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Block-Fading Channels with Delayed CSIT at 
Finite Blocklength 

Kasper F. Trillingsgaard and Petar Popov ski 
Department of Electronic Systems, Aalborg University, Aalborg, Denmark 

Abstract-In many wireless systems, the channel state infor­
mation at the transmitter (CSIT) can not be learned until after 
a transmission has taken place and is thereby outdated, In this 
paper, we study the benefits of delayed CSIT on a block-fading 
channel at finite blocklength, First, the achievable rates of a 
family of codes that allows the number of codewords to expand 
during transmission, based on delayed CSIT, are characterized. 
A fixed-length and a variable-length characterization of the 
rates are provided using the dependency testing bound and the 
variable-length setting introduced by Polyanskiy et al. Next, a 
communication protocol based on codes with expandable message 
space is put forth, and numerically, it is shown that higher rates 
are achievable compared to coding strategies that do not benefit 
from delayed CSIT. 

I. INTRODUCTION 

The success of wireless high-speed networks is largely 
based on reliable transmission of large data packets through 
the use of the principles from coding and information the­
ory. On the other hand, many emerging applications that 
involve machine-to-machine (M2M) communication rely on 
transmission of very short data packets with strict deadlines, 
where the asymptotic information-theoretic results are not 
applicable. The fundamentals of such a communication regime 
have recently been addressed in [1], where it was shown that 
the rates achievable by fixed-length block codes in traditional 
point-to-point communication can be tightly approximated by 

(I) 

where C is the Shannon capacity, V is the channel dispersion, 
n is the blocklength, E is the desired probability of error and 
Q-l(.) the inverse of the standard Q-function. In [2] it was 
shown that allowing the use of variable-length stop-feedback 
(VLSF) coding improves the achievable rates dramatically, 
seen through the fact that the dispersion term in (l) vanishes. 

Finite blocklength analysis is particular interesting for fad­
ing channels. Whereas the effect of fading may often be 
averaged when blocklengths tend to infinity, fading may have 
severe impact on the achievable rates when blocklengths are 
small, i.e. as the blocklength decreases and/or the coherence 
time of the block-fading channel increases, the worst-case 
channel conditions largely dictate the achievable rates [3], [4], 
[5]. In such cases it is beneficial to use variable-length coding 
and allow a transmission that experiences good channel real­
ization to terminate early. However, sending an ACKINACK at 
an arbitrary instant is rather impractical. From a system design 

perspective, it is viable to assume that a feedback opportunity 
occurs regularly after each T -th channel use, through which 
the sender gets either ACK or NACK, along with the delayed 
CSIT about the transmission conditions in the block. This 
deteriorates the benefits of VLSF, as the sender may continue 
to send incremental redundancy to the receiver until the next 
feedback opportunity occurs. The problem is circumvented by 
the concept of backtrack retransmission (BRQ) [6], described 
as follows. Upon receiving delayed CSIT and NACK, the 
sender estimates how much side information is required by 
the receiver to decode the packet, erroneously received in the 
previous block. If the side information is less than the total 
number of source bits that can be sent in the next block, new 
source bits are appended to the side information and then 
jointly channel-coded. Thus, the sender expands the original 
message by appending new source bits, before the original 
message has been decoded. 

This paper generalizes the concept of BRQ to the case 
of finite blocklength. We consider a block-fading channel 
with two states, where the receiver has full channel state 
information (CSI) and the transmitter learns the CSI after 
transmission in each block. We introduce a family of codes, 
termed expandable message space (EMS) codes, that allows 
the message space to expand upon reception of delayed CSIT. 
The EMS codes allow the transmitter to expand the number 
of codewords in a tree-like manner. Using these codes, we 
propose a communication scheme, based on BRQ, which 
improves the achievable rates by expanding the message space 
according to the delayed CSIT. 

