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Abstract Relaying can improve the coverage and performance of wireless access networks. In presence of

a localisation system at the mobile nodes, the use of such location estimates for relay node selection can be

advantageous as such information can be collected by access points in linear effort with respect to number

of mobile nodes (while the number of links grows quadratically). However, the localisation error and the

chosen update rate of location information in conjunction with the mobility model affect the performance

of such location-based relay schemes; these parameters also need to be taken into account in the design of

optimal policies. This paper develops a Markov model that can capture the joint impact of localisation errors

and inaccuracies of location information due to forwarding delays and mobility; the Markov model is used

to develop algorithms to determine optimal location-based relay policies that take the aforementioned factors

into account. The model is subsequently used to analyse the impact of deployment parameter choices on the

performance of location-based relaying in WLAN scenarios with free-space propagation conditions and in an

measurement-based indoor office scenario.

Keywords Location based communications · Information quality · Location error · Relay policy optimisation

1 Introduction

Two-hop relaying has been shown to improve throughput in WLANs. However, for traditional measurement-

based approaches as in References [9,31,10], user movements cause link quality measurements to become

outdated and inaccurate, leading to performance degradations. More frequent updates of link measurements

can mitigate this degradation, however at the cost of signalling overhead that scales quadratically with the

Jimmy J. Nielsen, Rasmus L. Olsen, and Tatiana K. Madsen
Department of Electronic Systems, Aalborg University, Aalborg, Denmark
E-mail: {jjn, rlo, tatiana}@es.aau.dk

Bernard Uguen
IETR, University of Rennes 1, Rennes, France
E-mail: bernard.uguen@univ-rennes1.fr

Hans-Peter Schwefel
Department of Electronic Systems, Aalborg University, Aalborg, Denmark, and
Forschungszentrum Telekommunikation Wien - FTW, Vienna, Austria
E-mail: schwefel@ftw.at



2 Jimmy J. Nielsen et al.

Fig. 1 Intended use of the proposed Markov chain model as a tool for optimizing deployment parameter settings of location based
relay systems.

number of nodes. In Reference [16], we considered a location based relay selection scheme that uses estimated

node positions provided by a localisation algorithm to determine whether to relay or not and which relay to use.

As the signalling overhead scales only linearly with the number of nodes and allows for movement prediction,

it is useful in highly mobile scenarios and in scenarios of infrequent uplink transmissions (as would be the case

in many M2M communication scenarios with mobile sensors).

While the simulation models that were used to analyse the location-based relaying scheme in Reference

[16] are sufficient to evaluate the expected performance of a single scenario with a given set of parameters, it is

computationally infeasible to use simulations for determining system deployment settings, namely 1) location

update rate, 2) optimal relay policies, i.e., in which places to relay or transmit directly, and 3) required accuracy

of localisation system.

As a consequence, this paper derives a continuous-time Markov chain (MC) model that allows to numeri-

cally calculate achievable performance of location-based two-hop relaying while capturing the impact of delays

of the information forwarding and of localisation inaccuracies originating from the positioning approach at the

mobile nodes. The location information is thereby periodically sent from the mobile nodes to the access point

(AP). Such periodic information forwarding represents one of the three basic information access schemes that

have been analysed via analytic models in References [4,21]. The analysis approach of References [4,21] also

inspired the model setup for the relay scenario in this paper.

While there can be substantial further gains of PHY-layer combining of relay transmission and original

AP transmission [22], such approaches require modification of the physical layer of the destination nodes.

In order to be able to deploy relaying on top of off-the-shelf physical layers, this paper considers store-and-

forward relaying without additional Layer-1 symbol combining. Notice however that the contribution of this

paper does not lie in the used relaying scheme, but rather in the MC modelling framework and optimization

algorithms. The considered store-and-forward relaying scheme is merely a use case example. In principle,

other more advanced relaying schemes can be used with the proposed model, as long as appropriate location

dependent utility functions can be defined.

The diagram in Fig. 1 shows an overview of how the proposed MC model can be used to determine deploy-

ment parameters: While the mobility model of a node, the technology dependent channel characterization, and

parameters of the wireless technology (upper left) are considered given by the scenario, the location update
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rate, the actual relaying policy and the choice of the location system (lower left) can be influenced by the de-

ployment configuration. The Markov model and the algorithms in this paper provide a method for optimizing

this configuration.

Location-based relay selection was considered already in References [32,30,28,29] and for cooperative

MIMO scenarios in Reference [13], however in all cases under the assumption of perfect non-delayed location

knowledge. The impact of feedback delay on relaying has been studied in, e.g., References [27,25], but in both

cases for systems that are not utilizing location information. Markov based models have been used for mobility

modelling, location tracking and trajectory prediction as in References [11,8,15]. The mobility models from

these papers can be used to describe the movements of the mobile node(s). To the best of our knowledge only

our own previous work in References [18,20,19] uses models of location error, information collection and

mobility models to optimize relay decisions.

The Markov model for the analysis of location-based relaying performance was first introduced in Refer-

ence [18]; subsequently, it was applied to a case study using indoor measurements in Reference [20] and it was

extended with an efficient policy optimization algorithm and applied to a mobile destination scenario in Ref-

erence [19]. The present paper generalizes and extends those previous modelling approaches and provides the

following additional results: i) The location estimation error is introduced in the model-based analysis and in

the evaluation results. The new model therefore allows to consider the joint impact of errors of the localisation

system and inaccuracies caused by mobility in conjunction with information access delays. ii) The algorithm

for efficient policy optimization targeting maximization of average throughput presented in Reference [19] is

generalized so that it can be applied to scenarios with mobile destinations as well as mobile relays. Further-

more, the generalized algorithm addresses also cases with multiple relays. iii) The measurement-based case

study originally introduced and studied with heuristic policies in Reference [20] is analysed in scenarios that

consider now also location estimation error (see Item (i)) and a rigorous policy optimization is performed and

analysed. iv) The extended and generalized model of this paper allows to quantitatively analyse the required

accuracy level of localisation solutions such that they are beneficial for location-based relaying scenarios.

