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Abstract—This paper studies the problem of optimal use of
a relay for reducing the transmission time of data packets
from a source to a destination using network coding. More
importantly, we address an effect that is typically overlooked
in previous studies: the presence of active transmitting nodes in
the neighborhood of such devices, which is typical in wireless
mesh networks. We show that in systems with a fair medium
access control mechanism (MAC), the use of a relay in a crowded
medium brings forth considerable and unforeseen improvements,
including up to 3.5x gains in terms of throughput compared
to using only the direct link in some of our examples, and a
considerable extension of the operating region where using a relay
is beneficial. The problem is formulated as a Markov Decision
Process (MDP) and numerical results are provided comparing
simple, close–to–optimal heuristics to the optimal scheme.

I. INTRODUCTION

The broadcast nature of wireless channels, which allows

potentially all nodes in the transmission range to receive

the packets, has opened a series of potential advantages

and challenges in the use of the transmission medium in

wireless networks. In fact, exploiting relay nodes to improve

performance of a single transmission link has been the focus

of research under different contexts, but particularly at the

physical (PHY) layer, for several decades. The advent of

network coding (NC) [1] offers a key mechanism to exploit

the benefits of a relay with packet–level interactions, instead

of tailored PHY layer mechanisms, by providing a richer,

controllable and throughput optimal alternative to simply

repeating the same data packet from the relay. The use of

random linear network coding (RLNC) [2] allows the system

to improve performance requiring minimal if any coordination

between relay and source. Nodes need only combine data

packets linearly in a finite field using coding coefficients drawn

uniformly at random from the elements of the field.

Recent results focused on the coded erasure relay channel,

e.g., [3], [4], have studied both performance benefits as well

as where and how much to code in this simple network. [5],

[6] investigate the problem of relaying from a physical layer

perspective for multiple users and multiple relays. Taking

a step further, PlayNCool [7], [8] provided more practical

mechanisms for exploiting relays in a wireless mesh network

to reinforce links chosen by an underlying routing mechanism.

This contrasted with previous approaches, e.g., [9], [10],

which focused on defining their own routing scheme. Another
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Fig. 1: A coded packet relay network with neighbors. All

nodes share a single transmission channel.

interesting feature of [7], [8] is the potential increase in

performance due to neighboring nodes.

Inspired by the flow analysis and simulations in [7], [8],

we aim at determining the optimal performance in terms of

total transmission time to solve the scenario depicted in Fig. 1.

Our problem focuses on determining the optimal transmission

policy to send M data packets from S to D with the help of

R and in the presence of X − 1 active neighbors sharing the

same channel. To the best of our knowledge, this is the first

in–depth analytical work looking at this problem and one that

will allow us to understand if the heuristics proposed in [7], [8]

have close–to–optimal performance. Seeking to understand the

effect of neighboring nodes on the performance of the packet

erasure relay channel, we make the following contributions:

• Mathematical Analysis: we model the problem as a

Markov Decision Process (MDP). The cost of packet

transmission is defined as the number of time slots that

is used to send packets plus the number of time slots

that the sender needs to wait in order to have a time

slot allocated to it. For simplicity, we assume a dynamic

TDMA medium access control (MAC), although random

access can also be modeled with our approach albeit with

additional complexity.

• Numerical Results and Comparison to Heuristics:

we calculate the expected completion time for different

scenarios, e.g, different number of neighbors, different

number of packets, different erasure probabilities of the

links between source, relay, and destination. These results

shows two key and counter–intuitive results. First, that the

judicious use of a relay can provide gains of up to 3.5x

with respect to the use of the direct link. Second, that the

operating region where the relay provides benefits can

be significantly extended with respect to the result in [3]



when the coded relay network is in the presence of active

neighbors. Finally, a comparison between the optimal

results obtained by MDP and the simulation results of

PlayNCool [7], [8] is provided showing that PlayNCool

provides a close–to–optimal solution for many scenarios.

