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Abstract— This paper applies a hierarchical control for a fast 
charging station (FCS) composed of paralleled PWM rectifier 
and dedicated paralleled multiple flywheel energy storage 
systems (FESSs), in order to mitigate peak power shock on grid 
caused by sudden connection of electrical vehicle (EV) chargers. 
Distributed DC-bus signaling (DBS) and method resistive virtual 
impedance are employed in the power coordination of grid and 
flywheel converters, and a centralized secondary controller 
generates DC voltage correction term to adjust the local voltage 
set point. The control system is able to realize the power 
balancing and improve DC voltage regulation with low reliance 
on digital communication technology. Algorithm has been 
developed in Matlab/Simulink and compiled to real-time 
simulation platform dSPACE 1006. Corresponding simulation 
results have been reported in order to verify the validity of 
proposed control strategy.   

Keywords—EV charging station; flywheel energy storage 
system; distributed bus signaling 

I.  INTRODUCTION 
During last decades, it has been extensively recognized that 

the increasing conventional fossil fuels’ consumption and 
carbon dioxide emissions are reasons to cause environmental 
deterioration and threaten human life. Particularly 
transportation sector is responsible for 25% world carbon 
dioxide emissions and the increasing numbers of conventional 
gasoline or gas-fueled automobile are considered to account for 
a great portion of total transportation pollutions [1].  

Motivated by this situation, plug-in electrical vehicles 
(PEV) are attracting more attentions today and are potential to 
replace the conventional automobiles in near future [2]. It 
could be expected that a large amount of PEV will be on road 
and electrification is going to be the mainstream of 
transportation development. Therefore, providing an acceptable 
surroundings and necessary ancillary services of PEV fleets is a 
critical issue of next generation smart grid.  

Up to now, industry has defined 3 level charging patterns 
for EV, which is classified according to different power rating 
[3]. Among three levels of charging, fast charging station 

(FCS) usually locates in public cite for commercial application 
like today’s gas station. In the FCS, the battery pack of PEV is 
connected to a DC bus through a fast DC/DC charger, and the 
fast charging could be finished within several minutes with 
power rating up to 50 kW. So FCS is suitable for future 
transportation requirements and benefits the extensively 
penetration and development of EV. So the impact of a large 
number of PEV chargers connections to network should be also 
seriously concerned. However, following a large quantity of 
PEV and high power fast charging stations emerging, some 
technical problems have to be faced, for example, sudden 
connection of PEV chargers could cause a high power shock to 
the grid, and lead to rising of peak loading of distributed 
system that may cause the instability of the distributed 
network. 

For the purpose of solving the possible adverse effect 
aforementioned, a dedicated battery energy storage system 
(BESS) is connected to a common DC bus to supply part of 
charging power in [4]. Regarding the state of charge (SoC) 
balance control of ESS, in [5],[6], the system with multi BESS 
system is analyzed based on the SOC adaptive droop control to 
realize the power and current sharing of each battery ESS. And 
in [7], a fuzzy control and adaptive droop method are deployed 
for power balancing the control of energy storage system. 
However, most previous control scheme is discussed based on 
BESS, moreover direct connection of battery pack may cause 
the unregulated DC voltage deviations and frequent charging 
cycling and high peak current caused by PEV charger 
connection would accelerate the degradation of battery [8]. 
Compared to BESS, flywheel energy storage system (FESS) 
could compensate the peak power with a faster response and 
support a larger numbers of charge/discharge cycles. In past, 
FESS has been extensively used for DC-link coupled power 
balancing in grid-connected applications [8],[9]. In [10], a 
distributed DC-bus signaling (DBS) strategy is applied for FCS 
control with a flywheel ESS to realize the distributed 
coordination of each unit in system. However, only one 
flywheel is considered, and the DC bus voltage presents 
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Fig.1 configuration of EV charging stations. 

obvious deviation due to the DBS control, which may lead to 
system instability.  

In this paper, multi paralleled flywheels driven by induction  

machine (IM) are installed within FCS and a two-level control 
strategy including primary and secondary controller is applied 
for the purpose of internal power coordination between units 
and obtaining a stable DC bus, and a centralized secondary 
controller is employed to generate DC voltage correction term 
for adjusting the local voltage set point. The proposed scheme 
can realize the internal power balancing against the adverse 
effect caused by PEV sudden connection and be expanded to 
seamlessly connect more FESS. 

