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Synchronizing Strategies under
Partial Observability

Kim G. Larsen, Simon Laursen, and Jǐŕı Srba

Aalborg University, Department of Computer Science
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

{kgl,simlau,srba}@cs.aau.dk

Abstract. Embedded devices usually share only partial information
about their current configurations as the communication bandwidth can
be restricted. Despite this, we may wish to bring a failed device into a
given predetermined configuration. This problem, also known as reset-
ting or synchronizing words, has been intensively studied for systems
that do not provide any information about their configurations. In order
to capture more general scenarios, we extend the existing theory of syn-
chronizing words to synchronizing strategies, and study the synchroniza-
tion, short-synchronization and subset-to-subset synchronization prob-
lems under partial observability. We provide a comprehensive complexity
analysis of these problems, concluding that for deterministic systems the
complexity of the problems under partial observability remains the same
as for the classical synchronization problems, whereas for nondetermin-
istic systems the complexity increases already for systems with just two
observations, as we can now encode alternation.

1 Introduction

In February last year (2013), Aalborg University launched an experimental satel-
lite [3] designed by students. There was a failure during the initialization phase
executed by the satellite at the orbit, resulting in unknown orientation of the so-
lar panel. This caused significant problems with energy supply and very limited
communication capabilities of the satellite, especially when transmitting infor-
mation that is energetically more expensive than receiving it. The task was to
command the satellite from the Earth so that it returned to some predefined
well-known position.

A simplified model of the problem is depicted in Figure 1a. In the example,
we assume for illustration purposes that there are only eight possible rotation
positions of a single solar panel, numbered by 1 to 8 in the figure. The thin lines
with a dashed surface indicate the direction the panel is facing in a given position.
This determines whether the panel is active and produces energy (facing towards
light) or inactive and does not produce any energy. The thick line at position 5
indicates the current (unknown) position of the solar panel. The satellite cannot
communicate the exact position of the solar panel, instead it is only capable
of transmitting information as to whether the current position produces energy
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(a) Unknown orientation of the satellite’s solar panel

Synchronizing strat-
egy that brings the
system to state 1:

if Inactive then
repeat rotate L
until Active;

else repeat rotate R
until Inactive;
rotate L;

endif
rotate L;

(b) Synch. strategy

Fig. 1: Satellite with partial observability and its synchronizing strategy

(observation Active) or not (observation Inactive). The panel can be commanded
to rotate one position to the left (action L) or to the right (action R) and our
task is to bring it from any possible (unknown) position into the position 1 where
it produces most energy. As we cannot observe the actual position of the panel,
we need to find a strategy that relies only on the fact whether the panel is Active
or Inactive. Such a strategy indeed exists as shown in Figure 1b.

The classical concept of synchronizing words [6] for deterministic finite au-
tomata dates back more than 50 years and it concerns the existence of a word
that brings a given automaton from any of its states to a single state (see [22,24]
for recent survey papers). However, for our example in Figure 1a it is clear that
there is no single synchronizing word—in this classical setting—over {L,R} that
can bring the panel into the same position. Instead, we need to design a strategy
that relies on a partial information about the system, in our case on whether
the panel is Active or Inactive.

1.1 Our Contribution

We introduce a general synthesis problem for synchronizing strategies of systems
with partial observability. We deal with this problem in the setting of finite-state
automata where each state has a single observation from a finite set of obser-
vations; we call the model labelled transition system with partial observability
(LTSP). The task is to suggest a strategy for adaptive generation of actions
based on the so-far seen observations. Such a strategy should bring the system
from any possible initial state into a single synchronizing state. We also consider
two other variants of the synchronization synthesis problem (i) with a bound on
the maximal length of (runs of) the strategy (short-synchronization) and (ii) syn-
chronization from a given set of states to a given set of states (subset-to-subset
synchronization). We provide a comprehensive complexity study of these prob-
lems in the setting of total deterministic (DFA), partial deterministic (PFA) and
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Classical synchronization Partial Observability

No information, |O| = 1 No restriction on O
S
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ti
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n

DFA NL-complete [6, 24] NL-complete (Thm. 5)

PFA PSPACE-complete [15] PSPACE-complete (Thm. 4)

NFA PSPACE-complete [15,21] EXPTIME-complete (Thm. 2, 7)

S
h
o
rt

-s
y
n
ch

. DFA NP-complete [11] NP-complete (Thm. 5)

PFA PSPACE-complete [15] PSPACE-complete (Thm. 4)

NFA PSPACE-complete [15] EXPTIME-complete (Thm. 2, 7)

S
u
b
se

t-
to

-s
u
b
se

t

DFA PSPACE-complete [20] PSPACE-complete (Thm. 4)

PFA PSPACE-complete ([20], on-the-fly) PSPACE-complete (Thm. 4)

NFA PSPACE-complete ([20], on-the-fly) EXPTIME-complete (Thm. 2, 6)

Table 1: Summary of complexity results (new results are in bold)

nondeterministic (NFA) finite automata. Our results, compared to the classical
synchronization problems, are summarized in the right column of Figure 1.

Our first technical contribution is a translation from the synthesis of history-
dependent synchronizing strategies on LTSP to the synthesis of memoryless win-
ning reachability strategies for a larger two-player knowledge game. This allows
us to argue for the EXPTIME containment of the synchronization problem on
NFA. However, for DFA and PFA the knowledge game is insufficient to obtain
tight complexity upper-bounds. For this reason, and as our second contribu-
tion, we define a notion of aggregated knowledge graph allowing us to derive
a PSPACE containment for PFA and NL containment for DFA, despite the
double-exponential size of the aggregated knowledge graph in the general non-
deterministic case.

In order to complement the complexity upper-bounds with matching lower-
bounds, we provide as our third contribution a novel polynomial-time reduction
from alternating linear bounded automata into the synchronization problems
for NFA with partial observability. This is achieved by showing that a combi-
nation of the partial observability and nondeterminism can capture alternation.
This technique provides matching lower-bounds for all our three synchroniza-
tion problems on NFA. The lower-bounds for DFA and PFA are derived from
the classical problem setting.

In addition, we describe a polynomial-time reduction from a setting with an
arbitrary number of observations to an equivalent setting with just two observa-
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tions, causing only a logarithmic overhead as a factor in the size of the system.
Thus all the lower-bound results mentioned earlier remain valid even when re-
stricting the synchronizing strategy synthesis problem to only two observations.