The paper is structured as follows: Section 2 introduces the general relay system and the collection of

location information; the corresponding Markov models are described in Section 3. Section 4 introduces the

method for calculating the considered performance metrics. The proposed policy optimization that is general-

ized to work with one or more relays is presented in Section 5. Hereafter two case studies and corresponding

performance results are presented: first an outdoor open field scenario in Section 6 and subsequently a realistic

indoor measurement-based case study in Section 7. Finally, Section 8 presents conclusions and outlook.

2 System Description

We consider downstream communication between a static access point (AP) and a destination node (D); there

is a set of K nodes in the geographic region that can potentially act as relay nodes, see Fig. 2. Mobility is present

either for the destination node or for the relay nodes. Even though multiple mobile nodes can be present, we for
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Fig. 2 System with static AP, relays (R), and destination (D). Position uncertainty for mobile nodes is shown by the dashed circle.
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Fig. 3 Location measurements are transmitted periodically with rate t and are subject to queuing delay as well as MAC (Medium
Access Control) and transmission delay, represented by a distribution with mean 1/µ .

simplicity in the following refer to the Mobile Node (MN), which has a position x (t) that changes over time.

Via a positioning system (e.g. GPS based), the MN can obtain an estimation of its own coordinate, labelled

x̃ (t). In a location-based relaying approach, the MN will send this coordinate estimate to the AP, so that the

AP has a view x̂ (t) of the MN’s coordinate, which in the general case is a sampled and delayed version of

x̃ (t). The AP then will take a decision based on this inaccurate and delayed knowledge of the position of the

mobile node: which of the candidate relay nodes to use or if it is better to make a direct transmission to the

destination. The mapping of the position of the MN to the relay decision is called a relay policy, here, for

the example of a mobile destination node, represented by p(x̂ ) 2 {R0 = D,R1, ...,RK}, where Ri stands for

’relaying via node i’ while R0 = D stands for a direct transmission. In this paper, we assume that this relay

decision is taken by the AP just before the next individual downstream data fragment transmission. The policy

optimization algorithms presented later in this paper are used to determine the optimal relay policy for the AP,

given the present scenario conditions.

The positions of the static AP and of the static nodes are assumed to be known at the AP, hence only the

MN will periodically (with rate t) send position updates to the AP. It is assumed that such location infor-

mation is available at the MN through, e.g., a GPS system, however the coordinate provided by the chosen

positioning solution in the MN can show a stochastically varying error. Furthermore, the forwarding delays of

positioning information in scenarios with mobile nodes lead to additional inaccuracies of the position estimate.

Investigating the impact of location estimation errors and location information collection delay on the system

performance is key to this paper.

While the model in this paper can be applied to different wireless technologies, we use the terminology

and procedures subsequently from WLAN 802.11 type transmissions.
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The location measurements are transmitted from the MN to the AP as sketched in Fig. 3: 1) the MN

obtains a, potentially erroneous, estimate of its current location, 2) wraps it into a WLAN packet and passes

it to its WLAN interface. At the WLAN interfaces, there could be a queuing delay until the location message

reaches the first position in the (finite) interface queue, 3) followed by a subsequent MAC and transmission

delay. The sum of MAC and transmission delays are assumed to show a distribution with mean 1/µ . The

location update message can also be lost, either due to a full WLAN interface queue, or due to an unsuccessful

WLAN transmission. The latter happens with probability ploss. Since the location update messages are very

small in size, they can justifiably be transmitted directly from the mobile node to the AP, since a low bit-rate

and hence robust modulation scheme can be used. Relaying of transmissions is thus only considered for data

transmissions with much larger payload, where it is desirable to achieve as high as possible bit-rate.

The AP’s estimate of the MN’s position is based on the last received location measurement. Typically the

location estimation error of such measurements from for example satellite or local radio-based location systems

is assumed to follow a 2D Gaussian probability distribution [6,24,12]. Outdoors, a zero mean distribution is

often assumed, however indoors or in situations with shadowing effects caused by buildings, walls, furniture

or other obstructions, the distribution may be offset in some direction or even be non-Gaussian. As the relay

decision depends on the location measurement, its location error is therefore an important influencing factor in

the system. It is important to emphasize that we do not compare performance of different location systems, but

rather we focus on location errors as input to the system. Even for an ideal positioning system at the MN, since

the MN is mobile, its true position may differ from the AP’s estimate, depending on the stochastic mobility

model of the MN.

Depending on the AP’s belief on the MN’s location it will choose to either make a relayed data transmission

through one of the K candidate relay nodes, Ri, or a direct data transmission (D). It will use the pre-computed

relaying policy to determine which transmit mode is expected to yield the highest throughput for the MN’s

believed location. The resulting achieved throughput will depend on this choice since the bit rate can be adapted

to the quality of each used link in either the direct or two-hop transmission. For simplicity and in order to

allow relaying approaches to be implemented on top of existing Layer 1 and 2 implementations, in this study,

we do not consider joint decoding of the first and second transmissions in case of relaying; however, the

later introduced throughput models can be extended to take into account such advanced PHY-layer combining

approaches.

For optimal performance, it is desirable to make the choice that maximizes the overall achieved throughput.