II. EV CHARGING STATION UPGRATED WITH FLYWHEEL 
ENERGY STRORAGE SYSTEM 

The block diagram of characteristic EV fast charging 
station is depicted in Fig.1. The main components in the FCS 
system are as follows: a set of AC/DC converters as grid 
interface, a set of DC/AC converter as FESS interfaces, a set of 
DC/DC converter as fast chargers.  

As is observed that, all the components in the system are 
connected around a 650V common DC bus. The system can be 
regarded as a DC microgrid with several converters connected 
to the DC bus. In this study, bidirectional three phase 
converters for grid and FESS interface can be operating in four 
quadrants which allow bidirectional active and reactive power 
flow; buck type DC/DC converter only absorb energy from DC 
bus and do not support a “vehicle to grid (V2G)” function 
which may accelerate the degrading of  battery pack in PEV. 

Grid converter generate the DC bus system, DC/DC 

converter for PEV charging can be regarded as load to the 
system, and FESS as an energy buffer will provide a fast active 
power support for the DC bus when there is any disturbance 
exerted to the system. Therefore it is critical to coordinate the 
power balancing of different converters in the system, 
especially when the PEV suddenly connected to the DC bus. 

At that point, there are several aspects that need to be taken 
into consideration for control strategy designing as follows: 

1) FESS can fast response to the disturbance and provide 
power compensation Grid should be protected from high 
power stress 

2) FESS can recharge back to full state of charge (SoC) 
automatically after power compensation.  

3) The DC bus variation should be limited in order to guarantee 
system stability. 

4) The control should not have a heavy dependence on 
communication, especially between grid converters and 
flywheel converters. 

III. OVERALL CONTROL ALGORITHM OF EV CHARGING 
STATION WITH FESS 

In order to fulfill the requirements aforementioned, a two-
level control algorithm is proposed for EV fast DC charging 
station, as is shown in Fig. 2. 

PEV connection can be regarded as a load disturbance and 
the control of DC/DC converter for battery charging is 
commonly recommended by manufacture, including constant 
current stage followed by constant voltage stage. In this paper, 
the control mainly focuses on the power balancing between 
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Fig2. Two level control structure for EV charging station 

grid and flywheel converters. 

A. Primary control 
The primary control for the system is based on distributed 

bus signaling (DBS), which the grid and flywheel converters 
adjust their operation according to the DC bus variation. In this 
level, the system is able to work in a distributed manner 
without necessary communication. 

1) Grid controller 

Grid controller includes two control levels. The inner 
current loop is deployed in stationary (α β− ) frame. The 
reference of the inner loop is provided by the DC voltage 
controller and reactive power controller. The Iq reference is set 
zero as reactive power control is not the focus of this paper, 
and the voltage controller was designed as a proportional gain 
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followed by a rate limiter. Rate limiter can prevent the grid 
current increase suddenly to a big value and protect the 
network, and the effect of rate limiter is detailed analyzed in 
[11]. Furthermore, in order to achieve a better sharing between 
different grid converters, virtual resistance, which is 
extensively used in DC microgrid, is employed in the voltage 
control loop. 

The reference can be expressed as: 

 
( )*

1( )

0
dref dc dc d dc

qref

i K V I R V

i

ψ = − ⋅ −


=
  (1) 

Where 1K  is the proportional term, dR  is virtual resistance 
and ψ  is the function of rate limiter. 

1) Flywheel controller 

Flywheel controller use classical indirect field oriented 
control (IDFOC), where d-axis component corresponds to flux 
and q axis component corresponds to torque. The d-axis stator-
current reference is obtained using a flux observer and the 
rotor-flux position results from the rotor speed and slip speed. 
The q-axis stator current reference is computed from the torque 
reference, which is generated by a droop controller, where the 
DC voltage vs speed droop control is implemented. The 
flywheel can automatically regulate the DC bus by speeding up 
and down around the nominal speed. The torque reference can 
be expressed as: 

 ( )( )* *
2 ( )

m

ifly
ref pfly dc dc m

K
T K V V K

s
ω ω

 
= + − − − 
 

 (2) 

Where 2K is the droop coefficient, pflyK and iflyK are 
proportional and integral terms respectively. 