1.2 Related work

The study of synchronizing words initiated by Černý [6] is a variant of our more
general strategy synthesis problem where all states return the same observation,
and the existence of synchronizing words, short synchronizing words and subset-
to-subset synchronizing words have been in different contexts studied up to now;
see [22,24] for recent surveys. The computational complexities of word synchro-
nization problems for DFA, PFA and NFA are summarized in left column of
Table 1. Note that the NL-completeness for the classical synchronization prob-
lem on DFA (not explicitly mentioned in the literature) follows directly from the
fact that the problem of synchronizing all states is equivalent to checking that
any given pair of states can be synchronized [6, 24]. The PSPACE containment
of subset-to-subset word synchronization for NFA and PFA follows from [20] by
running the algorithm for DFA in an on-the-fly manner, while guessing step-by-
step the synchronizing path.

Through the last years there has been an increasing interest in novel settings
of the synchronization problem. Volkov et al. [12] study the problem for deter-
ministic automata with positive cost on transitions, and constrain the cost of the
synchronizing word. They also study a synchronization game, where the player
who wants to synchronize the system proposes only every second character in
the synchronizing word. Doyen et al. [9, 10] study the existence of infinite syn-
chronizing words in a probabilistic setting. The theory of synchronizing words
have also seen several practical applications, for instance in biocomputing [2],
model-based testing [4], and robotics [1].

The notion of homing sequences [13, 16] is related to the study of synchro-
nizing words and to our study of synchronizing strategies. A homing sequence
is a sequence of input actions that makes it possible to determine the current
state of the system by looking at the outputs from the system. Homing se-
quences are studied on the model of Mealy machine, essentially a DFA where
each transition produces an output from a given finite alphabet (see [22] for a
recent survey). Homing sequences have been, among others, studied in an adap-
tive variant where the next input symbol is determined by the knowledge of the
previous outputs. This is related to our synchronizing strategies that depend on
the history of observations, however, there are no complexity results for adaptive
homing sequence on nondeterministic systems.

Pomeranz and Reddy [17] suggest to combine synchronizing words and adap-
tive homing sequences. They first apply a homing sequence and then find a word
that brings the machine to one particular state. The theory is applied to sequen-
tial circuit testing for deterministic systems and their adaptive synchronization
problem can be seen as a subclass of our systems with partial observability (the
output actions of a Mealy machine can be encoded as observations).

4



The idea of gathering the knowledge of possible states where the system can
be after a sequence of observable actions, formalized in the notion of knowledge
game, is inspired by a similar technique from [5, 7]. Our aggregated knowledge
graph technique is related to the super graph construction used in [14]. The
complexity of the conditional planning problem from artificial intelligence have
also recently been studied under different observability assumptions [19].

Finally, regarding our EXPTIME lower bound, similar complexity results
are available for reachability on finite games with partial observability. In [18]
the authors study reachability games where both players have only a partial in-
formation about the current configuration of the game and show 2-EXPTIME-
hardness of deciding whether the first player has a winning strategy. Our synchro-
nization problem for NFA can be also seen as a game, however, here the second
player (nondeterminism) has a full information. This variant, called semiperfect-
information game, was studied in [8] for a parity objective (including reachabil-
ity) and the authors show that the problem is both in NP and coNP. Our syn-
chronization problem for NFA is similar to the semiperfect-information game,
however, with a very different objective of synchronizing from any given state.
This is documented by the fact that the synchronization problem under partial
observability for NFA becomes EXPTIME-complete.

2 Definitions

We shall now formally rephrase our problem. We define labelled transition sys-
tems with partial observability, introduce synchronizing strategies and formulate
the three decision problems we are interested in.

Definition 1. A labelled transition system with partial observability (LTSP)
is a quintuple T = (S,Act ,→,O, γ) where S is a set of states, Act is an action

alphabet, → ⊆ S × Act × S is the transition relation, written s
a−→ s′ whenever

(s, a, s′) ∈ →, O is a nonempty set of observations, and γ : S → O is a function
mapping each state to an observation.

We shall study the synchronization problems for three natural subclasses
of LTSP, namely DFA (deterministic finite automata), PFA (partial finite au-
tomata) and NFA (nondeterministic finite automata). An LTSP is called NFA
if S, Act and O are all finite sets. If the transition relation is also deterministic,
i.e. for every s ∈ S and a ∈ Act there is at most one s′ ∈ S such that s

a−→ s′,
then we call it PFA. If the transition relation is moreover complete, i.e. for all
s ∈ S and a ∈ Act there is exactly one s′ ∈ S such that s

a−→ s′, then we have a
DFA. In the rest of the paper we focus on the NFA class and its PFA and DFA
subclasses (implicitly assuming partial observability).

For the rest of this section, let T = (S,Act ,→,O, γ) be a fixed LTSP. A

path in T is a finite sequence π = s1a1s2a2 . . . an−1sn where si
ai−→ si+1 for all i,

1 ≤ i < n. The length of π is the number of transitions, denoted as |π| = n− 1.
The last state sn in such a path π is referred to as last(π). The set of all finite
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paths in T is denoted by paths(T ). The observation sequence of π is the unique
sequence of state observations γ(π) = γ(s1)γ(s2) . . . γ(sn).

A strategy on T is a function from finite sequences of observations to next
actions to be taken, formally

δ : O+ → Act ∪ {done}

where done 6∈ Act is a special symbol signalling that the achieved path is max-
imal. In the rest of the paper we consider only strategies that are feasible and
terminating. A strategy δ is feasible if the action proposed by the strategy is
executable from the last state of the path; formally we require that for every
π = s1a1s2a2 . . . an−1sn ∈ paths(T ) that follows the strategy, meaning that
δ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n, either δ(γ(π)) = done or there is

at least one s′ ∈ S such that last(π)
δ(γ(π))−−−−−→ s′. A strategy δ is terminating if it

does not generate any infinite path, in other words there is no infinite sequence
π = s1a1s2a2 . . . such that si

ai−→ si+1 and δ(γ(s1a1s2a2 . . . si)) = ai for all i ≥ 1.
Given a subset of states X ⊆ S and a feasible, terminating strategy δ, the

set of all maximal paths that follow the strategy δ in T and start from some
state in X, denoted by δ[X], is defined as follows:

δ[X] = {π = s1a1s2a2 . . . an−1sn ∈ paths(T ) | s1 ∈ X and δ(γ(π)) = done

and δ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n } .

The set of final states reached when following δ starting from X is defined
as last(δ[X]) = {last(π) | π ∈ δ[X]} and the length of δ from X is defined as
length(δ[X]) = max{|π| | π ∈ δ[X]}. By length(δ) we understand length(δ[S]).

We now define a synchronizing strategy that guarantees to bring the system
from any of its states into a single state.

Definition 2 (Synchronizing strategy). A strategy δ for an LTSP T =
(S,Act ,→,O, γ) is synchronizing if δ is feasible, terminating and last(δ[S]) is a
singleton set.