We illustrate the concept of backtrack retransmission and 
EMS codes for block-fading through the following example. 
Consider a block-fading channel in which a transmission is 
allowed to take at most two blocks of T channel uses. Using 
fixed-length block codes, the transmitter may either send a 
packet of b1 source bits in one block with a target probability 
of error E, or it may transmit a packet in both blocks of 
b2 > 2b1 source bits, i.e. at a higher rate, with the same 
target error probability E at the cost of twice the blocklength. 
A naive variable-length coding can be applied as follows: the 
transmitter sends a packet in the first block of b1v > b1 source 
bits and obtains the delayed CSIT of the first block after 
transmission. If the CSIT allows decoding with a probability 
of error less than E, the packet is decoded and otherwise 
incremental redundancy is transmitted in the second block, 
leading to half the rate, �. b1v is chosen to match the 
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Fig. I. Variable-length transmission scheme based on delayed CSTT. 

target error probability E. In this paper we aim beyond this 
naIve scheme and investigate how to use the second (and 
the subsequent) blocks in the best possible way given that 
a transmission has already taken place in the first block. 
Using the EMS codes, which are introduced in this paper, the 
transmitter may send a packet of b1e source bits in the first 
block, and if the CSI does not allow reliable decoding, the 
transmitter may combine incremental redundancy and a new 
message of b2e source bits in the second block. ble and b2e can 
thereby be jointly optimized to obtain the highest rate under 
the constraint that the probability of error is smaller than E. 

In contrast to traditional variable-length codes with stop­
feedback as analyzed in [2], neither the amount of source 
information to be transmitted nor the blocklength is known in 
advance for our communication scheme. Clearly, this implies 
some practical issues in the higher communication layers but 
also provides improved achievable rates. 

II. THE BLOC K-FADING MODEL 

We consider a single-user binary channel with block-fading. 
The channel has two states in which it acts as binary symmetric 
channels (BSC) with different crossover probabilities. Trans­
missions to the receiver are done in blocks, each consisting 
of T channel uses, where T models the coherence time of the 
block-fading channel. The blocks are enumerated 'i E N, where 
N is the set of natural numbers, and the channel input in the 
'i-th block is denoted Xi E X = {O, I} T. The binary channel 
state in the i-th block, denoted by Si E {O, 1}, is a random 
variable that is independent of any previous channel states and 
distributed according to Pr [Si = 1] = 1 - Pr [Si = 0] = q, 
q E [0,1]. In state s E {O, 1}, the channel acts as a BSC with 
crossover probability 58 E [0,)] such that receiver obtains 
Yi = Xi E8 Zi E Y = {O, 1} where E8 denotes the XOR 
operation and Zi E {O,l}T is a binary noise vector with iid 
entries distributed as Bern(5s). For the remaining part of this 
paper, we assume, without loss of generality, that 51 < 50' The 
receiver knows Si when Xi is sent, but the transmitter learns 
it after it is sent, at the end of the 'i-th block. Thus the channel 
state Si may be used to adapt the transmission scheme from 
the (i + 1 )-th block. Moreover, we consider a stop-feedback 
setting in which the receiver feeds back noiseless ACKINACK 
to the transmitter that indicates termination. The capacity of 
the described channel is C = log 2 - qhb( 51) - (1 - q)hb( 50), 
where hbO is the binary entropy function. The capacity is 

approached by fixed-length codes, with blocklengths tending 
to infinity. 

A. Fixed-length block codes 

The achievable rates using fixed-length block codes may be 
approximated by (1), where the dispersion of the block-fading 
model described (per channel use) can be shown to be [4], [7] 

V = IE [5S(1 - 5s ) (log 
1 �s

5s
) 

2

] 
+ Tq(1 - q)(hb(50) - hb(51))2, (2) 

where the expectation taken over the channel state S E {O, 1}. 

B. Variable-length codes 

For fading channels with CSI at the receiver (CSIR) and 
delayed CSIT, variable-length coding can be achieved either 
through stop-feedback as in [2, Theorem 3] or delayed CSIT. 
With stop-feedback, the transmitter sends incremental redun­
dancy until an ACK is obtained, while the receiver makes 
an estimate of the correct codeword in each block and if the 
reliability of the estimate is higher than 1 -E, the receiver 
feeds back an ACK that terminates the transmission. This 
scheme is referred to as variable-length stop-feedback (VLSF) 
coding. On the other hand, delayed CSIT can be used by 
the transmitter to estimate whether the receiver has collected 
enough information and thereby terminate the transmission. 
This communication scheme is referred to as variable-length 
coding with delayed CSIT (VLD). 