And the DC voltage droop law can be expressed as:  

 * *
2 ( )

mdc dc mV V K ω ω= − −  (3) 

B. Secondary control 
Due to the virtual resistance in grid controller and speed vs 

DC voltage droop in flywheel controller, the DC voltage has a 
voltage variation during operation. In order to eliminate this 
effect, secondary controller is used to adjust the DC voltage 
regulation. In practical applications, as grid converters are 
close in parallel connection and flywheels are positioned 
together in cabinets, it is reasonable to use two centralized 
controllers on top of grid and flywheel primary controllers 
respectively. Due to line impedances between grid and 
flywheel converters, a low bandwidth communication is 
deployed to calculate the average value of DC voltage. The 
adjustment term of secondary control can be expressed as: 

 ( )*is
DC ps DC DC

K
V K V V

s
δ  = + ⋅ − 

 
 (4) 

Based on the proposed control strategy, the response of the 
system coping with sudden connection of PEV can be divided 
into several stages: 

1) The sudden connection of PEV causes a DC voltage dip 
first, which lead to the saturation of rate limiter in grid 
controller, and grid provide power in a ramping manner;  

2) On the other hand, the flywheel discharging by reducing its 
speed and droop the DC voltage reference; 

3) At the same time, due to the secondary controller, the DC 
voltage reference is adjusted online to eliminate the effect 
caused by droop and virtual resistance; 

4) When the grid current ramps increasing and equalize with 
the load current, flywheel start to recharge back to nominal 
speed. 

It should be noted that the system could operate even when 
the communication failed but with a DC voltage variation. 

IV. REAL-TIME SIMULATION RESULTS 
To investigate the operation of the proposed control 

scheme, a simulation model with the control structure shown in 
Fig. 2 was assembled in Matlab/Simulink and compiled into 
dSPACE 1006 in Microgrid lab Aalborg university [12].  

The corresponding electrical and control parameters used 
for simulation may be found in Table I and II. 

 
 

TABLE I. ELECTRICAL PARAMETERS 

Electrical parameters 

DC bus capacitor DCC  2.2mF 

Line inductor lineL  3.8mH 

Line resistor lineR  0.2Ω 

DC bus voltage dcV  650V 

Grid voltage ( )gridV p p−  325V 

Flywheel parameters 

Stator inductor sL  10.46 mH 

Rotor inductor rL  10.76 mH 

Total leakage coefficientσ  0.0556 

Rotor resistance rR  2.3736 Ω 

Stator resistance sR  1.945 Ω 

Flywheel 1 Inertia  10.2 2kgm  

Flywheel 2 Inertia  9.8 2kgm  
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A simulation scenario of system response to PEV sudden 
connection can be seen from Fig.3 to Fig.6. Fig.3 presented the 
average DC voltage variation in two cases with and without 
secondary controller activated. PEV connection happens at 30s, 
and lead to a dip of DC bus voltage. According to the proposed 
DBS based control, the DC voltage recover back to nominal 
value 650V. In the situation without secondary controller, the 
DC voltage recovers according to the change of speed by droop 
law as is shown in Fig.4, and there is a small deviation due to 
virtual resistance; when secondary is activated as is shown as 
green line, the DC voltage is regulated more accurate and 
faster. 
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Fig.3 Average DC Bus voltage 
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Fig.4 Rotational speed of flywheel 

The DC current of PEV, grid and flywheel is presented in 
Fig.5 and grid current is shown is Fig.6. It can be observed 
that, due to the saturation of rate limiter, the grid current 
increasing in a ramping manner, and around 33s, the grid 
current equalize with the load current while the flywheel 
current is zero. After that point, the grid current exceeds the 
load current and the flywheel current is minus which means 
flywheel is charging. Until 40s, the flywheel is recharging to 
full SoC and grid only supplies power for PEV. 
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Fig.5 DC current of PEV, grid and flywheel converter 

TABLE II. ELECTRICAL PARAMETERS 
Grid controller 

Voltage mode Proportional term 0.5 

Virtual resistance 0.1 

Time constant 1e-4s 

Flywheel controller 

Droop parameter 0.05 

Time constant  1e-4s 

Secondary controller 

Proportional term 0.01 

Integrator term 10 

Time constant 0.01s 

 