II. PROBLEM STATEMENT

We consider a network that consists of one source (S),

one relay (R), and one destination (D), in the presence of

X − 1 neighbors that also use the same channel to transmit

data packets (See Fig. 1). A time–slotted system is assumed

with only one transmission per time slot and no collisions. We

assume a fair time division multiple access (TDMA) medium

access control that allows for immediate dynamic allocation

of resources based on the nodes’ requirements. This TDMA

scheme makes the assignments based on transmission rounds,

where each active node can transmit at most one time. We

model losses between S, R, and D as independent, time–

invariant erasure channels, where there is some probability

of losing each transmitted packet. The probability of packet

loss is given by ǫ1, ǫ2, and ǫ3 for the links from S to R,

from S to D, and from R to D, respectively. The source is

assumed to have M data packets to transmit, namely, packets

p1, p2, ..., pM . When transmitting, the source and the relay

send linear combinations of the contents of their buffer follow-

ing the rules of RLNC. For the source, this means generating

coded packets by linear combinations of the M original pack-

ets using randomly chosen coding coefficients α1,k, ..., αM,k

to create the k-th coded packet, i.e.,
∑M

i=1 αi,kpi. The coding

coefficients are selected independently and randomly from a

Galois field of size q, i.e., GF (q), using a uniform distribution

over the elements of the field. For this work, it is assumed

that q is large enough so that any RLNC packet received from

the source is independent from previously received packets

with very high probability. However, this is not the case

for transmissions between R and D because they may share

common linear combinations.

Assuming that the relay can help the source by transmitting

coded packets, when is this beneficial? If the erasure proba-

bility of the link between S,D, ǫ2, is larger than the erasure

probability of the link between R,D, ǫ3, it is clear that it is

beneficial to ask for help. If ǫ2 is lower than ǫ3, the potential

benefits are not as clear. In fact, [3] showed that ǫ3 > ǫ2 for

the specific case of no neighbors (X − 1 = 0, in our case) is

optimally solved without a relay. This means that in an isolated

environment with no interference the relay should not be used

as it is stealing wireless resources from the source. However,

the use of a relay may become beneficial in the presence of

neighbors (interferers) in the environment. Although the relay

may be using resources that could be allocated to the source,

it is inherently providing a larger share among all nodes if

the MAC distributes resources equally among the nodes. The

heuristics proposed in [7] suggest that this improvement is

possible, but the gap between the heuristics and the optimal

policy is not addressed. Having these questions in mind, we

are interested in finding a packet transmission policy that can

minimize the total cost of finishing the transmission of M

packets from S to D with/without the help of a relay and in

the presence of X−1 active neighbors. The cost is defined as

the number of active neighbors that use the same channel to

transmit plus the number of time slots that we use to transmit

packets toward destination.

III. OUR MDP SOLUTION TO THE PROBLEM

We model the problem as an MDP. At each time step, the

process is in some state s, and the system may choose any

action a that is available in state s. The process continues

in the next time step by randomly moving into a new state

s′ and adding a corresponding cost to the cost of system.

For determining the optimal policy, we assume that we have

a Genie system (GS) in which the state information of the

network is available per time slot and thus, it can help us to

choose the best action. In the following, we specify the state,

possible actions, and transition probabilities in our model.

A. State Definition:

We define a degree of freedom (DOF) as a linearly indepen-

dent combination of the original packets. Using this definition,

each state is defined by a triplet s(i1, i2, c), where i1 is the

number of DOF of the received packets at relay, R, i2 is the

number of DOF of the received packets at destination D. c is

the number of DOF of R and D combined, i.e., the dimension

of the common knowledge between R and D.

B. Possible Actions:

We define actions a1, a2, a3, a4 as possible ways of trans-

mitting a packet in the network of Fig. 1 as follows.

• Action a1: broadcast from S to R,D.

• Action a2: unicast from R to D.

• Action a3: first, broadcast from S to R,D, then unicast

from R to D in two consecutive time slots.

• Action a4: do not transmit.

