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Abstract—Grid-connected microgrids with storage sys-
tems are reliable configurations for critical loads which can
not tolerate interruptions of energy supply. In such cases,
some of the energy resources should be scheduled in order
to coordinate optimally the power generation according to a
defined objective function. This paper defines a generation-
side power scheduling and economic dispatch of a grid-
connected microgrid that supplies a fixed load and then,
the scheduling is enhanced by including penalties in order
to increase the use of the renewable energy sources and
guarantee a high state of charge in the storage system for
the next day. Linear models are proposed for the scheduling
which are implemented in GAMS. The microgrid model
is obtained deploying MATLAB/Simulink toolbox and then
downloaded into dSPACE 1006 platform based on real-time
simulation to test the economic dispatch. A compromise
between cost and use of renewable energy is achieved.

Keywords—Economic dispatch, generation-side schedul-
ing, microgrids, energy management system.

I. INTRODUCTION

A microgrid (MG) is composed of distributed gene-
rators (DG), energy storage systems (ESS) and loads,
that can operate interconnected to the main grid or in is-
landed mode [1]. Particularly, grid-connected microgrids
are commonly used as reliable configurations for critical
loads which must be uninterruptedly fed [2]. However,
when there are several resources available to supply the
demand, they should be scheduled to get an optimal
dispatch regarding specific objectives such as economical,
technical and environmental aspects [2], [3].

Regarding economical issues and from the point of
view of the owner of the microgrid, the main objective is
to minimize the operating cost [3], and additional topics
on the optimization process have been included refer to
the full use of renewable energy sources (RES) due to
their intermittent nature, as well as the prolongation of
the life time of the ESS [4], [5]. As illustration, [6]
and [7] present energy management systems performed
to maximize power generation of a hybrid active power
generator for a grid-connected microgrid based on wind
turbine (WT) generator (WT+ESS) and a photovoltaic
(PV) generator (PV+ESS) respectively.

In addition, when an ESS is included in the MG, its
behavior should be taken into account in the scheduling

[8]. For instance, the minimization of the energy cost
and maximization of batteries lifetime in a microgrid is
proposed in [9] and a battery management system of a
microgrid for both grid-connected and autonomous modes
is presented in [10]. Likewise, an energy management
strategy is proposed in [11] for operating PV power
plants with ESS in order to endow them with a constant
production that can be controlled. In that work, the ESS
behaves like a system load, recharging the ESS from the
grid to achieve a desired state of charge (SoC) value
before starting operation the next day i.e. minimizing the
SOC deviation with regard to a SOC reference value.
Similar approach has been proposed in [12] where a
constant power generation for PV systems is implemented
and a certain percentage of the energy is cut off in a long-
term operation when the output power reaches a certain
level so, it is expected that the power reference for RES
is defined by an optimal value in accordance with the
power capability of each RES.

Moreover, hierarchical control is structured to deal
with the behavior of the microgrids at different band-
width. Upper level controls deal with optimal operation
and power flow management whereas lower levels are re-
sponsible of power quality control and regulation of local
variables [13]. At the primary level of control, the RES
are regulated in order to follow a local maximum power
point tracking (MPPT) algorithm or the power reference
given by an energy management system which schedules
the operation of DG in accordance to an optimization
algorithm, then, DG work under constant current control
inner loops. Meanwhile, ESS is charged or discharged
based on the power unbalance between the generated and
consumed power. Normally, when the ESS is completely
charged and the load requests less power than available,
the control mode of the DG changes in order to share
equally between DG the power that the load requests
[14]. Apart from that, banks of lead-acid batteries are
commonly used in microgrids [2], [15]. In this sense, at
least a two-stage charge procedure should be considered
in order to ensure adequate life-time for batteries [15].

In this paper, some strategies of economic dispatch
are considered minimizing the operating cost, which aim
to reduce the energy consumption of the grid power, the
SoC of the ESS and maximizing the use of the RES to
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supply permanently a constant load. The MG consists in
two RES (a wind turbine (WT) and a photovoltaic (PV)
panel), a battery, and a critical load connected to the grid
by means of a AC/AC converter (Fig. 1).

Connecting the grid through a converter can be used to
mitigate harmonics and other disturbances as referenced
in [16]. The main grid will be assumed as a dispatchable
unit and the ESS will support the fluctuations of gener-
ation. To be more precise, different stages for charging
a bank of batteries are presented, as well as, how those
stages interact with the operation of the microgrid. The
paper is organized as follows: Section II describes the
operation of the microgrid considered as study case,
Section III presents the proposed optimization model,
Section IV includes the simulation results and the Section
V concludes the paper.