Note that synchronizing strategy for NFA means that any execution of the
system (for all possible nondeterministic choices) will synchronize into the same
singleton set. It is clear that a synchronizing strategy can be arbitrarily long as
it relies on the full history of observable actions. We will now show that this is in
fact not needed as we can find strategies that do not perform unnecessary steps.

Let T = (S,Act ,→,O, γ) be an LTSP and let ω ∈ O+ be a sequence of
observations. We define the set of possible states (called belief) where the system
can be after observing the sequence ω by

belief (ω) = {last(π) | π ∈ paths(T ), γ(π) = ω} .

A strategy δ for T is belief-compatible if for all ω1, ω2 ∈ O+ with belief (ω1) =
belief (ω2) we have δ(ω1) = δ(ω2).

6



Lemma 1. If there is a synchronizing strategy δ for a finite LTSP T =
(S,Act ,→,O, γ) then T has also a belief-compatible synchronizing strategy δ′

such that length(δ′) ≤ 2|S| and length(δ′) ≤ length(δ).

We shall now define three versions of the synchronization problem studied in
this paper. The first problem simply asks about the existence of a synchronizing
strategy.

Problem 1 (Synchronization). Given an LTSP T , is there a synchronizing strat-
egy for T?

The second problem of short-synchronization moreover asks about the exis-
tence of a strategy shorter than a given length bound. This can be, for instance,
used for finding the shortest synchronizing strategy via the bisection method.

Problem 2 (Short-Synchronization). Given an LTSP T and a bound k ∈ N, is
there a synchronizing strategy δ for T such that length(δ) ≤ k?

Finally, the general subset-to-subset synchronization problem asks to syn-
chronize only a subset of states, reaching not necessarily a single synchronizing
state but any state from a given set of final states.

Problem 3 (Subset-to-Subset Synchronization). Given an LTSP T and subsets
Sfrom , Sto ⊆ S, is there a feasible and terminating strategy δ for T such that
last(δ[Sfrom ]) ⊆ Sto?

If we restrict the set of observations to a singleton set (hence the γ function
does not provide any useful information about the current state apart from the
length of the sequence), we recover the well-known decision problems studied in
the body of literature related to the classical word synchronization (see e.g. [22,
24]). Note that in this classical case the strategy is now simply a fixed finite
sequence of actions.

3 Complexity Upper-Bounds

In this section we shall introduce the concept of knowledge game and aggregated
knowledge graph so that we can conclude with the complexity upper-bounds for
the various synchronization problems with partial observability.

3.1 Knowledge game

Let T = (S,Act ,→,O, γ) be a fixed LTSP. We define the set of successors from

a given state s ∈ S under the action a ∈ Act as succ(s, a) = {s′ | s a−→ s′}. For
X ⊆ S we define

succ(X, a) =

{
{s′ ∈ succ(s, a) | s ∈ X} if succ(s, a) 6= ∅ for all s ∈ X

∅ otherwise
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such that succ(X, a) is nonempty iff every state from X enables the action a.

We also define a function split : 2S → 2(2
S)

split(X) = {{s ∈ X | γ(s) = o} | o ∈ O} \ ∅

that partitions a given set of states X into the equivalence classes according to
the observations that can be made.

We can now define the knowledge game, a two-player game played on a graph
where each node represents a belief (a set of states where the players can end up
by following a sequence of transitions). Given a current belief, Player 1 plays by
proposing a possible action that all states in the belief can perform. Player 2 then
determines which of the possible next beliefs (partitionings) the play continues
from. Player 1 wins the knowledge game if there is a strategy so that any play
from the given initial belief reaches the same singleton belief {s}. Formally, we
define the knowledge game as follows.

Definition 3. Given an LTSP T = (S,Act ,→,O, γ), the corresponding knowl-
edge game is a quadruple G(T ) = (V, I,Act ,⇒) where

– V = {V ∈ 2S \ ∅ | {V } = split(V )} is the set of all unsplittable beliefs,
– I = split(S) is the set of initial beliefs, and

– ⇒⊆ V×Act×V is the transition relation, written V1
a

=⇒ V2 for (V1, a, V2) ∈⇒,

such that V1
a

=⇒ V2 iff V2 ∈ split(succ(V1, a)).

Example 1. In Figure 2a we show the knowledge game graph for our running
example from Figure 1a. We only display the part of the graph reachable from
the initial belief consisting of states {3, 4, 5, 6, 7} where the solar panel is inactive.
Assume that we want to synchronize from any of these states into the state 8.
This can be understood as a two-player game where from the current belief
Player 1 proposes an action and Player 2 picks a new belief reachable in one
step under the selected action. The question is whether Player 1 can guarantee
that any play of the game reaches the belief {8}. This is indeed the case and the
strategy of Player 1 is, for example, to repeatedly propose the action L until
the belief {8} is eventually reached.

We shall now formalize the rules of the knowledge game. A play in a knowl-
edge game G(T ) = (V, I,Act ,⇒) is a sequence of beliefs µ = V1V2V3 . . . where

V1 ∈ I and for all i ≥ 1 there is ai ∈ Act such that Vi
ai=⇒ Vi+1. The set of all

plays in G(T ) is denoted plays(G(T )).
A strategy (for Player 1 ) is a function ρ : V → Act . A play µ = V1V2V3 . . .

follows the strategy ρ if Vi
ρ(Vi)
===⇒ Vi+1 for all i ≥ 1. Note that the strategy is

memoryless as it depends only on the current belief.
Player 1 wins the game G(T ) if there is s ∈ S and a strategy ρ such that

for every play µ = V1V2V3 . . . ∈ plays(G(T )) that follows ρ there exists an i ≥ 1
such that Vi = {s}.
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(b) A fragment of the ag-
gregated knowledge graph

Fig. 2: Examples of a knowledge game and an aggregated knowledge graph.

The length of a play µ = V1V2V3 . . . for reaching a singleton belief {s} is
length(µ, s) = i− 1 where i is the smallest i such that Vi = {s}. The length of a
winning strategy ρ in the game G(T ) that reaches the singleton belief {s} is

length(ρ) = max
µ∈plays(G(T )), µ follows ρ

length(µ, s) .

Theorem 1. Let T = (S,Act ,→,O, γ) and let G(T ) = (V, I,Act ,⇒) be the
corresponding knowledge game where I = split(S). Then Player 1 wins the
knowledge game G(T ) iff there is a synchronizing strategy for T . Moreover for
any winning strategy ρ in the game G(T ) there is a synchronizing strategy δ for
T such that length(ρ) = length(δ), and for any synchronizing strategy δ for T
there is a winning strategy ρ in the game G(T ) such that length(ρ) ≤ length(δ).