In the considered scenario, this optimal choice depends on the MN’s mobility model, the accuracy of the

localisation system, on the distance-dependent propagation characteristics, and on the strategy (period of the

location updates) and forwarding delays (queuing, MAC and transmission) of these location updates. The

next section develops a Markov model that subsequently will be used for evaluating relay policies and in the

calculation of relay policies that maximize throughput.
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3 Markov Model for Single Candidate Relay Node

In order to evaluate relaying performance and to later on determine optimized location-dependent relay poli-

cies, this section provides a Markov model that captures the localisation and location update procedures be-

tween mobile node and central access point. Main target of the model is to include the localisation errors

originating at the positioning system and to capture the impact of information forwarding delays on the loca-

tion knowledge at the access point. The Markov model in this section considers one destination node and a

single relaying node, where one of the two is mobile (called Mobile Node, MN). Whether it is the destination

node or the relay node that is mobile, is in fact irrelevant for the model in this section.

In short, the model in this section takes a mobility model, an information forwarding model from the MN

to the AP, a location error model and a location-dependent relay policy as input; the Markov model allows to

compute state probabilities of the true coordinates conditioned on a relay or direct transmission decision at the

AP; the AP looks up the decision from a given policy based on the resulting delayed and inaccurate location

knowledge. The subsequent section then shows how, together with a geographic throughput model as input,

resulting performance metrics for this input policy can be calculated in the single relay scenario. Based on

this performance model, Section 5 then develops a computationally efficient (polynomial time with respect to

size of geographic region) approach to calculate optimized policies that even can be applied to scenarios of K

relay nodes. The key idea in Section 5 is to use ’singular relay policies’ as input to the model of this section in

order to compute the conditional probability of the mobile node’s true location x conditioned that the assumed

location of the MN at the AP is x̂ . These conditional probabilities can then be utilized to determine optimal

choices in the presence of K relay candidates; only in that last step, the differences between the scenarios of

the relays being mobile or the destination being mobile will become relevant.

As a first step, this section develops a Markov model that captures the node mobility, the localisation error,

and the information forwarding of the positioning information to the access points. It consists of two parts:

1) a continuous-time Markov model for the spatial mobility of the MN (the ’true’ coordinates); 2) a model of

location update procedures and of the resulting AP view. As these two parts are not completely independent,

the transition rates in this product space require subsequent modifications, which then will depend on the

positioning error model as well as on the relaying policy, as described in this section.

3.1 Markov Mobility Model

First element of the relaying Markov model is a continuous-time Markov model that describes the MN’s

stochastic mobility. The geographic 2-dimensional space is discretised, for instance via an equidistant grid.

The states then represent the current true position of the MN within the grid. Transition rates between the

states characterize the mobility. Fig. 4(a) shows a base model without obstacles: Transitions are only allowed

to the neighbouring grid states and all states have the same overall state leaving rate µm. As a consequence, the
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Fig. 4 (a) Example Markov mobility model that is used in numerical results. In total N discrete grid-points represent the geographic
space. Although more general models are possible, this example uses an equidistant grid and one state per grid-point. Also, the
state-leaving rate is always µm, which facilitates the computation of an average speed parameter. (b) A similar mobility model, but
with a wall.

average movement speed of the candidate relay can be readily obtained as v̄ = d/µm, where d is the distance

between neighbouring grid-points.

While the considered mobility model is a special case of user mobility, its advantage is that it only has few

parameters, which facilitates conclusions from parametric studies that are performed later in the paper. Note

that more general mobility models can be utilized (see also Reference [21]), in particular along the following

lines: 1) states can be associated with any discretisation of the geographic space (so equidistant placement

is not needed); 2) transition rates and transition structure can be arbitrary (though for physical movement

resemblance, typically transitions would only target geographically neighbouring states); 3) multiple Markov

states can be utilized for each discrete coordinate in order to keep memory of directional information (as

in Reference [15]) or to mimic non-exponential state-holding times via Phase-type distributions. Figure 4(b)

shows an example mobility model for indoor scenarios, in which a wall blocks certain movements.

The generator matrix of the Markov mobility model is in the subsequent sections denoted as Qmob and a

mapping function of the state number m to geographic coordinate is used: c : {1,2, ...,N2} ! R2. Inversely,

(xi)i=1,...,N2 denotes the enumerations of the N2 coordinates of the Markov mobility model. The steady state

probability distribution of the mobility model is denoted by pmob. In addition to the regular grid model, a more

complicated mobility model with obstacles will be used in the measurement-based case study; this model will

be explained later in Section 7.

3.2 Relay Policy Representation for Single Relay Case

Before we model the information forwarding in the next subsection, we introduce here the notion of a relay

policy for the single-relay-candidate case, which will be input to the information forwarding model. Later, more

general policies and more general cases will be discussed. The simple case of one candidate relay node enables

a compact model formulation, as it allows to reduce the state-space of the models, since only the decision (D

or R transmission) and not the full geographic coordinate space needs to be encoded in the relevant Markov
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model states. This single-relay case will then later be the instrument to address more complex scenarios in a

computationally efficient manner.

This simple single-relay-candidate policy is a function that maps geographic coordinates of the MN to the

binary relaying decision, which is either a direct (’D’) or relayed (’R’) transmission. Hence, the single-relay

policy is a function p : x̂ ! {R,D}. Note that the policy is implemented at the AP, hence it uses the estimated

MN position as input, i.e. both positioning errors of the location system as well as forwarding delays will

impact the reliability of this information. The modelling of this position estimate at the AP is described in the

next section.

3.3 AP View and Information Forwarding

In order to model the AP view on the location information resulting from the location update process, the

state-space at each coordinate (state of the mobility model) is extended as illustrated in Fig. 5. The model

assumes a two-element WLAN interface FIFO queue at the MN. First, memory of the AP on the last received

coordinate needs to be introduced. Instead of keeping track of coordinates, it is sufficient to keep track of the

relay decision p(x ) that corresponds to that last communicated coordinate. Hence, the AP can be in state ’D’

(last received location update was a position that is mapped to a direct transmission in the relaying policy;

upper half of Fig. 5) or state ’R’ (analogous for a relay transmission; lower half of Fig. 5). When the MN

triggers a location update (with rate t), the state-space does not need to encode the actual full coordinate

contained in this location update, rather it is enough to encode the resulting decision p(x ). If the current state

of the mobility model (true coordinate) is associated with p(x ) =’D’, then the update in progress is memorized

as such (State 2 and 9 in Fig. 5; otherwise States 3 and 10). As soon as the update is received at the AP, the

AP’s view is changed accordingly, leading for instance to the transition from State 3 (AP view is ’D’, while

coordinate update leading to ’R’ is in progress) to State 8 (AP view is ’R’, no update in progress).