C. Transition Probabilities:

The possible states to which state (i1, i2, c) can transit

to with non–zero probability depends on the action that we

choose and also the total knowledge (K = i1 + i2 − c) that

is available to both relay and destination at time t. We define

Ix∈X as an indicator function, which is one when x ∈ X and

zero otherwise. In order to calculate the transition probabilities

between different states, we should note that there are two

cases where the state of the network does not change, 1) the

packet is not received correctly (is erased by the channel), 2)

the packet is received correctly but it is not innovative to the

set of received packets at destination, in the sense that the

received packet is not linearly independent from the previous

received packets. The non–zero transition probabilities for 4
possible actions are summarized as follows:

Action a1 (source broadcast): When the source is broad-

casting, there are different possible state transitions. We will

explain the more surprising cases, while the rest can be

obtained via combinatorial arguments. On the one hand,

assuming that the packet is received without erasure at R and

D and depending on the total knowledge that is available to

both. If the total knowledge is less than M and the packet

is not erased by any one of the channels, then the common



knowledge between R,D is increased by one since both R,D

have received the same packet that is innovative to both of

them. If the total knowledge is equal to M and the packet is

not erased, the common knowledge between R,D is increased

by two. Let us illustrate this with an example. Assuming that

M = 3 and the set of packets received by R and D until

now is P1, P3 and P2 + P3, respectively. The network state

is then s = (2, 1, 0). Now assume that source broadcasts

P1 + P2 + P3, which adds one DOF to R and D. However,

the common knowledge is increased by two and the system

then transits to a new state s′ = (3, 2, 2). On the other hand,

if the relay has M DOF, then any new coded packet sent by

the source adds one DOF to the destination and increases the

common knowledge by one. This is because R already has all

DOF needed to decode the original packets and the common

knowledge simply equal to the knowledge at D. We now

summarize all possible transitions with non–zero probabilities

for source broadcasting as

• If K < M , i1 < M , i2 < M :

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ1ǫ2 I(i′
1
=i1,i

′

2
=i2,c

′=c) + ǫ1(1− ǫ2)

I(i′
1
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2
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1
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′

2
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(1− ǫ1)(1− ǫ2) I(i′
1
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′

2
=i2+1,c′=c+1).

• If K = M , i1 < M , i2 < M :

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ1ǫ2 I(i′
1
=i1,i

′

2
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1
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2
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1
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′

2
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′=c+1)

+ (1− ǫ1)(1− ǫ2) I(i′
1
=i1+1,i

′

2
=i2+1,c′=c+2).

• If K = M , i1 = M , i2 6= M :

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ2 I(i′
1
=i1,i

′

2
=i2,c

′=c) + (1− ǫ2)

I(i′
1
=i1,i

′

2
=i2+1,c′=c+1).

• If i2 = M : P(i1,i2,c)→(i1,i2,c) = 1.

Action a2 (unicast from R to D): If the number of DOF at R

is equal to the common knowledge of R,D, the relay cannot

send a packet to D that adds one DOF to it. On the other

hand, if the number of DOF at R is greater than the common

knowledge, then the packet sent by R adds one DOF to the set

of received packets by D under our high field size assumption.

We summarize the transition probabilities as

• If i2 < M , i1 > c:

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ3 I(i′
1
=i1,i

′

2
=i2,c

′=c) + (1− ǫ3)

I(i′
1
=i1,i

′

2
=i2+1,c′=c+1).

• If i2 < M , i1 = c or i2 = M : P(i1,i2,c)→(i1,i2,c) = 1.

Action a3 (first broadcast, then unicast from R to D):

This action includes two consecutive phases and constitutes a

combination of a1 and a2 occuring in the same transmission

round. Starting by state s, first we use broadcast to transit to

a new state ŝ with probability ps→ŝ and then assuming that

the system is in state ŝ, we calculate the transition probability

of transition from ŝ to s′ using action a2 as pŝ→s′ . Therefore,

the transition probability of going from state s to state s′

using action a3 is calculated as ps→s′ = ps→ŝ×pŝ→s′ . Using

combinatorial arguments, the transitions are as follows.