Proof. Assume that Player 1 wins the knowledge game G(T ) with the strategy
ρ so that all plays reach the belief {s}. We want to find a synchronizing strategy
δ for T . Let the initial observation be o1 ∈ O; this gives the initial belief V1 =
{t ∈ S | γ(t) = o1}. We can now use the winning strategy ρ to determine the
first action of our synchronizing strategy δ(o1) = ρ(V1). By executing the action
ρ(V1), we get the next observation o2. Now assume that we have a sequence of
observations o1o2 . . . oi−1oi. We can inductively determine the current belief Vi

9



as

Vi = {t ∈ succ(Vi−1, ρ(Vi−1)) | γ(t) = oi}

for all i > 1. This gives us the synchronizing strategy

δ(o1o2 . . . oi−1oi) =

{
done if Vi = {s}
ρ(Vi) otherwise

that guarantees that all plays follow the winning strategy ρ. Hence in any play
there exists an i ≥ 1 such that Vi = {s}. By this construction it is clear that
length(ρ) = length(δ).

For the other direction, assume that there is a synchronizing strategy δ for
T . Then we know from Lemma 1 that there exists also a belief-compatible syn-
chronizing strategy δ′ where length(δ′) ≤ length(δ). We want to find a winning
strategy ρ for Player 1 in G(T ). As we know by construction that all states in
a belief V have the same observation, we use the notation γ(V ) = o if γ(t) = o
for all t ∈ V . Let the initial belief be V1 ∈ I. We use the synchronizing strategy
δ′ to determine the first action that Player 1 winning strategy should propose
by ρ(V1) = δ′(γ(V1)). Now Player 2 determines the next belief V2 such that

V1
δ′(γ(V1))
=====⇒ V2. In general, assume inductively that we reached a belief Vi along

the play µ = V1V2 . . . Vi. The winning strategy from Vi is given by

ρ(Vi) = δ′(γ(V1)γ(V2) . . . γ(Vi)) .

Note that this definition makes sense because δ′ is belief-compatible (and hence
different plays in the knowledge game that lead to the same belief will propose
the same action). From the construction of the strategy and by Lemma 1 it is
also clear that length(ρ) = length(δ′) ≤ length(δ). ut

We conclude with a theorem proving EXPTIME-containment of the three
synchronization problems for NFA (and hence clearly also for PFA and DFA).

Theorem 2. The synchronization, short-synchronization and subset-to-subset
synchronization problems for NFA are in EXPTIME.

The proof is done by exploring in polynomial time the underlying, exponen-
tially large, graph of the knowledge game.

3.2 Aggregated knowledge graph

Knowledge games allowed us to prove EXPTIME upper-bounds for the three
synchronization problems on NFA, however, it is in general not possible to guess
winning strategies for Player 1 in polynomial space. Hence we introduce the
so-called aggregated knowledge graph where we ask a simple reachability ques-
tion (one player game). This will provide better complexity upper-bounds for
deterministic systems, despite the fact that the aggregated knowledge graph can
be exponentially larger than the knowledge game graph.
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Definition 4. Let G(T ) = (V, I,Act ,⇒) be a knowledge game. The aggregated
knowledge graph is a tuple AG(G(T )) = (C , C0,⇒) where

– C = 2V \ ∅ is the set of configurations (set of aggregated beliefs),
– C0 = I is the initial configuration (set of all initial beliefs), and
– ⇒⊆ C × C is the transition relation such that C1 ⇒ C2, standing for

(C1, C2) ∈⇒, is possible if for every V ∈ C1 there is an action aV ∈ Act ∪{•}
such that V

aV=⇒ V ′ for at least one V ′ (by definition V
•

=⇒ V if and only if

|V | = 1), ending in C2 = {V ′ | V ∈ C1 and V
aV=⇒ V ′}.

Example 2. Figure 2b shows a fragment of the aggregated knowledge graph for
our running example from Figure 1a. The initial configuration is the aggregation
of the initial beliefs and each transition is labelled with a sequence of actions for
each belief in the aggregated configuration. The suggested path shows how to
synchronize into the state 8. Note that the action •, allowed only on singleton
beliefs, stands for the situation where the belief is not participating in the given
step.

Theorem 3. Let G(T ) = (V, I,Act ,⇒) be a knowledge game and let
AG(G(T )) = (C , C0,⇒) be the corresponding aggregated knowledge graph. Then
C0 ⇒∗ {{s}} for some state s if and only if Player 1 wins the knowledge game
G(T ). Moreover, for any winning strategy ρ in G(T ) that reaches the singleton
belief {s} we have C0 ⇒length(ρ) {{s}}, and whenever C0 ⇒n {{s}} then there is
a winning strategy ρ in G(T ) such that length(ρ) ≤ n.

The proof is done by translating the path in the aggregated knowledge graph
into a winning strategy for Player 1 in the knowledge game, and vice versa.

The aggregated knowledge graph can in general be exponentially larger than
its corresponding knowledge game as the nodes are now subsets of beliefs (that
are subsets of states). Nevertheless, we can observe that for DFA and PFA, the
size of configurations in AG(G(T )) cannot grow.

Lemma 2. Let T be an LTSP generated by DFA or PFA. Let AG(G(T )) =
(C , C0,⇒) be the corresponding aggregated knowledge graph. Whenever C ⇒ C ′

then
∑
V ∈C |V | ≥

∑
V ′∈C′ |V ′|.

Theorem 4. The synchronization, short-synchronization and subset-to-subset
synchronization problems for DFA and PFA are decidable in PSPACE.

Proof. By Theorem 3 and Theorem 1 we get that we can reach the configuration
{{s}} for some s ∈ S in the aggregated graph AG(G(T )) if and only if there is a
synchronizing strategy for the given LTSP T . From Lemma 2 we know that for
DFA and PFA the size of each aggregated configuration reachable during any
computation is bounded by the size of the set S and therefore can be stored in
polynomial space. As PSPACE is closed under nondeterminism, the path to the
configuration {{s}} for some s ∈ S can be guessed, resulting in a polynomial-
space algorithm for the synchronizing problem. Theorem 3 also implies that the
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length of the shortest synchronizing strategy in T is the same as the length of
the shortest path to the configuration {{s}} for some s, giving us that the short-
synchronization problems for DFA and PFA are also in PSPACE. Regarding
the subset-to-subset synchronization problem from the set Sfrom to the set Sto ,
we can in a straightforward manner modify the aggregated knowledge graph so
that the initial configuration is produced by splitting Sfrom according to the
observations and we end in any configuration consisting solely of beliefs V that
satisfy V ⊆ Sto (while allowing the action • from any such belief to itself). ut

Finally, for the synchronization and short-synchronization problems on DFA,
we can derive even better complexity upper-bounds by using the aggregated
knowledge graph.