When queuing of state-update messages at the WLAN interface queue may occur, additional states are

needed: In the shown example, the max queue-size is set to 2 (one update in progress of being transmitted,

while one can be in the buffer). States 4-7 and 11-14 thereby correspond to the situation that one update

is being transmitted, while a second one is stored in the queue. The state label describes the content of the

location updates, where the first element refers to the location update in progress. Increasing the maximum

queue size is simply done by adding two additional states for each of the right most states, i.e. in Fig. 5 that

would be state 4-7 and 11-14 and connect them in a similar way. The state space for each AP view would

contain 2Nq+1 �1 elements (Nq: queue-size), and thus, the whole state space size is 2(2Nq+1 �1) for a single

geographic grid point. For the complete grid model with N2 geographic grid points, the complete state space

model contains (2(2Nq+1 �1))N2 states.

Measurements are transmitted according to the measurement transmission delay rate µ . Finally, potential

losses of update messages during the wireless transmissions are also modelled; they occur with probability

ploss. Note that losses of updates due to full interface queues are modelled implicitly, as the updates with rate t
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Fig. 5 State overview for Markov model of information forwarding, here depicted for queue length Nq = 2, which is also used for
the later numerical studies.

are not occurring any more in the rightmost states. Notice that the Markov model allows the measurement loss

probability and measurement transmission rate to be location-dependent. However, for simplicity and because

the small packet size would justify using a more robust modulation scheme than for data transmissions, these

parameters are in this paper considered to be independent of location.

In order to express the relay policy’s dependence on the location of the MN, i.e., whether a ’D’ or ’R’

measurement is sent from the MN, the t transitions in Fig. 5 are weighted by the binary variables wD(x ) and

wR(x ), where wR(x ) = 1�wD(x ). wD(x ) = 1 if the MN’s current true position maps to a D in the relay policy,

else wD(x ) = 0. When introducing location error in the next subsection, the variables wD(x ) and wR(x ) will

represent the probability that the true location is mapped into a Direct or Relay decision, hence these factors

will become real values between 0 and 1, while they at single coordinate always add up to 1.

The depicted 14 states in the example shown in Fig. 5 exist for each grid point in the mobility model.

The transitions between grid points in the mobility model, shown for the considered example in Fig. 4, are

independent of the states of the AP view and information forwarding; hence they do not lead to changes of the

corresponding state in Fig. 5.
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3.4 Modelling of Location Errors

The location error is modelled as a probability distribution that describes the outcome of the location system,

x̃ , given a certain true position, x of the node. Notice that this location error only reflects inaccuracy of location

estimation, not the inaccuracy caused by collection delays. Using the discretised geographic space which is the

basis for the Markov mobility model and given the enumeration (xi) of all possible geographic coordinates,

the location error is given by the error matrix E with elements:

Ei, j = Pr(positioning system provides coord. x j|true coord. is xi) (1)

In case of an ideal positioning system, E is the identity matrix.

In relation to the full Markov chain model, the state-space of the Markov chain remains unchanged as it

represents the true location of the MN. The error matrix will however influence the mapping to relay choices

as follows: For a given true coordinate i, the factor wR in the example of a single candidate relay of Fig. 5 is

calculated as the sum of the probabilities in the location error matrix, for which the policy p dictates a relayed

(R) transmission:

wR(xi) = Â
j with p(x j)=’R’

Ei, j. (2)

Equivalently for wD, the sum is taken over all probabilities Ei, j where x j is a coordinate mapped to a Direct

transmission.

4 Performance Metrics

The complete Markov chain model, which combines the Markov chain mobility model in Fig. 4 and the

information forwarding Markov chain in Fig. 5, is created by the following two-step procedure.

1. Create a full generator matrix template Q⇤ as the Kronecker product of the mobility model generator matrix

Qmob and information forwarding generator matrix Qinfo:

Q⇤ = Qmob ⌦Qinfo (3)

2. Adjust location dependent transition rates, by iterating over states and inserting the corresponding values.

Specifically, in the presented case studies, the location dependent rates that we update are the t ·wR and

t ·wD transition rates. Hereby, we get the final generator matrix Q.

Having set up the Markov chain model with generator matrix Q for a single-relay policy as input, the

steady-state probabilities p of this Markov chain can be obtained from the linear equation system:

pQ = 0, Â
i

pi = 1. (4)
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Using standard numerical methods for solving linear equations, this step has time complexity O((N2 · L)3)

where N2 is the number of geographic states utilized in the mobility model, and L represents the number of

states utilized for the information forwarding process (L = 14 in the above illustrated example of a interface

queue at the mobile node with two places). On a standard PC, for the case studies presented in this paper where

the number of grid points is in the range of 100-150, the calculation of steady state probabilities takes up to a

few seconds. In relation to this we note that it only takes a few minutes to determine the optimal relay policy for

a specific scenario using the algorithms presented later in this paper. From this we conclude that the proposed

modelling approach, without specifically optimized code implementation, is feasible in situations where the

area dimensions combined with the desired grid resolution results in up to some hundreds of grid points. As

comparison, note that the office building case study in Section 7 has 147 grid points.

These steady-state probabilities can now be used to numerically calculate different performance metrics

for this single-relay case with given input policy. Note that so far we have not distinguished yet, whether the

mobile node is the candidate relay node or the destination node. So both cases from the introduction are still

covered by the model. For increased readability, we index the p vector corresponding to the product space

representation, i.e. pm,s refers to the sth state of the information update model model in the mth grid point of

the mobility model.

