in the (𝑥, 𝑦) coordinates. The Radon transform (𝑅) 

of the image, 𝑅(𝜃)[𝑓(𝑥, 𝑦)], can be defined as follows: 

𝑅(𝜃)[𝑓(𝑥, 𝑦)] = ∫ 𝑓(𝑥́ cos 𝜃 − 𝑦́ sin 𝜃, 𝑥́ sin 𝜃 − 𝑦́ cos 𝜃) 𝑑𝑦́
∞

−∞
 (1) 

where 𝜃 is the angle formed by the distance vector of a line from the line integral with 

the relevant axis in the Radon space, and  

[
𝑥́
𝑦́

] = [
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
] [

𝑥
𝑦]  (2) 

When we apply Radon transform on the waterfall diagram of HSFV a two-

dimensional Radon image is obtained, which contains the Radon coefficients for each 

angle (𝜃) given in an experimental setting. An example Radon image obtained by 

employing Radon transform on the waterfall diagram of Fig. 4 is shown in Fig. 5.   

 

  
(a) (b) 

Fig. 5. Radon image obtained from the waterfall diagram of HSFV: (a) without magnifica-

tion, and (b) with magnification.  

In order to extract features for authentication, we employ a pairwise distance meth-

od between every possible pairs of pixels in the transformed image. We use the well-

known distance metric of Minkowski to measure the pairwise distance for a 𝑚 × 𝑛-

pixels of the Radon image 𝑅 by: 

 d𝑠𝑡 = √∑ |𝑅𝑠𝑖 − 𝑅𝑡𝑖|
𝑝𝑛

𝑖=1

𝑝
  (3) 

where 𝑅𝑠 and 𝑅𝑡 are the row vectors representing each of the 𝑚(1 × 𝑛) row vectors 

of 𝑅, and 𝑝 is a scalar parameter with 𝑝 = 2. The matrix obtained by employing the 

pairwise distance method produces the feature vector for authentication.  
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2.4 Identification 

We utilize the decision tree based method of [25] for the identification. This is a 

flowchart-like structure including three types of components: i) Internal node- repre-

sents a test on a feature, ii) Branch- represents the outcome of the test, and iii) Leaf 

node- represents a class label coming as a decision after comparing all the features in 

the internal nodes. Before using the tree (the testing phase), it needs to be trained. At 

the training phase, the feature vectors of the training data are utilized to split nodes 

and setup the decision tree. At the testing phase, the feature vector of a testing data 

passes through the tests in the nodes and finally gets a group label, where a group 

stands for a subject to be recognized. The training/testing split of the data is explained 

in the experimental results. 

3 Experimental Results and Discussions 

3.1 Experimental Environment 

The proposed system has been implemented in MATLAB 2013a. To test the perfor-

mance of the system we’ve used the publicly available database of MAHNOB-HCI. 

This database has been collected by Soleymani et al. [26] and contains facial videos 

captured by a simple video camera (similar to a webcam) connected to a PC. The 

videos of the database are recorded in realistic Human-Computer Interaction (HCI) 

scenarios. The database includes data in two categories: ‘Emotion Elicitation Experi-

ment (EEE)’ and ‘Implicit Tagging Experiment (ITE)’. Among these, the video clips 

from EEE are frontal face video data and suitable for our experiment [20], [27]. Thus, 

we select the EEE video clips from MAHNOB-HCI database as the captured facial 

videos for our biometric identification system. Snapshots of some video clips from 

MAHNOB-HCI database are shown in Fig. 6. The database composes of 3810 facial 

videos from 30 subjects. However, not all of these videos are suitable for our experi-

ment. This is because of short duration, data file missing, small number of samples for 

some subjects to divide these into training and testing set, occluded face (forehead) in 

some videos, and lack of subject’s consent. Thus, we selected 351 videos suitable for 

our experiment. These videos are captured from 18 subjects (16-20 videos for each 

subject). We used the first 20 seconds of each video for testing and 80 percent of the 

total data for training in a single-fold experiment. 

 

 

   
   

   

Fig. 6. Snapshots of some facial video clips from MAHNOB-HCI EEE database [26]. 



3.2 Performance Evaluation 

After developing the decision tree from the training data, we generated the authentica-

tion results from the testing data. The features of each test subject obtained from the 

HSFV were compared in the decision tree to find the best match from the training set. 

The authentication results of 18 subjects (denoted with the prefix ‘S-’) from the ex-

perimental database are shown in a confusion matrix (row matrix) at Table 1. The true 

positive detections are shown in the first diagonal of the matrix, false positive detec-

tions are in the columns, and false negative detections are in the rows. From the re-

sults it is observed that a good number of true positive identifications were achieved 

for most of the subjects.  

Table 1. Confusion matrix for identification of 351 samples of 18 subjects using the pro-

posed HSFV biometric. 