Theorem 5. The synchronization problem on DFA is in NL and the short-
synchronization problem on DFA is in NP.

The first claim is proved using our aggregated knowledge graph together
with a generalization of the result from [6, 24] saying that all pairs of states
in the system can synchronize iff all states can synchronize simultaneously. For
the second claim we show that the shortest synchronizing strategy in DFA has
length at most (n − 1)n2 where n is the number of states. The strategy can be
guessed (in the aggregated knowledge graph) and verified in nondeterministic
polynomial time.

4 Complexity Lower-Bounds

We shall now describe a technique that will allow us to argue about EXPTIME-
hardness of the synchronization problems for NFA.

Theorem 6. The subset-to-subset synchronization problem is EXPTIME-hard
for NFA.

Proof (Sketch). By a polynomial time reduction from the EXPTIME-
complete [23] acceptance problem for alternating linear bounded automaton over
the binary alphabet {a, b}. W.l.o.g. we assume that the existential and universal
choices do not change the current head position and the tape content and we
have special deterministic states for tape manipulation. We shall construct an
LTSP over three observations {default , choice1, choice2}.

Each tape cell at position k is encoded as in Figure 3a. The actions tka and tkb
can reveal the current content of the cell, while the actions uka and ukb are used to
update the stored letter. The current control state q and the head position k are
remembered via newly added states of the form (q, k). If (q, k) corresponds to a
deterministic state, it will (by a sequence of two actions tkx and ukx′ as depicted
in Figure 4a) test whether the k’th cell stores the required letter x and then it
will update it to x′. For the pair (q, k) where q is an existential state, we add the
transitions as in Figure 3c. Clearly, the strategy can select the action 1 or 2 in
order to commit to one of the choices and all tape cells just mimic the selected
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(k, a) (k, b)

uk
b

uk
a

g 1

g 2

g 1

g 2

1, 2, tka

1, 2, tkb

Observation choice1

Observation choice2

(a) Tape cell

(q, k)

(q, k, x)

(q′, k′)

tkx uk
x′

k′ = k + 1 or k′ = k − 1
depending on whether the
head moves to the right/left

(b) Tape update

(q, k)

(q1, k)

(q2, k)

1

2

(c) Existential
choice

(q, k)

(q, k, 1)

(q, k, 2)

(q1, k)

(q2, k)

g

g

1

2

Observation choice1

Observation choice2

(d) Universal choice

(qacc , k)

sink

(k, x)

$

$

all actions

where x is a tape symbol

(e) Sink state

Fig. 3: Encoding idea

action via self-loops. So far we did not need any observations as the introduced
states all belong to default .

The tricky part is regarding the transitions from the pair (q, k) where q is
a universal state. The situation is depicted in Figure 3d. Here the strategy can
propose only the action g while the nondeterminism is in control of whether we
end up in (q, k, 1) or (q, k, 2). However, this choice is revealed by the observa-
tion choice1 or choice2, respectively. Notice that the nondeterminism in the cell
encoding does not have to follow the same observation as in the control part.
Nevertheless, if this happens, the strategy is allowed to “split” into two separate
continuations.

Finally, if the accepting control state qacc is reached, we allow to enter a new
state sink under a new action $, not only from (qacc , k) but also from any cell
state (k, a) and (k, b) as depiced in Figure 4d. This is the only way in which the
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LTSP can synchronize, assuming that we only start from the states (q0, 1) where
q0 is the initial state and the cell positions that correspond to the initial content
of the tape. This assumption is valid as we only consider the subset-to-subset
synchronization problem in this theorem. ut

Theorem 7. The synchronization and short-synchronization problems are
EXPTIME-hard for NFA.

Proof (Sketch). Given the construction for the subset-to-subset synchronization
problem, we need to guarantee that the execution starts from the predefined
states also in the general synchronization problem. Hence we introduce additional
transitions together with a new state init having the observation default . These
transitions add a new action # that bring us from any state into one of the initial
states of the subset-to-subset problem. There is also a new #-labelled transition
from init into the initial control state and init has no other transitions. This
implies that any synchronizing strategy must start by performing the action
#. Note that for the short-synchronization case, we use Lemma 1 giving us an
exponential upper-bound on the length of the shortest synchronizing strategy.

ut

The reader may wonder whether three different observations are necessary
for proving EXPTIME-hardness of the synchronizing problems or whether one
can show the hardness only with two. By analysis of the construction, we can
observe that two observations are in fact sufficient. Moreover, there is a general
polynomial-time reduction from a given synchronization problem with an arbi-
trary number of observations to just two observations, while increasing the size
of the system by only a logarithmic factor.

Theorem 8. The synchronization, short-synchronization and subset-to-subset
synchronization problems on DFA, PFA and NFA are polynomial-time reducible
to the equivalent problems with only two observations.

Proof (Sketch). Let T = (S,Act ,→,O, γ) be a given finite LTSP and let ` =
dlog |O|e. The idea is to encode every observation in binary, so that we need
only ` bits for each observation. Now instead of entering a state s in the original
system, we enter instead a chain of newly added states of length `−1 that reveal
via the binary observations 0/1 the actual observation of the state s (where s
reveals the last bit). ut
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A Proofs from Section 2

Lemma 1. If there is a synchronizing strategy δ for a finite LTSP T =
(S,Act ,→,O, γ) then T has also a belief-compatible synchronizing strategy δ′

such that length(δ′) ≤ 2|S| and length(δ′) ≤ length(δ).

Proof. Let δ be a synchronizing strategy for T . Let ω1, ω2 ∈ O+ be such that
belief (ω1) = belief (ω2). Then the strategy δω1→ω2

defined as

δω1→ω2
(ω) =

{
δ(ω2ω

′) if ω = ω1ω
′

δ(ω) otherwise

is also a synchronizing strategy for T ; a fact that follows from the definition of
δ[X] and Definition 2.