• If K < M , c < i1 < M , i2 < M − 1:

P(i1,i2,c)→(i
′

1
,i

′

2
,c
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1
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2
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1
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1
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2
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1
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2
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2
=i2+2,c′=c+2)

• If K < M , c < i1 < M , i2 = M − 1:

P(i1,i2,c)→(i
′

1
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′

2
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1
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1
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2
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I(i′
1
=i1,i

′

2
=i2+1,c′=c)

• If K < M , i1 < M , i2 < M − 1, i1 = c:

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ1ǫ2 I(i′
1
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′

2
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I(i′
1
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2
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I(i′
1
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′

2
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• If K < M , i1 < M , i2 = M − 1, i1 = c:

P(i1,i2,c)→(i
′

1
,i

′

2
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1
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I(i′
1
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′

2
=i2+1,c′=c)

• If K = M , c+ 1 < i1 < M , i2 < M − 1:

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ1ǫ2ǫ3 I(i′
1
=i1,i

′

2
=i2,c

′=c)+
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1
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2
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1
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1
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1
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1
=i1+1,i

′

2
=i2+2,c′=c+3)

• If K = M , i1 = M , i2 < M − 1, i1 > c+ 1:

P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ2ǫ3 I(i′
1
=i1,i

′

2
=i2,c
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[ǫ2(1− ǫ3) + (1− ǫ2)ǫ3] I(i′
1
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1
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′

2
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(1)

• If i2 = M : P(i1,i2,c)→(i1,i2,c) = 1
• If K = M , i1 = M , i2 = M − 1:



P(i1,i2,c)→(i
′

1
,i

′

2
,c

′ ) = ǫ2ǫ3 I(i′
1
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′
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1
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′

1
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′

2
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1
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′
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′
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(3)

Action a4 (do not transmit): P(i1,i2,c)→(i1,i2,c) = 1.

D. Cost Function

It is assumed that one transmission is done per time slot.

Therefore, every time the source or the relay transmit a packet,

they have to wait for X − 1 time slots to get one time slot

assigned for them to transmit their packets again. If both S,R

transmit in two consecutive time slots, then the number of

time slots that is used is X+1 in that transmission round. On

the other hand, if only one transmits the number of slots in a

round is X . Fig. 2 shows the cost of actions a1, a2, a3. This

leads to

C(s, aj , s
′) =



























X, ∀s ∈ S | s 6= (i1,M, c),
j ∈ 1, 2

(X + 1), ∀s ∈ S | s 6= (i1,M, c), j = 3
D, for s = (i1,M, c), j ∈ 1, 2, 3,
D, ∀s ∈ S | s 6= (i1,M, c), j = 4,
0, if s = (i1,M, c), j = 4,

(4)

where C(s, aj , s
′) is the cost of transition from state s to state

s′ by choosing action aj and S is the set of all possible states.

D is an arbitrary large number that is much greater than X .

By defining D >> X , we make sure that the MDP does not

choose any one of the actions a1, a2, a3 if the system is in the

absorbing states, s(i1,M, c), and it chooses action a4 that has

the minimum cost. This leads to stopping the process at the

absorbing states. We define a single absorbing state in this case

as being composed by a set of states of the form (i1,M, c),
where i1 can change from zero to M .

E. Optimization Algorithm

We use the value iteration algorithm (Bellman equa-

tions) [11] to solve the optimization problem and to minimize

the total cost of the transmission of M packets. A value

function is defined as Vt : S → R+ that associates to each

state s a lower bound on the minimal total cost V ∗(s) that

should be paid starting from that state. We can summarize the

steps to find an optimal policy as

V0(s) = 0, ∀s ∈ S,

Vt+1(s)← min
a

E(C(s, a, s′) + ζVt(s
′)), (5)

where E(X) shows the expected value of X . This will iterate

until the condition maxs |Vt+1(s)− Vt(s)| < δ is satisfied.

t represents the iteration number and ζ ∈ (0, 1] is called

discount factor and used to make sure that the equation

converges when t goes to infinity and δ has a very small value

greater than zero (e.g. 0.01).

Fig. 2: Cost (required time slots) of three key actions

IV. NUMERICAL RESULTS

A. Comparison Schemes

We use two schemes to compare the performance of the

relay approaches, namely, the MDP solution and the PlayN-

Cool heuristic [7], [8], with the performance of a non–relay

approach in the presence of active neighbors and using RLNC.