4.1 Throughput-Based Performance Metrics

The steady-state probabilities of the above Markov chain solution allow to compute metrics such as the prob-

ability of occurrence of a wrong relay decision. In order to analyse the consequence of such wrong decisions,

we need to enrich the model’s input with a propagation model, more specifically here, a throughput model.

Geographic Throughput Model

In order to calculate expected throughput of the relaying system, we here assume that this expected throughput

between AP and destination node is only influenced by variability due to changing coordinates of the par-

ticipating nodes; statistical variations due to changing propagation environments are not considered. Hence,

the model uses a mapping of node coordinate pairs to link throughput, respectively for the case of relaying,

a mapping of node-coordinate triplets to throughput of the 2-hop link. As we here assume that AP and either

destination or relay nodes are static and known, we only require the MN’s position as input; motivated by the

discretisation of the geographic space, we utilize the state-number rather than the geographic position as input

to these throughput functions. Hence, we use two functions, one TD : (m) ! R+
0 for the direct transmission,

and another TR : (m)! R+
0 for the relayed transmission. The specific choice of these throughput functions will

now depend on the scenario; for instance, when the mobile node is the relay candidate and the destination node

is fixed, TD will be a constant.

The specific throughput models used for each of the two considered case studies in the mobile relay sce-

nario are described separately in Section 6 and Section 7, respectively.
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4.1.1 Mean Throughput of Relay Policies

The mean throughput that is achieved via a certain relaying policy can be computed by the weighted sums of

the achievable throughput in the correspondingly chosen relay mode; the weights are thereby the steady-state

Markov chain probabilities. An ideal relay selection would pick the relay node or the direct transmission that

maximizes throughput for the current true position. In practice, this would require an ideal positioning system

at the MN, a zero transmission delay and an infinite location update rate. As a comparison case, it can be

computed from the Markov model as follows:

Sideal(popt,ideal) =
N2

Â
m=1

pmob
m ·max(TD(m),TR(m)) (5)

The achievable throughput from policy p under the mobility and information forwarding conditions of the

model as described in the previous section is then computed as:

Sloc(p) =
N2

Â
m=1

⇣
Â

s2 ’D’ states
pm,s ·TD(m)+ Â

s2 ’R’ states
pm,s ·TR(m)

⌘
(6)

which reduces for the special cases of policies that always transmit directly (dir) or always transmit via

relaying (rel) to:

Sdir =
N2

Â
m=1

pmob
m ·TD(m) (7)

Srel =
N2

Â
m=1

pmob
m ·TR(m). (8)

The state set ’D’ states refers to all Markov states at a certain coordinate, in which the AP view is ’D’ (in

the example of Fig. 5, this is the upper half of states with IDs 1, . . . ,7). Analogously for the ’R’ states. TD(m)

and TR(m) are the expected throughput with the Mobile Node being at the mth grid point for direct and relayed

transmissions, respectively. For constructing the throughput functions TD(m) and TR(m), the throughput model

that we presented earlier in Reference [17] can be combined with a path loss model or a database of signal

strength measurements as elaborated in the considered two case studies.

While the absolute throughput is interesting in relation to performance, the impact of inaccurate and de-

layed information shows as a reduction in throughput performance compared to the case where information

is accurate and instantly available. Therefore we consider a so-called lost throughput metric, which measures

exactly this reduction in performance.

4.1.2 Lost Throughput

The lost throughput metric for a certain relaying policy is the difference in throughput relative to a system

that has ideal location information (i.e., no positioning errors, zero delays and infinitely high update rate) and

makes the optimal choices on this ideal location information. That is, it chooses the method that yields the
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highest throughput in each grid point. This metric is therefore useful for comparing the impact of different

scenario parameter settings.

Slost(p) = Sideal(popt,ideal)�Sloc(p) (9)

Later, in the results section, we consider the fraction of lost throughput, which is Slost(p)
Sideal(popt)

. Note that there is

a second way of comparing throughput, namely the difference of throughput achieved under a certain policy

p with instantaneous and accurate location information and the same policy p with potential location errors,

delay, and information loss.

S0lost(p) = Sideal(p)�Sloc(p) (10)

This latter difference can also be negative for ’poor’ policies.

5 Optimal Policy Calculation for General Scenarios with Multiple Relays

Using the Markov model and the metrics defined in the previous sections, we now show how optimal policies

can be efficiently calculated with these ingredients. We thereby generalize to the scenario of K relay nodes. Ef-

ficient computation here refers to polynomial time with respect to the size of the geographic region, expressed

by number of states N2 of the mobility model in our case. Given that there are N2 geographic locations and K

relay candidates, each geographic location has K+1 potential choices, a brute-force search of enumerating and

evaluating all policies would lead to exponential effort already in a mobile destination scenario; the situation

even gets worse in a mobile relay scenario, as then there are K mobile nodes, see further below.

As the relaying system is formulated as Markov chain model, the policy optimization can be formulated as

a partially observable Markov Decision Process; however, the toolbox of algorithms for policy optimization in

Markov Decision Processes [23] are based on numericals search algorithms with risk of convergence to sub-

optimal solutions. As the relaying policy in our case does not influence the transition structure of the Markov

model, more efficient, exact policy optimization approaches can be utilized.

The basic approach of the optimal policy search is: (1) Use the Markov model with ’singleton’ helper

policies (i.e. policies that perform relaying in exactly one geographic coordinate) to obtain the conditional

probabilities that the true coordinate of a single mobile node is x conditioned on AP view is x̂ . Do this for all

K relays. (2) Use then the throughput model together with the conditional probabilities from Step 1 to obtain

the optimal choices for a given coordinate.