II. OPERATION OF THE MICROGRID

In a microgrid, RES are more likely to operate as
constant power sources by flowing the power reference
given by a MPPT algorithm or the power reference
derived from an optimization procedure (PControl in Fig.
1). As consequence, DG composed by RES are controlled
at the primary level by current control mode (CCM)
inner loops [17]. The power reference provided by the
scheduling process should be, at any case, small or equal
to the power reference given by the MPPPT algorithm,
consequently, RES will operate under Pcontrol (Fig. 1).
Nevertheless, due to unpredicted variations on weather
conditions the power reference will be given by the MPPT
algorithm when the scheduled power is bigger than the
MPPT value.

On the contrary, ESS is charged or discharged based
on the power unbalance between the generated and con-
sumed power. For that reason, the ESS is responsible
of voltage bus regulation and it operates under voltage
control mode (VCM) inner loops (typically SoC ≤ 95%)
[17]. However, the most effective way of charging a
lead-acid battery is by means of a two-stage procedure
which involves two different control loops [15], [18], [19].
More precisely, VCM operation should be alternated by
a constant voltage charge stage. Once the voltage per cell
reaches a threshold value (Vr), known as the regulation
voltage (typically 2.45± 0.05 V/cell), the battery voltage
should be kept constant and the current at the battery will
approach to zero asymptotically, and once it falls below
a certain value, the battery may be considered as fully
charged [15], [19]. At this point, the ESS takes as much
power as needed to keep its battery voltage at Vr [18].
Because of this, the ESS operates under CCM, and other
distributed generator inside the microgrid should assume
the regulation of the common bus.

On top of that, in this microgrid the power requested
by the grid is conceived as a dispatchable power source
providing the value defined by the scheduling process.
In this case, the power grid is interconnected to the
microgrid by means a power converter and operates under
CCM by following the scheduled reference. However,
when the battery array reaches the threshold voltage (Vr)

the AC grid assumes the responsibility of voltage bus
regulation, operating under VCM. In ligh of this, any
power unbalance between the generated and consumed
power will be assumed by the AC grid, ensuring reliable
operation at the common bus of the microgrid.

III. PROPOSED OPTIMIZATION MODEL

This problem has been developed as a linear program-
ming (LP) problem where the data are considered as the
mean value for each elementary interval of scheduling.

A. Parameters and variables

The parameters used in this model are presented in
table I while the variables are included in table II.

TABLE I. PARAMETERS OF THE MODEL

Name Description Value

T Time of scheduling 24 [h]

Δt Duration of interval 1 [h]

ng Number of power sources 3

nk Number of storage systems 1

C(i, t) Generation elementary cost 0-8 [DKK/kWh]

Pgmax (i, t) Power max for generators 0-5 [kW]

PL Critical Load 1.4 [kW]

Plosses Power losses 100 [W]

SoCmax(k) State of Charge max 100 [%]

SoCmin(k) State of Charge min 50 [%]

SoC(k0) Initial Condition 75 [%]

ϕbat(k) SOC coefficient 7.5503 [%/kWh]

ξ(i) penalty costs for RES 0-8 [DKK/kWh]

χ(k) reward costs for ESS 0-8 [DKK/kWh]

TABLE II. VARIABLES OF THE MODEL

Related to Name Description

Decision var. Pg(i, t) Power of the generators

COST Cost

Auxiliary var. Pbat(k, t) Power of the battery

SoC(t) State of charge

The scheduling is performed for T hours in intervals
of Δt hours whereas the index t is the elementary unit
of time, t = 1, 2, 3. . . . T . The indexes (i = 1, 2. . . . ng)
and (k = 1, 2. . . . nk) correspond to the subscripts related
to the power sources and the energy storage systems
respectively. The number of energy resources of the
microgrid is set by means of ng and nk. In this study
case, there is a storage system (nk = 1) and three power
sources (ng = 3): a photovoltaic panel, a wind turbine
and the main grid.

The parameters C(i, t) and Pgmax(i, t) are set of real
data that correspond to the cost of generation and the
maximum power that the i−th power source can provide.
PL(t) is the load profile of the critical load which in this
particular case is set to be 1.5kW for all time intervals.
Plosses represent the power losses in the inverters and are
defined experimentally by power load tests as 100 W.