We also compare the heuristic to the MDP solution to assess

its performance compared to the optimal approach.

1) MDP: The MDP scheme is the optimal solution to the

problem that we have discussed before and is computed as

discussed in Section III.

2) PlayNCool: The PlayNCool scheme uses a simple

heuristic to transmit packets opportunistically. The source

starts broadcasting until the relay receives a reasonable

number of the DOF (but not enough to decode) before it

starts to send. When the relay starts sending, it will also

listen to transmissions from the source to gather additional

DOF. Both relay and source transmit RLNC packets until the

destination receives enough DOF to decode. The number of

broadcast transmissions before relay starts sending, r, depends

on the erasure probabilities of the channels. This means that

the relay makes decisions based only on knowledge of its

own state and channel statistics, but not on the receiver state.

If the relay is close to source and far from destination, i.e.,

(1 − ǫ1) × ǫ2 > 1 − ǫ3, r is calculated as r = 1
(1−ǫ1)ǫ2

. If

the relay is closer to destination, i.e., (1− ǫ1)× ǫ2 ≤ 1− ǫ3,

the number of transmissions before relay starts sending is

calculated as [7]:

r =
−M.C(ǫ1, ǫ2, ǫ3)

D(ǫ1, ǫ2, ǫ3)− (1− ǫ2).C(ǫ1, ǫ2, ǫ3)
, (6)

where C(ǫ1, ǫ2, ǫ3) = (−1+ǫ3+ǫ2−ǫ1.ǫ2) and D(ǫ1, ǫ2, ǫ3) =
(2− ǫ2 − ǫ3).(ǫ2 − ǫ1.ǫ2).

B. Comparison Scenarios

We use the C++ KODO library [12] to simulate the PlayN-

Cool protocol and compare it with the optimal MDP solution.

We consider three scenarios to analyze the effect of different

parameters of the network on the gain of coded packet relay

networks: a) M,X are fixed while ǫi is varied, b) ǫi and M

are fixed while X is varied, and c) ǫi, X are fixed while M is

varied. The gain in the presence of X − 1 active neighbors is

defined as the completion time of sending M packets from S

to D without relay (CTWR) divided by the completion time

of a relay approach (CTR) that is calculated by simulation or

the MDP solution:

Gain =
CTWR

CTR

. (7)
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Fig. 4: The map of possible area of getting benefit of using

relay for ǫ1 = 0.2,M = 10 and different values of ǫ2, ǫ3, X:

pairs of (ǫ2, ǫ3) under the curve of X provide gain> 1, i.e.,

there is a gain of using the relay

1) The effect of erasure probabilities: We investigate differ-

ent scenarios to validate our claim that a crowded room (i.e.,

active neighbors) allows the relay to provide additional bene-

fits. First, we consider the case where the erasure probability

of the channel between R and D is more than the erasure

probability of channel between S and D, which was shown

in [3] to require no relay to achieve optimal performance (no

other active nodes). Fig. 3 illustrates that the use of the relay

can be beneficial if there are active neighboring nodes in the

system. This corresponds to cases with a gain larger than 1.

The MDP solution demonstrates that even a small number of

neighbors is sufficient to make the use of a relay attractive.

Fig. 3 also shows that PlayNCool does not provide a

good solution for this region until there is a large number

of active nodes, suggesting that improvements are needed in

the heuristics of [7], [8]. However, when enough neighboring

nodes are active the performance of PlayNCool comes closer

to the performance of optimal MDP solution. Fig. 3 shows

that even a poor link between R and D (ǫ3 = 0.8 in this case)

can help in decreasing the time to complete the transmission

of M = 10 packets by around 40 %.

In order to have a better understanding of the effect between

neighboring nodes in the usefulness of a relay, we illustrate

the operating region where the relay provides benefits. This

useful operating region for the erasure probabilities of the links

between S,D (ǫ2) and R,D (ǫ3) is defined for each X value

as the area under the curve (pointed by an arrow) in Fig. 4.