The achievable rates of these communication schemes can 
be computed using the Theorem 3 in [2] and the dependency 
testing bound in [1], respectively. In Fig. 1, the VLD scheme 
is illustrated for the block-fading model described previously. 
Initially, the transmitter chooses a codeword from a codebook 
of ]1;[1 codewords. In each block, the receiver collects informa­
tion that resolves some uncertainty about the correct codeword. 
After the transmission, the transmitter obtains the CSI of the 
previous block, and using the dependency testing bound in 
[1], computes the probability of error E. If E < E, the trans­
mitter terminates the transmission, while it sends additional 
incremental redundancy otherwise. This continues until the 
collected information allows the receiver to reliably decode 
the message. As shown in the specific realization in Fig. 1, 
variable-length coding with periodic feedback eventually leads 
to cases where the receiver collects a wasteful amount of 
information. 

III. EXPANDABLE MESSAGE SPACE CODES 

This section describes the EMS codes and EMS stop­
feedback (EMS-SF) codes. In contrast to fixed-length block 
codes, EMS codes allow the number of codewords in each 
block to expand in a tree-like fashion. Two types of codes 
are introduced which allow the message space to expand in 
each block and are analogous to fixed-length block codes and 
VLSF codes in [2], respectively. In the following, ]I;[ik denotes 
rr�=i Mn for k::;:,i and 1 otherwise. An ((lvh, ... ,MN),E) 
EMS code consists of 
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-E 00101100 -CHmm 
00100110 10110011-C88HHH 

10101011 -C -E 11101010 -C�mma 
00110011 01000111-CaHaHH 

10010110 -CmHm -E 10101010 -C01010000 
00111011 -C8�mm 

01011111-C8a8rIIOa -E 01001001 -Cmmn 
10000010 10010011-C00001110 

00011010 -cmmr8 
(a) Tree of codewords. (b) List of codewords. 

Fig. 2. Depicts a random binary tree codebook and the corresponding list of 
codewords where X = {O, 1}8 and message cardinalities 1vh = 4, M2 = 3 
and M3 = 2. Note that equal blocks have the same colors. 

• N message sets, Mi = {I, ... , '!vI;}, i E {I, ... ,N}, 
• a set of encoding functions Ci : M1 x ... X Mi -+ X, 
• a decoder function g : yN -+ M1 X ... X MN U {e} 

that assigns estimates 31, ... ,3 N or an error message e 
to each received sequence yN, 

S.t. the average error probability 
Pr [g(yN) # (J1, ... , IN)] .-::: f, where J1 E M1, ... , IN E 
MN denote the transmitted equiprobable messages. 

In particularly, we denote a codeword of an EMS code as 
C(j1, ... ,jN) E XN, with (j1, ... ,jN) E (M1, ... ,MN)' 
and C7(j1, ... ,jN) E Xk-H1, k 2 i, denote the i-th to 
the k-th block of C(j1, ... ,jN). As opposed to a traditional 
fixed-length block code with IT!l Mi messages, the EMS 
codes differ only by the definition of the encoder functions 
that restricts the i-th block to only depend on the messages 

!vh, ... , .!VIi. This property implies that the codewords of an 
EMS code have a tree-like overlapping structure such that 

Ci(j1, ... ,ji,jH1, ... ,jN) =Cl(j1, ... ,ji), (3) 

for (jH1, ... ,jN) E (MH1, ... ,MN), and hence we can 
uniquely denote c1 (j1, ... , jN) by C(j1, ... , ji). 

Next, we define an EMS code that takes advantage of stop­
feedback. An (I, (!vh, ... , MN), f) EMS-SF code consists of 

• N message sets Mi E {I, ... , '!vI;}, i E {I, ... ,N}, 
• a sequence of encoders cfF : M1 x ... X Mi' -+ X, 

where i' = min( i, N), 
• a sequence of decoders gfF : yi -+ M1 X ... X Mi', 

that assigns the best estimates 31, ... ,3il at time i for 
each possible sequence in yi, 

• a random variable T* E N satisfying IE [T*] .-::: I, 
S.t. Pr[g�r(yT) # (J1, ... ,JT*,)] .-::: f, T*' = min(T*, N), 
where J1 E M1"'" IN E MN denotes the equiprobable 
messages. 