Step (1) is the computationally more demanding one, so the resulting overall time complexity will result

from Step (1) as O(K ·N2 · (N2 · L)3), as we will see further below. As before, K is the number of mobile

nodes, N2 is the number of grid points, and L is the number of states utilized for the information forwarding

process. Step (2) will be different in cases of mobile relays as opposed to mobile destinations; consequently,
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the subsections 5.2 and 5.3 will now differentiate these two cases. The first step however is still common to

both scenarios and hence described in a general manner.

In addition to optimizing the mean throughput also the k-th percentile throughput can be optimized. Ref-

erence [19] analyses this metric for the scenario of a mobile destination, using a heuristic policy optimisation.

A rigorous polynomial-time optimal policy search can also be defined for this metric, following the same

approach as the mean throughput optimisation presented in the following.

5.1 Calculation of conditional probabilities

We introduce the random variable X representing the true coordinate of the mobile node, and X̂ as the random

variable representing the knowledge of the AP about the MN coordinate. (xi) is the enumeration of the unique

geographic coordinates, corresponding to state i of the Markov mobility model.

As a first step, we determine the probability that the true position of the mobile node is x j conditioned that

the knowledge of the access point is xi: Pr[X = x j|X̂ = xi]. This calculation forms the first step of the policy

optimisation algorithm in the following way:

Step 1: Iteration

1: for i = 1 . . .N2 do:

2: Create a singleton policy psgl(i) which is everywhere set to 0 (D) except at coordinate xi, where the

policy is set to 1 (R).

3: Determine the Markov chain model (with generator Q) from the mobility model and information col-

lection parameters; use the single entry vector psgl(i) as the policy and calculate the steady-state solution

p of the Markov chain. Thereby we can obtain the desired Pr[X = x j|X̂ = xi] for the ith coordinate by

conditioning on the AP’s knowledge of the mobile node’s state being ’R’ in the following way:

4: Pr[X = x j|X̂ = xi] = Â
s2 ’R’ states

p j,s

5: end for

Note that propagation and throughput models are not needed in this step.

5.2 Calculating optimal policies in mobile destination scenario

We now consider the case of a single mobile destination and K static relay nodes. This scenario then requires

K+1 throughput models Tn(x), n = 0,1, ...,K, where T0(x) should reflect the direct transmission and Tn(x) for

n = 1, ...,K, the transmission through relay node n to the mobile node at coordinate x.

Having obtained the conditional probabilities in Step 1, we can determine the optimal policy for a given

optimisation metric. We first describe the procedure to optimise mean throughput, where we can just take the

optimal decision for each coordinate locally as follows:



Location-Quality-Aware Relay Selection 15

Step 2 for mean throughput and mobile destination

1: for i = 1 . . .N2 do:

2: pmean(xi) := argmax
n

(
N2

Â
j=1

Tn(x j) ·Pr[X = x j|X̂ = xi]

)

3: end for

Optimising percentiles of the throughput follows an analogous approach to optimising the mean through-

put, though it requires a somewhat more elaborate search algorithm.

Moving to multiple mobile destinations is possible without any extra computational effort, if the stochastic

mobility models of these nodes are the same and they have the same receiver (so that the throughput model is

also the same across all nodes). In that case, the access point just applies the decision which it obtains from

the relay policy that it has calculated for one of the nodes. If the destination nodes show different stochastic

mobility patterns or different receivers, optimal policies for each of the mobility patterns need to be obtained;

this is doable with linear effort increase. Note however, that also delay and loss parameters for the location

updates may need to be adapted for an increasing number of nodes.

5.3 Calculating optimal policies in mobile relay scenario

In the case of K mobile relays, calculating the whole policy would require a table with N2K entries of value

range 0,1, ...,K, representing the relay node choice in case of a specific coordinate allocation of the K relay

nodes. To avoid this large table representation, an efficient representation can make use of the fact that the

resulting throughput through relay node r is independent of the other relay node coordinates; so it would be

sufficient to create K + 1 tables of size N2, in which the resulting average throughput for a specific relay r at

assumed position x1, ...,xN2 is calculated. During run-time, the AP would then need to search for the maximum

of the K + 1 values from the different tables and pick the relay node (or direct transmission) that maximizes

the throughput.

Step 2’ for mean throughput and mobile relays

1: for i = 1 . . .N2 do:

2: for r = 0 . . .K do:

3: Gr(i) :=
N2

Â
j=1

Tn(x j) ·Pr[X = x j|X̂ = xi]

4: end for

5: end for

where Gr(i) is a throughput table for relay r at coordinate xi.

Note that the system definition which is basis for the policy optimisation is not using any location pre-

diction. Location prediction would not even be needed to be algorithmically included explicitly, but it would

instead be sufficient to look at relay policies that can use the current assumed coordinate and the previously
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assumed coordinate as input. The Markov model could be extended to include some memory on previous

coordinates for such more powerful policies. Such extensions are for future study.

6 Case Study 1: Outdoor Open Field

For demonstrating the application of the proposed model, we consider first an ideal case study that reflects

the scenario in Fig. 2. Access point AP and destination node D are static, whereas the relay node R moves

according to the Markov mobility model presented in Section 3.1. The scenario assumes IEEE 802.11a com-

munication with a relay-enabled MAC-layer as mentioned in Reference [16]. Table 1 lists the used scenario

and simulation parameters.

The value of the network delay rate, µ , has been calculated using the formulas from Reference [7], given

an assumed frame payload of 28 bytes for location coordinate and node identifier as specified in Reference

[16].

6.1 Throughput Model

In order to calculate the expected throughput for the 802.11a based case study, we use first a standard log-

distance path loss model (e.g., [5]) to determine the path loss on the direct and two relay links, given the

distances between the nodes for different relay positions:

PL = PLd0 +10n log10(d/d0) [dB] (11)

where PLd0 is the path loss at a reference distance d0, n is the path loss exponent, and d is the link distance.