6 
 

30 35 40 45 50
-40
-30
-20
-10

0
10
20
30

50

0

G
ri

d 
cu

rr
en

t (
A

)

100

-100

-50

 
Fig.6 Grid current  

V. CONCLUSION 
This paper employs a dedicated paralleled flywheels ESS in 

a fast charging station, the proposed two-level control scheme 
is applied for power coordination of each units and DC bus 
voltage regulation. The proposed strategy could compensate 
the initial power peak by sudden PEV connection with 
distributed coordination of grid converter and multi flywheel 
converter. The real-time simulation results validate the 
feasibility of proposed scheme.  

REFERENCES 
[1] A. Emadi, M. Ehsani, and J. Miller, Vehicular Electric Power Systems: 

Land, Sea, Air, and Space Vehicles. The Power engineering, Taylor & 
Francis, 2010.  

[2]  X. Chang, B. Chen, Q. Li, X. Cui, L. Tang, and C. Liu, “Estimating 
real-time traffic carbon dioxide emissions based   on intelligent 

transportation system technologies,” Intelligent Transportation Syst., 
IEEE Trans. on, vol. 14, no. 1,     pp. 469–479, 2013. 

[3] M. Yilmaz and P. Krein, “Review of battery charger topologies, 
charging power levels, and infrastructure for plug-in electric and hybrid 
vehicles,” Power Electron., IEEE Trans. on, vol. 28, no. 5, pp. 2151–
2169, 2013. 

[4] D. Steen, L. Tuan, O. Carlson, and L. Bertling, “Assessment of electric 
vehicle charging scenarios based on demographical data,” Smart Grid, 
IEEE Trans. on, vol. 3, no. 3, pp. 1457–1468, 2012. 

[5] Xiaonan Lu; Kai Sun; Guerrero, J.M.; Vasquez, J.C.; Lipei Huang, 
"State-of-Charge Balance Using Adaptive Droop Control for Distributed 
Energy Storage Systems in DC Microgrid Applications," Industrial 
Electronics, IEEE Transactions on , vol.61, no.6, pp.2804,2815, June 
2014  

[6] Xiaonan Lu; Kai Sun; Guerrero, J.M.; Vasquez, J.C.; Lipei Huang; 
Teodorescu, R., "SoC-based droop method for distributed energy storage 
in DC microgrid applications," Industrial Electronics (ISIE), 2012 IEEE 
International Symposium on , vol., no., pp.1640,1645, 28-31 May 2012; 
doi: 10.1109/ISIE.2012.6237336 

[7] H. Kakigano, Y. Miura, and T. Ise, “Distribution voltage control for dc 
microgrids using fuzzy control and gain-scheduling technique,” Power 
Electronics, IEEE Transactions on, vol. 28, no. 5, pp. 2246–2258, 2013. 

[8] H. Akagi and H. Sato, “Control and performance of a doubly-fed 
induction machine intended for a flywheel energy storage system,” 
Power Electron., IEEE Trans. on, vol. 17, no. 1, pp. 109–116, 2002. 

[9] S. Samineni, B. Johnson, H. Hess, and J. Law, “Modeling and analysis 
of a flywheel energy storage system for voltage sag correction,” Industry 
Appl., IEEE Trans. on, vol. 42, no. 1, pp. 42–52, 2006. 

[10] Tomislav Dragicevic, Stjepan Sucic, Juan C. Vasquez, Josep M. 
Guerrero, “Flywheel-Based Distributed Bus Signalling Strategy for the 
Public Fast Charging Station”, smart grid, IEEE tran. on, vol.PP: no.99. 
1-11, 2014.   

[11] Shafiee, Qobad, Dragicevic, Tomislav, Juan C. Vasquez, Josep M. 
Guerrero, “Hierarchical Control for Multiple DC-Microgrids Clusters”, 
energy conversion, IEEE trans. on, vol. 29, no. 4, pp. 922-933. 

[12] Aalborg University, Dept Energy Technology, Microgrids research 
programme www.microgrids.et.aau.dk  

 

http://www.microgrids.et.aau.dk/