In other words, the relay provides gains for pairs of (ǫ2, ǫ3)

that are located under the curve for each X . The curves were

calculated using the MDP solution for X = 1, 2, 4, 6, 8, 10 and

different pairs (ǫ2, ǫ3). Fig. 4 for the case of X = 1, which is

the same as having no neighbors in the network, confirms the

result in [3]. That is, if ǫ2 < ǫ3 there is no gain of using relay.

By increasing the number of active neighbors, we increase

the region where we get benefits of using a relay. Even a

single neighbor, i.e., X = 2, provides a significant increase in

the useful operating region. For X = 10, essentially any pair

(ǫ2, ǫ3) benefits of using a relay, as shown in Fig. 4. Finer

grained results can be computed using a larger number of

points, but the key result still holds: the presence of neighbors

makes the relay useful in a wider range of channel conditions.

Second, we consider the case where the link between R,D

is better than the link between S,D. We assume that ǫ2 = 0.8
and there are X − 1 = 5 active neighbors in the network.

Fig. 5 shows a similar experiment for the case where ǫ3 = 0.3
and ǫ1 is changed for both M = 10 and M = 30 packets.

Fig. 5 shows that by increasing the erasure probability of the

channel between R,D, the gain of relay approaches decreases

but it is still greater than one. This means that even if the

channel between R and D is not substantially better than the

one between S to D, the presence of active neighbors makes

the use of a relay beneficial to speed up the packet transmission

process. Also, Fig. 5 shows that by increasing the value of

M , the gap between the gain calculated by the MDP and the

simulation is decreased. This is explained because PlayNCool

assumes that R is always sending innovative packets to D,

while this is not always true as we have shown in the MDP

analysis. By increasing the number of packets, the probability

of sending innovative packets increases and therefore, the

performance of PlayNCool is closer to the MDP solution.
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2) The effect of number of active neighbors: We assume

that ǫ1 = 0.3, ǫ2 = 0.8, ǫ3 = 0.5 and M = 10 for the network

depicted in Fig. 1. In order to see the effect of network traffic

on the gain of the relay approaches, we change the number

of active neighbors that are competing to access the same

channel. Fig. 6 presents the gain of PlayNCool protocol with

the gain of the optimal MDP solution for 0 to 29 neighbors.

By increasing the number of interfering nodes, the gain of

using a relay approach increases. Fig. 6 shows that the gap

between the PlayNCool heuristic and optimal MDP solution

is below 10%, which is quite impressive since PlayNCool does

not assume perfect knowledge of the system state.

3) The effect of number of packets (M ): We assume that

ǫ1 = 0.3, ǫ2 = 0.8, ǫ3 = 0.6 and X − 1 = 5 active neighbors.

We change the number of packets that are transmitted from S

to D. Fig. 7 compares the gains of PlayNCool and the MDP

solution with respect to the direct link for M changing from

5 to 30. By increasing the number of packets, the gain of both

MDP and PlayNCool increases while their gap decreases.

V. CONCLUSION

We proposed a Markov Decision Process model to deter-

mine the optimal policy to minimize the transmission time of

M packets from a source to a destination in the presence of
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Fig. 7: Gains of MDP and PlayNCool simulations for ǫ1 =
0.3, ǫ2 = 0.8, ǫ3 = 0.6, X − 1 = 5 and different M

X−1 active neighbors by using RLNC and a relay approach.

We compared the performance of the optimal MDP solution

to that of the PlayNCool protocol proposed in [7], [8] in terms

of the completion time for a transmission of M packets for

different scenarios, e.g, different number of active neighbors,

different number of packets, and different channel conditions.

Our results show that PlayNCool is able to achieve the close–

to–optimal performance, when the number of packets is large.

More importantly, we showed that using a relay in the presence

of active neighbors is beneficial even if the channel from

relay to destination is not better than the channel between

source and destination. Future work will consider the effects of

asymmetric coding and modulation schemes for transmission

from source and relay, which can increase even more the

usefulness of the relay as well as more complex topologies,

e.g., multi–hop scenarios, sharing of relay by multiple flows.
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