We shall now argue that if there is a synchronizing strategy for T then there
is also one of length at most 2|S|. By contradiction assume that the shortest
synchronizing strategy δ for T has length length(δ) > 2|S|. Among such shortest
synchronizing strategies, we pick one that has the smallest number of paths
from paths(T ) of length length(δ). For this strategy δ, there is now a path π =
s1a1s2a2 . . . an−1sn ∈ δ(S) where |π| = length(δ) > 2|S| such that s1 ∈ S,
δ(γ(π)) = done, and δ(γ(s1a1s2a2 . . . si)) = ai for all i, 1 ≤ i < n. Let ω = γ(π)
be the sequence of observations on this path. As |ω| > 2|S| and we have only 2|S|

possible beliefs, necessarily ω = ω1ω
′
1 and ω1 = ω2ω

′
2 such that ω′2 is nonempty

and belief (ω1) = belief (ω2). Then the strategy δω1→ω2 is also a synchronizing
strategy for T but has a smaller number of the longest paths (of length length(δ))
in δω1→ω2

than δ. This contradicts our assumption and we can conclude that
the shortest synchronization strategy for T has length at most 2|S|. Clearly,
length(δω1→ω2

) ≤ length(δ).
Assume now a synchronizing strategy δ such that length(δ) ≤ 2|S|. Then

there are only finitely many ω1, ω2 ∈ O+ that can be observed on some path
that follows δ such that belief (ω1) = belief (ω2) and δ(ω1) 6= δ(ω2). We can
now repeatedly use the strategy substitution δω1→ω2

if |ω2| ≤ |ω1|, or δω2→ω1
if

|ω1| < |ω2|, in order to construct a belief-compatible strategy for T of length at
most 2|S| a not longer than length(δ).

B Proofs from Section 3

Theorem 2. The synchronization, short-synchronization and subset-to-subset
synchronization problems for NFA are in EXPTIME.

Proof. We shall first discuss the existence of synchronizing strategy. Let T =
(S,Act ,→,O, γ) and let G(T ) = (V, I,Act ,⇒) be the corresponding knowledge
game where I = split(S). By Theorem 1 there is a synchronizing strategy for
T if and only if Player 1 has a winning strategy in the knowledge game. The
game G(T ) is of exponential size w.r.t. the system T but we can decide whether
Player 1 has a winning strategy in G(T ) in polynomial time (in the size of
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G(T )) by adapting a standard backward reachability algorithm for alternating
automata. We mark some singleton belief {s} ∈ V (we try all possible singleton
beliefs if we do not succeed for {s}). Then we iteratively mark every belief V ∈ V
such that there is an action a ∈ Act enabled in V and every V ′, where V

a
=⇒ V ′,

is already marked. Once no more beliefs can be marked, we check whether all
initial beliefs are marked. If this is the case then there is a winning strategy for
Player 1. If on the other hand this is not the case for any singleton belief {s}
then Player 1 does not have a winning strategy. This gives us an exponential
algorithm for the synchronization problem.

Regarding the short-synchronization problem, Theorem 1 together with
Lemma 1 imply that there is a synchronization strategy in T of length at most
k iff there is a winning strategy for Player 1 in G(T ) of length at most k. By
modifying the marking algorithm so that it for each marked belief remembers
also the length of the shortest path to the singleton belief, we can check whether
all initial beliefs are marked such that their length is at most k.

Finally, for the subset-to-subset synchronization problem from the set Sfrom

to the set Sto , we can modify the game G(T ) such that the initial beliefs are
I = split(Sfrom) and a play is winning if it reaches a belief V such that V ⊆ Sto .
The corresponding modification in the marking algorithm is straightforward.

We can so conclude that all three problems are solvable (via the knowledge
game graphs) in exponential time w.r.t. to the size of the finite LTSP T . ut

Theorem 3. Let G(T ) = (V, I,Act ,⇒) be a knowledge game and let
AG(G(T )) = (C , C0,⇒) be the corresponding aggregated knowledge graph. Then
C0 ⇒∗ {{s}} for some state s if and only if Player 1 wins the knowledge game
G(T ). Moreover, for any winning strategy ρ in G(T ) that reaches the singleton
belief {s} we have C0 ⇒length(ρ) {{s}}, and whenever C0 ⇒n {{s}} then there is
a winning strategy ρ in G(T ) such that length(ρ) ≤ n.

Proof. Assume that for some s the path η = C0 ⇒n {{s}} exists in the aggre-
gated knowledge graph AG(G(T )). Then there is also a path η′ = C0 ⇒n′ {{s}}
such that for each belief we always propose the same action, no matter what
configuration it is in. This follows by the argument that we can use the same
strategy for each belief that appears in the aggregated knowledge graph by fol-
lowing the one that makes the path shortest (reaches the belief {s} faster).
Clearly |η′| ≤ |η|. Now we construct a winning strategy ρ for Player 1 in the
knowledge game G(T ) such that ρ(V ) = aV where V ∈ C ∈ η′ and aV is the
proposed action for the belief V in the configuration C. This is a winning strat-
egy for Player 1 as it reaches the belief {s}. By construction of the strategy it
is also clear that length(ρ) ≤ n.

Now in the other direction, assume that Player 1 wins the knowledge game
G(T ) with the strategy ρ by bringing all plays to the belief {s} where s ∈ S. We
want to show that there is a path C0 ⇒∗ {{s}} in aggregated knowledge graph
AG(G(T )). We start with the initial configuration C0 = {V0 | V0 ∈ I}. Assume
that we already have a prefix of the path up to the configuration C. The next
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configuration is then

C′ = {V ′ | V ∈ C and V
aV=⇒ V ′ where aV = ρ(V )

if V 6= {s} and aV = • otherwise } .

It is clear that this will bring us to the configuration {{s}} as all beliefs now
follow the winning strategy ρ. By counting the number of steps in the path, we
get that C0 ⇒length(ρ) {{s}}. ut

Lemma 2. Let T be an LTSP generated by DFA or PFA. Let AG(G(T )) =
(C , C0,⇒) be the corresponding aggregated knowledge graph. Whenever C ⇒ C ′

then
∑
V ∈C |V | ≥

∑
V ′∈C′ |V ′|.

Proof. Let V ∈ C and let X = {V ′ | V aV=⇒ V ′}. It is now enough to argue
that |V | ≥

∑
V ′∈X |V ′|. Recall that V ′ ∈ X iff V ′ ∈ split(succ(V, aV )). Clearly

|succ(V, aV )| ≤ |V | for DFA and PFA. The rest follows from the fact that the
function split only partitions succ(V, aV ) and hence does not increase its size.

ut

Theorem 5. The synchronization problem on DFA is in NL and the short-
synchronization problem on DFA is in NP.

Proof. Using the same arguments as in Theorem 4, we can derive that the ques-
tion of synchronizing two given states s1 and s2 can be done in nondeterministic
logarithmic space using the aggregated knowledge graph (by Lemma 2 we know
that on any path in the aggregated graph we need to remember at most two
states). Observe now that we can synchronize all pairs of states independently if
and only if all states can be synchronized at once (a straightforward generaliza-
tion of the result from the classical setting without partial observability [6,24]).