Although N message sets are defined for the EMS-SF 
codes, the transmission may be terminated before all messages 
have been decoded without declaring an error. When !vIi = 1 
for i 2 2, the EMS code and EMS-SF are identical to 
traditional a fixed-length block code and a VLSF code with 

!vh messages, respectively. The overlapping property allows 
EMS and EMS-SF codes to be built online, based on common 
randomness, according to feedback or CSI after each block. A 

practical example of EMS codes include convolutional codes 
where new source bits only affect the future states. 

To illustrate how EMS codes can be used in variable-length 
coding on a binary block-fading channel with T = 8, consider 
the example on Fig. 2. Suppose that the transmitter initially 
transmits a codeword, from a code book of!vh = 4 codewords, 
with index j1 E {1,2,3,4}. After the transmission, the 
transmitter obtains delayed CSIT and finds that the codeword 
can not be decoded reliably at the receiver. Instead of sending 
incremental redundancy, the transmitter chooses to expand the 
message space by a factor of !vI2 = 3 and injects a new 
message j2 E {I, 2, 3}. Fig. 2(a) depicts how the codebook 
expands. To send the second block, the encoder C2(j1,j2) is 
used, and hence the second transmitted block depends on both 
j1 and j2. The dependency on j1,j2 essentially combines the 
injected message j2 and the incremental redundancy for the 
first message j1. Note that if .!VI2 had been 1, purely incremen­
tal redundancy would have been send. Upon obtaining the CSI 
of the second block, the transmitter injects another message 
j3 E {I, 2} using the encoder C3(j1,j2,j3), and finally the CSI 
allows reliable decoding. The code book of !vh!vh!vh = 24 
codewords generated through this process is shown in Fig 2(b). 

In order to provide a non-asymptotic characterization of the 
achievable rates of the EMS codes, we state the following 
bound, analogous to the dependency testing bound in [l]. 
Theorem 1. For any channel input distribution Px, there 
exists an ((.!VII, ... , .!VI N ), f) EMS code such that 

N [ (M -l)MN ] 
f'-::: 8Pr t(Xf ; Yf) .-::: log 2 

2 
HI 

� (Mi -1)Ml+1 [( N. -N (Mi -1)Ml+1 ] + � 2 
Pr 1 Xi , Yi ) > log 

2 ' 
i=l 

(4) 

N N-N 
where Xl' Y 1 , Y 1 are N -fold distributions of 

pY,Ylx(Y, Ylx) = Py1x(ylx)Py(Y). 
Proof See Appendix A in [8]. D 

Using the Berry-Essen central limit theorem and techniques 
from [1], [9], we provide the following normal approximation 
to the achievable region of Theorem 1. 
Theorem 2. For any channel input distribution Px, there 
exists an (( .!VII, ... , .!VI N ), f) EMS code such that 

10g(Mi -1) + log MlXl 
.-::: J(Xf; Yf) - V�V-(X-;,-. ;

-
Y

-
f

-
)Q-1 (Ai f) + (] (1), (5) 

where i E {I, . . .  , N}, V(Xf; Yf) = Var[l (Xf; Yf)], 
\ . ,\,N \ N N-N Ai 2 0 satIsfies L...-i=l Ai = 1 and Xl , Y 1 , Y 1 are N -fold 
distributions of pY,Ylx(y,Ylx) = Py1x(ylx)Py(Y). 
Proof See Appendix B in [8]. D 

Next, we consider a non-asymptotic bound for EMS-SF 
codes. This generalizes the VLSF code from [1]. 
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Theorem 3. Fix In for n E {I, ... , N} and set In = ° for 
n > N. Let Xi and Xi be distributed according to Px and 
Yi be the output of the channel when Xi is its input. Define 
the hitting times 

T = inf { k :::-. 1 : z(X�; yn :::-. t, Ii} (6) 

Tn = inf { k :::-. n :t(X�-\ y�-l) + t(X�; Y�) :::-. t, Ii } , 

(7) 

Then for any tuple (Nh, ... ,NIN)' there exists an 
(I, (Nh, ... , MN), f) EMS-SF code such that 

I S IE [TI and 'S IE [
mi
�N

) 
i1�P' [Tn S Til (8) 

h 1\
�
ln - (1\1 - 1) 'IIllin(N,n)) w ere 'k - 'k 1� k+1 . 