Based on the path loss and the scenario parameters given in Table 1, we use the throughput model we

have developed previously in Reference [17] and slightly updated in Reference [14]. Throughput is given by

the ratio of expected delivered data divided by expected transmission time. By using bit-error-rate models

to calculate the frame error probabilities (see [17,14] for details), the throughput for the direct link can be

Table 1 Default scenario and simulation parameters.

Parameter Value
Dimensions 80⇥80 m2

No. of grid points 10⇥10
Grid spacing d 8⇥8m2

AP coordinate (16,40)
Destination coordinate (64,40)
Data transmission interval 25 s
Measurement delay rate µ 1/(0.3748 ·10�3) s�1

Wireless link error probability ploss 0
Ricean K 6
Path loss exponent n 2.9
Data frame payload BMSDU 1500 bytes
Scenario A: low dynamics
Measurement update rate t 1/5 s�1

Location error std. dev. sloc-err 0 m
Scenario B: high dynamics/challenging
Average movement speed v̄ 5 m/s
Measurement update rate t 1/25 s�1

Location error std. dev. sloc-err 5 m
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Fig. 6 Throughput [Mbit/s] per grid point. The black dots show where the relayed throughput is higher than direct throughput; this
is denoted the standard policy. The green square is the AP and the red cross is the destination.

calculated as:

Sdir =
Psuc ·BMSDU

E[Ttx]
(12)

where Psuc is the probability of a successful MAC layer frame delivery, E[Ttx] is the duration of a MAC frame

delivery attempt, and BMSDU is the MAC payload size given in octets. In the following, we use the indices

1 and 2 to indicate the AP-R and R-D transmissions. The throughput for the two-hop relaying algorithm is

calculated as:

Srel =
(Ppri,1

suc Ppri,2
suc +Psec,1

suc Psec,2
suc ) ·BMSDU

E[T pri,1
tx ]+E[T pri,2

tx ]+E[T sec,1
tx ]+E[T sec,2

tx ]
. (13)

The throughput model is used in this work to estimate the transmission throughput functions TD(m) and

TR(xi) for each of the N2 grid points xi. Fig. 6 shows the throughput for a 10⇥10 grid realisation of the Case

Study 1 scenario.

Notice that the path loss, bit error and throughput models presented above can be exchanged to fit other

scenarios or systems for which relaying is considered. The simple models above are however advantageous for

a first case study, as they use a small number of parameters.

6.2 Location Error

It is assumed that it is possible to obtain a description of the location error from the used localisation system.

Ideally, this would be a likelihood distribution function of the considered area, for example based on the

outcome of a particle filter localisation algorithm. Often, only a measure of the variance is provided, and in

such cases it is necessary to make some assumptions on the error. Commonly and in this work for simplicity, it

is assumed that the location error of the positioning system follows a symmetric, truncated multi-dimensional

Normal distribution: x̃ (t) = x (t)+N(µerr,Âerr), where µerr is the bias introduced by the position system and

Âerr is the covariance matrix. In our examples, we assume that µerr = 0 , and the covariance matrix is a diagonal

matrix with entries set to sloc-err, the latter called the location error standard deviation. However, the probability
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mass that falls outside the considered geographic region is cut away. This corresponds to a location system in

which an invalid location estimate is discarded. Specifically the location error probability distribution matrix

is built in the following way:

1. Let xi be the center coordinate of the i-th grid point corresponding to the relay’s true position.

2. For this ith grid point, draw the probability density value of each grid center point x j from the Gaussian

2-dimensional location error function for the given value of sloc-err, and store these probabilities in the

element Ei, j of the error matrix E. Note that E has dimensions N2xN2 when the Markov mobility model

covers N2 geographic states.

3. Re-normalise the rows of E, so that the sum of all entries in a row is 1.

6.3 Parametric Studies and Simulation Validation

For model validation and performance evaluation, this work uses the parameters listed in Table 1 with the

proposed Markov chain model and a simulation model. The simulation model is Matlab based and implements

the system model presented in Section 2. Previous work in Reference [18] presented results for a subset of

the parameters studied in the following. For both the Markov chain model and simulation model, the consid-

ered mobility model grid size is 10x10, which was determined heuristically from comparisons to continuous

mobility simulations in Reference [18].

In all simulation results, the so-called standard policy (std. policy) is determined by comparing the expected

throughput of direct or relayed transmissions for the believed relay position and then use the mode whose

throughput is highest. This std. policy is exemplified by the dots in Fig. 6 and it is the only policy that is used

for the simulation results. Here it serves to validate the corresponding Markov chain curve MC model - std.

policy. For the MC model, also the location independent policies of always transmitting directly or relayed

are shown (direct or relaying). The inv. policy is simply the inverse of the standard policy, providing a poor

choice as reference for comparison. Finally, the curve named opt. policy, uses the optimisation algorithm from

Section 5 to determine the optimal policy, with average throughput as the optimisation criterion.

Results are in the following presented for two different Scenarios A (low dynamics) and B (high dynamics),

as defined in Table 1.

The plots in Fig. 7 show the impact of adding a random 2D Normally distributed location error to the

coordinate of the mobile relay’s location that is sent periodically from the mobile relay to the AP. This corre-

sponds to the error that would arise with an actual location system based on for example GPS or indoor radio

localisation.

Besides the accurate resemblance of the simulation and Markov chain results for the standard policy, the

most noteworthy result here is for the optimal policy in Fig. 7(a). This shows that policy optimisation can

achieve a substantial reduction of lost throughput, especially when the location error increases above 12 m,

which could occur in harsh indoor environments with many metallic objects that make the location estimation

difficult. Here, the 33% reduction in lost throughput from 0.15 to 0.10 (at 20 m) demonstrates the benefit of
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Fig. 7 Lost throughput and fraction of positions where relaying is preferred for varying location error.

policy optimisation. In absolute terms, this improvement amounts to around 0.1Mbit/s; from 1.4 to 1.5 Mbit/s,

where the avg. throughput with exact location information and no access delays is 1.65 Mbit/s. The plot in Fig.