Regarding the energy storage systems, the parameters
for each k are SoCmax(k), SoCmin(k), SoC0(k) and
ϕbat(k). Specifically, the state of charge (SoC) in a
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Fig. 1. Scheme of the microgrid used as study case

storage system represents the relation between the cur-
rent capacity (in [Ah]) and the nominal capacity and is
presented in percentage as a function of the current [18].
Assuming that the voltage of the storage system is con-
stant (V batnom(k)) in Δt, the current can be represented

in terms of power
[
Ibat(k, t) =

Pbat(k,t)
V battknom(k)

]
, and the

SoC(k) can be defined as:

SoC(k, t) = SoC(k, t− 1)− (1)
1

Cbat(k)∗V batnom(k) ∗ [Pbat(k, t)Δt] , ∀k, t
In this particular case, the considered system storage is
an electric battery whose coefficient ϕbat(k) is obtained
(out of the optimization model) assuming a nominal
voltage value V batnom(k) for the interval Δt. The ϕbatk

coefficient is related to the energy capacity and the SoC
as is shown in (1).

ϕbat(k) =
1

Cbat(k) ∗ V batnom(k)
, ∀k (2)

Likewise, SoCmax(k) is selected to allow the battery
to be fully charged without overcharging (SoCmax(k) =
100%) and SoCmin is chosen to limit the depth of
discharge (DoD) accordingly with the recommendation of
the IEEE1561-2007 standard [20] (SoCmin(k) = 50%).

Regarding the proposed penalties, ceasing using the
power available in the i − th RES is penalized the cost
ξ(i), and in the same way, having the k − th ESS fully
charged at t = T is rewarded with χ(k).

where Pg(i, t) correspond to the estimated power
of the sources, COST is whole cost paid by the user
(including penalties), and Pbat(k, t) and SOC(t) are the
power and the SoC of the ESS, respectively.

B. Optimization Formulation

The optimization problem to be solved is the LP
presented below:

1) Energy Sources: As a general approach, Pg(i, t) is
the power of the sources i = 1, 2, ..., ng at each t, and it
is a positive variable delimited by the maximum power
that can be provided, Pgmax

(i, t).

0 ≤ Pg(i, t) ≤ Pgmax(i, t), ∀i, t (3)

In the case of RES, Pgmax
is a set of variable data defined

by a 24-h-ahead power predictor for each t.

2) Energy Storage: The SoC(k, t) in the k − th
storage system of the microgrid can be represented in
terms of its power as:

SoC(k, t) = SoC(k, t− 1)− (4)

ϕbat(k) ∗ [Pbat(k, t)Δt] , ∀k, t
considering that at t = 1, SoC(k, t − 1) is replaced by
the given initial condition SoC(k, 0).

Apart from that, the SoC(k, t) at each t is bounded
in the range:

SoCmin(k) ≤ SoC(k, t) ≤ SoCmax(k), ∀k, t (5)

The values of SoCmin(k) and SoCmax(k) are defined
following the recommendation of the IEEE1561-2007
standard [20].

Additionally, the global balance of the SoC is assured
by establishing the condition:

T−1∑
t=1

SoC(k, t+ 1)− SoC(k, t) ≥ 0, ∀k (6)

3) Energy Balance: The demand must be supplied by
the sources and the storage system.

ng∑
i=1

Pg(i, t)Δt+

nk∑
k=1

Pbat(k, t)Δt = (7)

PL(t)Δt+ Plosses, ∀t, k, i
Should be noted that, when Pbat is positive, the storage
system gives energy to the load (it is being discharged)
and when is negative, it takes energy from the sources (it
is being charged).

4) Objective Function: The objective is to minimize
operating costs that the user must pay for the energy
provided by the sources.

COST =

ng∑
i=1

T∑
t=1

[Pg(i, t)Δt] ∗ C(i, t), ∀i, t (8)

The main grid (i = 1) has a cost C(1, t) that varies each t
while production costs of the renewable sources are zero.



5) Proposed penalties: Two penalties are proposed to
be incorporated in the objective function and compare the
performance of the resources in the MG by combining the
resulting cases:

a) Penalty 1: This penalty takes into account
the non-used power generated by renewable resources t
(Pg(i, t) < Pgmax

(i, t)).

ng∑
i=1

T∑
t=1

ξ(i)∗[Pgmax
(i, t)Δt− Pg(i, t)Δt] , ∀t, i ∈ RES

(9)
The parameter ξ(i) corresponds to the penalization cost
and it is zero for the main grid.

b) Penalty 2: Additionally, a reward for having
charged the ESS at the last t is set as a global condition.