Proof See Appendix C in [8]. D 

The achievable rate is then computed as R* (f) IE [ �min(T.N) loa M 1 n�IIE[Tl 
b n . To enable efficient computation of the 

bound in Theorem 3, we loosen the bound on the error 
probability (8) as follows 

f :::; IE [t NI{Pr [Tl :::; Tl] (9) 
00 n 

n=l 1=1 

:::; �pr[T = n] �f:l1nexp {-�Ii} 

IV. BACKTRACK RETRANSMISSION 

(10) 

(11) 

The key idea of BRQ is to reduce the collected amount of 
wasteful information by expanding the code book during trans­
mission. At short blocklengths, this can efficiently be achieved 
using EMS codes. As for VLSF and VLD, we propose two 
different communication schemes which are based on delayed 
CSIT alone and a combination of delayed CSIT and stop­
feedback. For the remaining results, we use random code books 
with iid entries drawn from a Bern ( !) distribution. 

A. BRQ with Delayed CSIT 

The operation of BRQ is illustrated in Fig. 3 and the 
protocol at the transmitter is summarized in Algorithm l. We 
assume that the transmitter and receiver have exchanged a 
seed to generate common randomness (for codebooks), and 
f81 , ... ,8k ({ Nh, ... , Nh}) denotes the achievable error proba­
bility, computed by Theorem 1, of an EMS code with messages 
Nh, ... , A1k and the state sequence 81, ... , 8k on the block­
fading channel. The transmitter initiates the transmission in 
block k = 1 by choosing a codeword from a random codebook 
of M1 codewords. By the end of the k-th block, the CSI 8k is 

Algorithm 1 BRQ with delayed CSIT at the transmitter. 
I: input: NIl and target probability of error f. 
2: initialize: Generate random binary code book with Nh 

codewords {C(j1)}' Fetch log M1 nats, corresponding to 
the message j1 E M1, and transmit x = c(jd E {O, IV. 

3: Receive the channel state Sl. Terminate if fSI ({ Nh}) < f. 
4: k +- 1 
5: repeat 
6: k +- k + 1 
7: Compute Ek = fS1, ... ,Sk_l,1 ({ Nh, ... , NIk-1, I}). 
8: if Ek :::; f then {Expand message space} 
9: Find Mk such that fSl, ... ,Sk_l,l( {Nh, ... , Md) = f. 

10: else {Pure incremental redundancy} 
11: A1k +- 1 
12: end if 
13: Expand code book by a factor of Nh by generating 

Nh codewords {Ck(j1, ... ,jk)}jkEMk for each j1 E 
M1, ... ,jk-1 E Mk-1. 

14: Fetch log A1k nats and set the message jk accordingly. 
Transmit Xk = Ck(j1, ... ,jk). 

IS: Receive the channel state Sk. 
16: until Sk = 1 and Ek :::; f 

Information Delaye
d
CSI bits/ch. 8, � O 

log2 l 
Delaye

d
CSI 

83 � 0 

l 

1 2 3 4  

O,leye
d
eSI 

84 � 1 

l 

• Supporte
d 
rate I(Xn; Y n) � �7u�����I�,�

a
dd"d &;3 �n�re���� ���ded 

Fig. 3. Operation of BRQ. 

obtained at the transmitter. Based on the CSI 81, ... ,8b the 
objective of the transmitter is to ensure that the decoder will 
not collect wasteful information in block k + 1. Therefore the 
transmitter computes the probability of error if the receiver 
were to decode by the end of block k + 1 and the CSI 
turns out to be Sk+1 = l. This probability of error is given 
by Ek+1 = fs1, ... ,sk,1(Nh, ... ,Nh,I). If Ek+1 < f, higher 
reliability than necessary is achieved if Sk+1 = 1, and the 
message space is thus expanded by a factor of Nlk+1. Nlk+1 
is computed such that, if Sk+1 = 1, then the messages 
Nh, ... , Nlk+1 can be jointly decoded with a probability of 
error f, i.e. f81, ... ,8k,1 (All, ... , Alk, Nh+d = f. Otherwise, 
Nh+1 is set to 1, and purely incremental redundancy is send. 
Termination occurs when f81, ... ,8k (Nh, ... , Nh) :::; f. Since 
the transmitter only uses delayed CSIT, the transmitter and 
receiver may generate the same code books using common 
randomness. 