For the containment of the short-synchronization problem in NP, we first no-
tice that if n states can be synchronized then the shortest synchronizing strategy
has length at most (n−1)n2. This follows from the fact that each pair-wise syn-
chronization takes at most n2 steps (in the aggregated knowledge graph with
configurations containing just two states we get a loop if the length of the path
exceeds n2). Clearly synchronizing one state takes zero steps. Now by induc-
tion, assume that synchronizing the first i states into a state t requires at most
(i−1)n2. Let s be (i+1)’th state that we should also synchronize with. From the
initial state s, we follow the strategy for synchronizing the first i states, arriving
into a state s′. Now we extend the strategy so that we pairwise synchronize t and
s′, taking at most n2 steps as argued above. Hence to synchronize i + 1 states
we need at most (i − 1)n2 + n2 = in2 steps, providing us with the conclusion
that synchronizing n states requires a strategy of length at most (n−1)n2. Such
a strategy can be guessed and verified in nondeterministic polynomial time. ut

C Proofs from Section 4

First, we introduce the acceptance problem of alternating linear bounded au-
tomata that is known to be EXPTIME-complete (see e.g. [23]). For technical
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convenience, we present a less standard variant of the problem where only inter-
nal control states can read/write on the tape while the existential and universal
states that enable branching do not modify or even know the tape content. The
presented variant has the same expressive power as the standard model.

An alternating linear bounded automaton (ALBA) is a tuple M =
(Qi, Q∀, Q∃, Q,Σ, q0, qacc ,`,a, δ1, δ2) where

– Qi is a set of internal control states,
– Q∀ is a set of universal control states,
– Q∃ is a set of existential control states,
– Q = Qi ]Q∃ ]Q∀ is the set of all control states,
– Σ = {a, b} is the input alphabet,
– q0 ∈ Q is the initial state,
– qacc ∈ Q is the accepting state,
– δ1 : Qi × (Σ ∪ {`,a}) → Q × (Σ ∪ {`,a}) × {L,R} is a transition relation

for internal states such that

• δ1(q,`) = (q′,`, R),
• δ1(q,a) = (q′,a, L),
• δ1(q, x) = (q′, x′, D),

where q ∈ Qi, q′ ∈ Q, x, x′ 6∈ {`,a} and D ∈ {L,R},
– δ2 : (Q∃ ∪Q∀)→ Q×Q is a transition relation for existential and universal

states.

For each q ∈ Q∀∪Q∃ the transition relation δ2(q) returns a pair of two elements
(q1, q2), referred to as the first and second successor, respectively.

A configuration of an ALBAM is the current state, the position of the head
on the tape and the tape content (starting and ending with the end-markers). We
denote configurations as w1qw2 where q ∈ Q is the current state, and w1 =`w′1
and w2 = w′2a where w′1, w

′
2 ∈ Σ∗ represent the tape content such that the head

points to the first letter of w2. The initial configuration for the input word w is
c0 =`q0wa. Depending on the control state a configuration is called internal if
q ∈ Qi, existential if q ∈ Q∃, universal if q ∈ Q∀ and accepting if q = qacc .

A step of computation is a relation → between configurations defined as
follows (where x, x′, y ∈ Σ ∪ {`,a}, w1, w2 ∈ (Σ ∪ {`,a})∗ such that all config-
urations start with ` and end with a):

– w1qxw2 → w1x
′q′w2 whenever q ∈ Qi and δ1(q, x) = (q′, x′, R),

– w1yqxw2 → w1q
′yx′w2 whenever q ∈ Qi and δ1(q, x) = (q′, x′, L), and

– w1qw2 → w1q
′w2 whenever q ∈ Q∃ ∪ Q∀, δ2(q, x) = (q1, q2) and q′ = q1 or

q′ = q2.

A computation tree for M on an input w ∈ Σ∗ is a possibly infinite
configuration-labelled tree rooted with the initial configuration c0 =`q0wa such
that every node labelled with a configuration c satisfies:

– if c is accepting then it is a leaf,
– if c is internal or existential then it has one child c′ such that c→ c′, and
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– if c is universal then it has two children labelled with the first and the second
successor of c.

An ALBAM accepts a string w ∈ {a, b}∗ iff there is a finite computation tree
for M on w such that all leaves are accepting configurations. It is well known
that the problem whether an ALBA accepts a string w is EXPTIME-complete.

Theorem 6. The subset-to-subset synchronization problem is EXPTIME-hard
for NFA.

Proof. We shall now provide a polynomial-time reduction from the acceptance
problem for ALBA to synchronization problems on NFA with partial observ-
ability. Assume a given ALBA M = (Qi, Q∀, Q∃, Q,Σ, q0, qacc ,`,a, δ1, δ2) and
a string w. We construct a finite LTSP (NFA) T = (S,Act ,→,O, γ) where

– S = {sink} ∪ {(q, k) | q ∈ Q, 0 ≤ k ≤ |w|+ 1} ∪
{(q, k, a), (q, k, b) | q ∈ Qi, 1 ≤ k ≤ |w|} ∪
{(q, 0,`), (q, |w|+ 1,a)} ∪
{(q, k, 1), (q, k, 2) | q ∈ Q∀, 0 ≤ k ≤ |w|+ 1} ∪
{(k, x), (k, x, 1), (k, x, 2) | 1 ≤ k ≤ |w|, x ∈ {a, b} } ∪
{(0,`), (0,`, 1), (0,`, 2)}∪
{(|w|+ 1,a), (|w|+ 1,a, 1), (|w|+ 1,a, 2)},

– Act = {tkx, ukx | 1 ≤ k ≤ |w|, x ∈ {a, b}} ∪
{t0`, u0`, t

|w|+1
a , u

|w|+1
a } ∪ {g, 1, 2, $,#},

– O = {default , choice1, choice2}, and
– the transition relation → together with γ is given in Figure 4. Note that

all states that are not marked with the observations choice1 or choice2, are
assigned by default the observation default .

The construction above provides a reduction to the subset-to-subset synchro-
nization problem where we assume that we synchronize from the initial states

– (q0, 1) and
– (k, xk) for all k, 0 ≤ k ≤ |w|+ 1, such that the input word w is of the form
x1x2 . . . xn and x0 =` and xn+1 =a

into the set {sink}. During the simulation of the given ALBA, we shall preserve
the invariant that there is exactly one active state of the form (q, k) representing
that we are at the control state q and the head is at position k. Also for every
tape cell at position k, we remember the current symbol stored in each cell by
being either in the state (k, a) or (k, b) (with the exception of the end-markers
that can store only one symbol).