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

S1 16 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

S2 0 17 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 

S3 1 1 16 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

S4 0 0 0 18 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

S5 0 0 0 0 19 0 1 0 0 0 0 0 0 0 0 0 0 0 

S6 4 1 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 

S7 0 0 0 0 0 0 18 0 0 0 0 0 0 2 0 0 0 0 

S8 1 0 0 0 0 0 0 10 0 0 1 0 1 0 2 1 0 0 

S9 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 

S10 0 0 0 0 0 0 0 0 0 18 0 1 0 1 0 0 0 0 

S11 2 2 0 0 0 1 0 1 0 0 13 0 0 0 0 0 0 0 

S12 0 0 0 0 0 0 2 0 0 0 0 16 0 0 0 0 0 0 

S13 1 2 0 0 0 0 1 2 0 0 0 0 12 0 2 0 0 0 

S14 0 0 0 0 0 0 0 0 0 3 0 0 0 17 0 0 0 0 

S15 0 1 2 0 0 0 0 1 0 0 0 0 1 0 15 0 0 0 

S16 3 2 0 0 0 0 0 0 0 0 1 0 2 0 1 11 0 0 

S17 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 16 0 

S18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 16 

 

The performance of the proposed HSFV biometric was evaluated by the parameters 

defined by Jain et al. in [28], which are False Positive Identification Rate (FPIR) and 

False Negative Identification Rate (FNIR). The FPIR refers to the probability of a test 

sample falsely identified as a subject. If TP = True Positive, TN = True Negative, FP 

= False Positive, and FN = False Negative identifications among 𝑁 number of trials in 

an experiment, then the FPIR is defined as:  

𝐹𝑃𝐼𝑅 =
1

𝑁
∑

𝐹𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑁
𝑛=1    (4) 



The FNIR is the probability of a test sample falsely identified as different subject 

which is defined as follows: 

𝐹𝑁𝐼𝑅 =
1

𝑁
∑

𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑁
𝑛=1    (5) 

From FNIR we can calculate another metric called True Positive Identification Rate 

(TPIR) that represents the overall identification performance of the proposed bio-

metric as: 

𝑇𝑃𝐼𝑅 = 1 − 𝐹𝑁𝐼𝑅  (6) 

Besides the aforementioned metrics, we also calculated the system performance 

over four other metrics from [29]: precision, recall, sensitivity and accuracy. Precision 

and recall metrics present the ratio of correctly identified positive samples with total 

number of identification and total number of positive samples in the experiment, re-

spectively. The formulations of these two metrics are: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁
∑

𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑁
𝑛=1    (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑁
∑

𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑁
𝑛=1    (8) 

Specificity presents the ratio of correctly identified negative samples with total num-

ber of negative samples and sensitivity presents the ratio of correctly identified posi-

tive and negative samples with total number of positive and negative samples. The 

mathematical formulations of these two metrics are: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
1

𝑁
∑

𝑇𝑁

𝑇𝑁+𝐹𝑃

𝑁
𝑛=1    (9) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑁
∑

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑁
𝑛=1    (10) 

Table 2 summarized the overall system performance in the standard terms men-

tioned above. From the results it is observed that the proposed HSFV biometric can 

effectively identify the subjects with a high accuracy. 

Table 2. Performance of the proposed HSFV biometric based authentication system 

Parameters Results 

FPIR 1.28% 
FNIR 1.30% 
TPIR 98.70% 

Precision rate 80.86% 

Recall rate 80.63% 

Specificity 98.63% 

Sensitivity 97.42% 

 



One significant point can be noted from the results that the TPIR and precision rate 

have a big difference in values. This is because the true positive and true negative 

trials and successes are significantly different in numbers and the system achieved 

high rate of true negative authentication as indicated by specificity and sensitivity 

metrics. This implies that the proposed biometric, though is of high potential may 

need improvement in both the feature extraction and the matching score calculation.  

 

To the best of our knowledge, this paper is the first to use HSFV as a biometric, 

thus, there is not any other similar systems in the literature to compare the proposed 

system against. Though touch based ECG [12]  and PCG [14] biometrics obtained 

more than 90% accuracy on some local databases, we think their direct comparison 

against our system is biased towards their favor, as they use obtrusive touch-based 

sensors, which provide precise measurement of heartbeat signals, while we, using our 

touch-free sensor (webcam), get only estimations of those heartbeat signals that are 

obtained by touch based sensors. This means that it makes sense if our touch-free 

system, at least in this initial step of its development, does not outperform those 

touch-based systems.  

 

The observed results of the touch-free HSFV definitely showed the potential of the 

proposed system in human identification and it clearly paves the way for developing 

identification systems based on heartbeat rate without a need for touch based sensors. 

Reporting the results on a publicly available standard database is expected to make 

the future studies comparable to this work.  

4 Conclusions and Future Directions 

This paper proposed heartbeat signal measured from facial video as a new biometric 

trait for person authentication for the first time. Feature extraction from the HSFV 

was accomplished by employing Radon transform on a waterfall model of the repli-

cated HSFV. The pairwise Minkowski distances were obtained from the Radon image 

as the features. The authentication was accomplished by a decision tree based super-

vised approach. The proposed biometric along with its authentication system demon-

strated its potential in biometric recognition. However, a number of issues need to be 

studied and addressed before utilizing this biometric in practical systems. For exam-

ple, it is necessary to determine the effective length of a facial video viable to be cap-

tured for authentication in a practical scenario. Fusing face and HSFV together for 

authentication may produce interesting results by handling the face spoofing. Pro-

cessing time, feature optimization to reduce the difference between precision and 

acceptance rate, and investigating different metrics for calculating the matching score 

are also necessary to be investigated. The potential of the HSFV as a soft biometric 

can also be studied. Furthermore, it is interesting to study the performance of this 

biometric under different emotional status when heartbeat signals are expected to 

change. These could be future directions for extending the current work. 
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