χ(k) ∗ [SoC(k, T )− SoC(k, 1)] , ∀k (10)

In this case, the constraint (6) is discarded.

Given the above points, four strategies are scheduled
and simulated: the basic cost function and the ones that
result for adding the previously defined penalties into
the optimization process according to the combinations
presented in Table III.

TABLE III. STRATEGIES TO BE IMPLEMENTED

No penalty 1 With penalty 1

No penalty 2 Strategy 1 Strategy 3

With penalty 2 Strategy 2 Strategy 4

To compare the strategies, the function fitness is
defined by adding the strategies:

Fitness =

ng∑
i=1

T∑
t=1

[Pg(i, t)Δt] ∗ C(i, t)+

ng∑
i=1

T∑
t=1

ξ(i) ∗ [Pgmax
(i, t)Δt− Pg(i, t)Δt] +

χ(k) ∗ [SoC(k, T )− SoC(k, 1)] (11)

In this case, ξ(i) is proportional to the day-ahead cost
of the grid and χ(k) is set as a constant.

IV. SIMULATION RESULTS

The scheduling process is performed by using real
data of wind speed and solar irradiance of a winter day
and using proper models for the WT and PV 24-h-ahead
PV and WT power prediction. The input data of the
obtained RES power and the elementary cost of using
the energy from the grid are presented in Fig. 2.

Along with, a constant initial condition of SoC(k, 0)
(SoC(k, 0) = 75%) is set for performing the simulations.

0 2 4 6 8 10 12 14 16 18 20 22 23
0

1000

2000

3000
Power for WT by GAMS

time (h)

P
ow

er
 (

W
)

0 2 4 6 8 10 12 14 16 18 20 22 23
0

1000

2000

3000
Power for PV by GAMS

time (h)

P
ow

er
 (

W
)

0 2 4 6 8 10 12 14 16 18 20 22
4

5

6

7
Day-ahead cost of the grid

time (h)

C
os

t (
D

K
K)

Fig. 2. Input data for scheduling: (red line) PV forecast power, (blue

line) WT forecast power, (dark-blue line) cost of energy of grid

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000
Power for WT by GAMS

time (h)

P
ow

er
 (

W
)

 

 

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000
Power for PV by GAMS

time (h)

P
ow

er
 (

W
)

 

 

Strategy 2
Strategy 1
Strategy 3
Strategy 4

Strategy 3
Strategy 1
Strategy 2
Strategy 4

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000
Power for the grid by GAMS

time (h)

P
ow

er
 (

W
)

 

 
Strategy 2
Strategy 1
Strategy 3
Strategy 4

Fig. 3. Scheduled power for each strategy. Top down: PV scheduled

power, WT scheduled power and scheduled power for the grid.

0 2 4 6 8 10 12 14 16 18 20 22
20

30

40

50

60

70

80

90

100
SoC by GAMS

time (h)

S
ta

te
 o

f C
ha

rg
e 

(%
)

 

 

Strategy 4
Strategy 1
Strategy 2
Strategy 3

Fig. 4. Expected SoC by GAMS for each strategy.



A. Generation scheduling

The optimization problem is included in the algebraic
model language GAMS and the solver CPLEX is used for
obtained the scheduling data. The results are presented in
Fig. 3 whereas the SoC that is expected in this model is
shown in Fig. 4.

It can be seen that all the strategies make the SoC of
the ESS stay in the boundaries and also be charged for
a while during the day. Moreover, the strategies 1 and 3
(which do not include the second penalty) use the power
of the grid at the same times and in turn, for less time
than the strategies 2 and 4, as expected in order to charge
the ESS at the last interval of time.

In particular, the strategy 1 (cost function without
penalties) uses the grid for a short time but, it cuts off the
available power of the RES when the ESS is not charged
(SoC(k, 10) = 50%) what is not optimal. The strategy 2,
which includes, the second penalty, has a similar behavior
regarding to the cutting but taking more energy from the
grid.

Meanwhile, the strategy 3 takes energy from the grid
for short time and cuts off the power of the RES when
the SoC of the ESS is high. Additionally, the strategy 4
cuts the power of the RES when the SoC is the highest
compared with the other strategies, however, the energy
that it takes from the grid is high. In qualitative terms,
the strategy 3 utilizes the energy from the grid, cuts off
the RES power in a convenient time interval and hold
the ESS with a global balance since the inclusion of the
constraint (6).