Consider now that the active control state is (q, k). There are four cases
according to whether q is internal, existential, universal or accepting control
state.

– Let q ∈ Qi. The corresponding transitions are depicted in Figure 4a. The
state (q, k) can perform the test action tka or tkb depending on whether the k’th
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Fig. 4: Encoding of the δ-function (k ranges over all its possible values)
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tape cell (Figure 4e) is in the state (k, a) or (k, b), respectively. Choosing a
wrong test action means that the tape cell cannot perform the chosen action,
implying that this may not be a synchronizing strategy. After the appropriate
test action was chosen, we have to necessarily perform the update action ukx′

bringing us to the state (q′, k′) where the head is moved accordingly and
this action has to synchronize with the k’th tape cell so that the new tape
symbol x′ is updated accordingly. Notice that any other tape cell, save the
one on k’th position, simply mimics these two actions via self-loops in their
current states.

– Let q ∈ Q∃. The corresponding transitions are depicted in Figure 4b. Here
we can freely choose the successor control state by pick the action 1 or 2
according to the first and second successor given by the δ2 function. Clearly,
all tape cells will mimic the chosen action using a self-loop.

– Let q ∈ Q∀. The corresponding transitions are depicted in Figure 4c. After
performing the guessing action g, the system nondeterministically decides
whether to enter (q, k, 1) or (q, k, 2) and we have to investigate the possible
continuation from both situations. However, as they are in different obser-
vation classes, we can split our strategy and design different continuations
for these two possibilities. The main point is now about the tape cells in
Figure 4e. They have also a nondeterministic choice about going to state
with observation choice1 or choice2 but they do not have to follow the con-
trol state choice. However, if they do not follow it, we can observe such a
behavior and design an alternative strategy for the tape cell, continuing the
simulation like if the opposite choice was taken in the control states.

– Let q = qacc . Then the transitions in Figure 4d apply and we can move using
the action $ into a global state called sink that is the only state that allows
to synchronize both control states and tape cells. Clearly, any tape cell is
able to perform $ and enter the synchronizing state sink at any time, but
only the accepting control state is able to enter the sink state.

This completes the proof and we have show that the constructed subset-to-
subset synchronization problem has a synchronizing strategy if and only if the
given ALBA accepts the input string, giving us the following hardness result. ut

Theorem 7. The synchronization and short-synchronization problems are
EXPTIME-hard for NFA.

Proof. In order to prove EXPTIME-hardness for the existence of synchronization
strategy from any given initial state, we need to introduce additional transitions
together with a new state init as depicted in Figure 5. These transitions add
a new action # in such a way that any synchronizing strategy has to start by
performing the action #. If any other action should be chosen instead of # then
it is impossible to synchronize the state init . It is now clear that performing
this initialization brings the system to the set of initial states in the subset-to-
subset problem discussed above, deriving the following theorem. Note that for
the short-synchronization case, we use Lemma 1 giving us an exponential upper-
bound on the length of the shortest synchronizing strategy. ut
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Fig. 5: Initialization for the input w = x1x2 . . . xn by adding a new state init
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Theorem 8. The synchronization, short-synchronization and subset-to-subset
synchronization problems on DFA, PFA and NFA are polynomial-time reducible
to the equivalent problems with only two observations.

Proof. Let T = (S,Act ,→,O, γ) be a given finite LTSP and let ` = dlog |O|e.
We can assume that all observations from O are written in binary and contain
exactly ` bits (including the leading zeros). Then the i’th bit of an observation
o ∈ O is denoted as oi. We construct an LTSP T ′ = (S′,Act ′,→′,O′, γ′) such
that

– S′ = S ∪ {s0, s1, s2, . . . , s`−1 | s ∈ S},
– Act ′ = Act ∪ {•,#},
– →′ = {(s, a, s1) | s′ a−→ s}∪{(s1, •, s2), (s2, •, s3), . . . , (s`−2, •, s`−1), (s`−1, •, s) |
s ∈ S} ∪{(s1,#, s1), (s2,#, s1), (s3,#, s1), . . . , (s`−1,#, s1), (s,#, s1) | s ∈
S} ∪{(si, a, si) | s ∈ S, 1 ≤ i < `, a ∈ Act r {•,#}} ∪ {(s, •, s) | s ∈ S}
∪{(s0, a, s1) | s ∈ S, a ∈ Act},

– O′ = {0, 1}, and
– γ′(s) = γ(s)` and γ′(si) = γ(s)i for all s ∈ S and all i, 1 ≤ i < `, and
γ′(s0) = 0 for all s ∈ S.

s

s`−1

s`−2

s2

s1 s0

γ′(s) = b`

γ′(s`−1) = b`−1

γ′(s`−2) = b`−2

γ′(s2) = b2

γ′(s1) = b1

γ′(s0) = 0

a

•

b

•

•

•

•

#

#

#

#

Act

Act r
{•}

Act r
{•,#}

Act r
{•,#}

Act r
{•,#}

•

...

Fig. 6: New states for every s ∈ S where γ(s) = b1b2 . . . b`; the arrow labelled
with a represents incoming transitions to s and the one labelled with b outgoing
transitions from s.

The construction is depicted in Figure 6. The main idea is now that instead
of entering the state s in the original system, we enter the newly added state
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s1 associated with s. Now by performing the sequence of actions •, we obtain
step-by-step the knowledge about the observation in the state s. The added
self-loops are necessary only for the case of DFA in order to have a complete
transition relation and the states s0 (not reachable from any other states) are im-
portant only for arguing about the length of the synchronizing strategy. Now we
can show that the synchronization, short-synchronization and subset-to-subset
synchronization problems have a solution in T iff they have a solution in T ′.

Assume a synchronizing strategy in the original LTSP T . The equivalent
strategy in T ′ will simply initially perform the action # so that is gets the
possibility to read the whole information about the observation in the given
state. After this the actions in the strategy T are separated by `-1 actions • in
order to obtain a strategy for T ′. Such a sequence provides a full information
about the original observation in the state s, allowing us to follow faithfully the
given synchronizing strategy from T also in T ′.

On the other hand, the system T ′ does not provide any additional information
by performing # compared with T ; note that after # the system T ′ must perform
the actions • until reaching the original state s as it is impossible to synchronize
the system in the newly added states s0, . . . , s`−1 and exercising the self-loops in
the newly added states does not help either. Hence any synchronizing strategy
in T ′ can be transformed into a synchronizing strategy in T by leaving out the
intermediate actions • and #.

For the short-synchronization problem for T , checking if the length of the
strategy is at most k, we will instead ask in T ′ whether there is a strategy of
length at most k · (`− 1) + 1. ut
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