B. BRQ with Delayed CSIT and Stop-Feedback 

When both stop-feedback and delayed CSIT is available at 
the transmitter, the proposed BRQ scheme is similar to Algo­
rithm 1 but uses an EMS-SF code. However, for stop-feedback 
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codes, the receiver decides whether to decode based on its 
received signal yn or, for the codes constructed in Theorem 3, 
when the information density surpasses a threshold. Wasteful 
information density is thereby reflected by an overwhelming 
probability of decoding in a specific block. With T{Nh, ... ,Md 
being the random stopping time of an (l, (!vh, ... , !vh), E) 
EMS-SF code, the probability of decoding at the end of block k, given NACKs were received in the first k - 1 blocks, is 
denoted by 

P{M" ... ,M<} = Pr [T{Ml, ... ,M<} = kIT{M1, ... ,M<} ::;:, k 81 , ... ,SA� 

,(Sl, ... ,Sk) = (81, ... ,8k)] (12) 
where 81, ... , 8k denotes the state sequence of the block­
fading channel. We introduce an additional parameter j3 which 
serves as a threshold for when to expand the message space. 

Therefore, the transmitter uses the following algorithm; in 
slot k, if P1���.';�·,'��',1,,1} > j3, the message space is expanded 

by a factor of !vh S.t. p1��'.';�·����? = j3. Otherwise, Mk is 
set to 1. After computation of !vh, the threshold value /k in 
Theorem 3 may be computed using (11) such that the receiver 
chooses to decode when the probability of error is less than 
E. Using this transmission protocol, the probability of error 
never exceeds E and the probability of decoding in a specific 
slot does not exceed j3. 

V. NUMERICAL RESULTS 

To assess the performance of the proposed communication 
schemes, the achievable rates of fixed-length block codes, the 
VLSF scheme, the BRQ schemes are computed. 

The achievable rates of fixed-length block codes are com­
puted using the normal approximation in (1). For the remaining 
schemes, the achievable rates are computed using Theorem 1 
and Theorem 3 and by averaging over all fading realizations 
for a range of !vh values. To reduce the computational 
complexity of averaging, we restrict the number of message 
space expansions to 5. The achievable rates are computed 
using the parameters 61 = 0.05, 60 = 0.3, q = 0.6 and 
j3 = 0.9. Computed achievable rates are shown in Fig. 4. 

Observe that schemes based on variable-length coding in 
general outperforms the fixed-length block codes. Moreover, 
for the VLSF and VLD schemes, it is seen that periodic 
decoding implies drops in the achievable rates in some ranges 
of blocklengths which become more pronounced for higher 
T. In these ranges of blocklengths, the BRQ schemes achieve 
higher rates. Note that optimization over j3 may yield better 
rates for BRQ with delayed CSIT and stop-feedback. 

VI. CONCLUSIONS 

In this paper, we considered a binary block-fading fading 
channel with two states. A family of codes, EMS codes, that 
allows the message space to expand during transmission was 
introduced and we provided bounds on the probability of error. 
Using these codes, we proposed two transmission schemes 
based the backtrack retransmission scheme. Numerical results 
showed that the proposed communication schemes achieve 

0.5 1===================1 

0.4 

5l 
� 0.3 

.<: 

,g 
:0 � 0.2 

0.1 

Average blocklength, T.E[7j 

(a) T = 100. 

Average blocklength, T·E[7j 

(b) T = 200. 

Fig. 4. Achievable rates for the block-fading model with the parameters 61 = 

0.05,60 = 0.30, q = 0.6 and f3 = 0.9. Green: capacity, black (solid): BRQ 
with delayed CSlT and stop-feedback, black (dashed): BRQ with delayed 
CSIT, red (solid): VLSF scheme, red (dashed): VLD scheme, blue: finite­
length block codes (not in plot for T = 200). 

better rates, for the specific parameters, than communication 
schemes that do not benefit from delayed CSIT. 
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