Furthermore, by scheduling the strategies in GAMS,
the fitness function is calculated for each strategy and
presented in the Table IV

TABLE IV. FITNESS FOR DIFFERENT STRATEGIES

Case Cost (DKK)

Strategy 1 11.6513

Strategy 2 21.6778

Strategy 3 2.3658

Strategy 4 21.6811

In light of the above, the strategy 3 are certainly
the best one for using adequately the RES power and
the power of the grid. On the contrary, the strategies
2 and 4 (which include penalization 2) have the worst
performance regarding the defined objectives.

As an additional test, the same scenario is used with
these two strategies for the next day (same input data) but
using SoC(k, 0) = 100% and the fitness functions are
38.9427 and 49.7895 which means that the final value of
the SoC does not imply better results for the active power
of the resources at the next day.

B. Simulation of MG without scheduling

The autonomous mode of the MG (i.e. without using
scheduling set points, the RES are in MPPT mode and the

grid and the battery switch between CCM and VCM) is
simulated by using a Simulink model. The simulation of
the SOC are presented in Fig. 5. In this case, the energy
from the RES are not used to charge the storage system
since it is not fully charged at any time during the day.
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The costs paid for using the scheduled power of the
grid as function of the time are presented in Fig 6 (dashed
line) together with the forecast cost of the energy getting
from the grid (dark-blue solid line). It is noted that the
energy of the grid is required when the power of the RES
is less than the power requested for the load that, in this
scenario, is for more than 12 hour of the day which means
a higher operating cost for the user.

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10
Grid cost without scheduling

Time (h)

C
os

t (
D

KK
)

 

 

Without Scheduling
Grid Cost per kWh

Fig. 6. Cost summary for the implemented strategies

In order to compare this behavior, the fitness function
is evaluated and it results to be 22.549. To get back to the
point and based on the given objectives, it is possible to
have similar behavior with the autonomous mode (without
perfoming scheduling) than with the reward of the SoC
(penalty 2 that is strategies 2 and 4).

C. Hardware in the loop results

Real-time simulation are obtained in the Intelligent
MicroGrid Laboratory at the Aalborg University [21] to
test the strategies previously presented in a microgrid
model established with MATLAB/Simulink toolbox. The
power of the energy resources using the different strate-
gies are shown in Figs. 7, 10, 13 and 16 respectively. Each
figure shows the active power of the PV, the WT, the grid
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and the ESS. The power of the generators follows the ref-
erence defined by the scheduling and the ESS is charged
or discharged in accordance to the generated/consumed
power unbalance. The process of charge and discharge is
more evident by means of the SoC in Figs. 8, 11, 14 and
17, for each strategy respectively.

In addition, the changes at the two-stage procedure
for charging the battery can be seen through the battery
voltage behavior shown in Figs. 9, 12, 15 and 18. The SoC
is similar to the expected by the scheduling but the DoD
is bigger because of the granularity of the optimization
model. At this case, detailed model of the battery as
proposed in [18] is used for simulating the battery.

Comparing the charging time exhibited by batteries
with different strategies, the worst performance is ob-
tained with the strategy 4 (Fig. 18) whereas with the
strategy 3, the battery is at the charged mode for more
time (Fig. 15).

V. CONCLUSIONS AND FUTURE WORK

The optimization problem of minimizing operating
costs has been established and it has been enhanced by
adding two penalties in order to improve the behavior
of the system. From the economic dispatch results, it
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Fig. 11. SoC of the ESS using strategy 2.
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Fig. 12. Voltage of the battery using strategy 2.
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Fig. 13. Power of the devices using strategy 3. Top down: Power of

PV, Power of WT, Power of the grid, Power of the ESS
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Fig. 14. SoC of the ESS using strategy 3.
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Fig. 15. Voltage of the battery using strategy 3.
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Fig. 16. Power of the devices using strategy 4. Top down: Power of

PV, Power of WT, Power of the grid, Power of the ESS
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Fig. 17. SoC of the ESS using strategy 4.
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Fig. 18. Voltage of the battery using strategy 4.

is possible to conclude that, despite the granularity of
the optimization model, it is suitable to schedule the
references of the active power and predict the behavior
of the SoC in the battery. Furthermore, the inclusion of
the penalty related to the use of the RES has improved
the scheduling process while the reward of the final SoC
has degraded the cost even having into account the next
day. Besides, the penalty of the use of RES represents a
bigger SoC of the battery during the day even when the
active power of the battery is not included as a decision
variable in the objective function. As future work, the
optimization problem should be improved by taking into
account power losses and the operation modes of the
battery. Additionally, this approach should implement in
a rolling horizon scheduling to improve the DoD of the
battery.
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