7(c) shows that the policy optimisation achieves a gain by reducing the number of points in which relaying is

used.

The plots for the high dynamics scenario in Fig. 7(b) show similar results, but here the possible reduction

in lost throughput is from 0.18 to 0.10, i.e., a reduction of almost 45%. The corresponding curve for the high

dynamics scenario in Fig. 7 shows that location information becomes less useful with increasing dynamics, so

that relay decisions based on it are taken in fewer places.

Overall we can conclude that policy optimisation is necessary to ensure that location based relay selection

is at least as good as a fixed policy (always direct or always relay) when location error increases. In the latter

case, the non-optimised location-based relay selection can turn out worse than a fixed policy.

Fig. 8 shows results for varying the movement speed. The nearly identical curves for the standard policy

with simulation and MC model in Fig. 8(a) show that the impact of movement speed is also accurately ac-

counted for in the model. Further, since the optimal policy brings only a modest gain of 0.02 at 20m/s we can

conclude that the standard policy (black dots in Fig. 6) is sufficient in this scenario. Fig. 8(c) shows the number

of grid points in which relaying is preferred for the determined optimal policy and we see that direct trans-

missions are preferred more often as the movement speed increases. This result corresponds with the intuition

that a wrongly chosen relay transmission may be more expensive than a wrong direct transmission (if a direct
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(a) Low dynamics scenario A (b) High dynamics scenario B

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Movement speed [m/s]

F
ra

ct
io

n
 o

f 
g

ri
d

 p
o

in
ts

 w
h

e
re

 r
e

la
yi

n
g

 is
 p

re
fe

rr
e

d
.

 

 

Standard policy

Opt. policy − scen. B

Opt. policy − scen. A

(c) Fraction of positions where relaying is preferred for optimal
policy

Fig. 8 Lost throughput and fraction of positions where relaying is preferred for varying movement speed.

transmission is possible), since the direct transmission quality is guaranteed in the considered scenario where

the AP and destination nodes are static, whereas a wrongly chosen relay transmission may give close to zero

throughput, c.f. Fig. 6.

In Fig. 8(b) we show similar results, however for the considered high dynamics scenario with longer

measurement update intervals. The optimised policy brings a slight improvement compared to the standard

policy, which is achieved by further limiting the number of relay transmissions as shown in Fig. 8(c).

Decreasing the rate of location update messages turns out to show a similar impact as increasing the

movement speed of the mobile node. Corresponding results are not shown here for space reasons.

6.4 Policy choices

Fig. 9 shows the change in choices of optimised policies when increasing the location error for two different

values of t , corresponding to a slow and a fast update of location information. Each unique policy has been

assigned an ID, which is used on the y-axis of the plot. From the plot it is clear that the policies with IDs 1-7

are used for both values of t , however only for the fast updates the policies with IDs 8 and 9 are used. In this

case, when the update rate is fast, the policy optimisation is better able to mitigate the effect of mobility than

with a slow update rate. However, as the location error increases, this becomes the dominant factor and at 2.5

m location error, the optimal policy is in both cases to use only direct transmissions.
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Fig. 10 Required t for different mobility speeds to achieve certain levels of lost throughput, assuming no location error.

6.5 Model-based adaptive update rate

A possible application of the proposed model is to use it for adjusting parameters such as the measurement

update frequency according to the scenario conditions. Since measurement updates generate signalling over-

head, it is desirable to be able to determine the update rate to achieve a required level of performance. In Fig.

10 we have used the MC model to calculate the update rate t that is required to achieve a certain level of lost

throughput, for varying movement speeds, assuming zero location error. The figure shows that this required

update rate t is approximately linearly dependent on the average movement speed, however the slope depends

on how much lost throughput can be tolerated. In principle, the transmission delay µ makes the curves not

completely linear, however, since µ is very small compared to t the curves visually appear linear.

6.6 How accurate should localisation be?

By also taking into account the location error, a similar analysis can be conducted to answer the question: ”How

accurate should localisation be for location based relay selection to be beneficial?”. It is necessary to specify

a precise condition that must be fulfilled to answer this question. As an example, we specify this condition

as being able to achieve at least a certain percentage of additional throughput than with a non-location based
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Fig. 11 Required t for different mobility speeds and policies to achieve 5% of throughput benefit.

direct or relayed relaying policy. Specifically, we use:

gbenefit <
Sloc

max(Sdir,Srel)
(14)

where gbenefit > 1 is the benefit threshold, max(Sdir,Srel) is the maximum achievable throughput with a constant

relaying policy, and Sloc is the achievable throughput with a location based policy. For the latter, we will

consider both the standard policy and the throughput optimised policy. For this analysis, we use the Markov

chain model to iteratively search for the t-value that gives us exactly gbenefit benefit, given the scenario outlined

earlier in this section, for a few selected movement speeds with the standard and optimised policies.

The plot in Fig. 11 shows the obtained values of t for a benefit of 5%, i.e., gbenefit = 1.05. Notice that

t-values larger than 1000 were not considered, as sub-millisecond sample rates are unlikely in a practical

system.

It can be seen in this plot that for the given scenario and the specified benefit conditions, the maximum

acceptable location error is around 1.1� 1.2m, depending on the applied policy. Furthermore, it is clear that

there is a highly non-linear relationship between the given location error and the required t-value, where up

to a certain level of location error, the required t-value does not increase very much, but beyond this level of

location error, it grows with a vertical asymptote. Notice that the optimal policy in Fig. 11 is able to shift the

asymptote of this rapid increase, meaning that a slightly higher level of location error can be tolerated with

the optimised policy compared to the standard policy. The sudden rapid increase of these curves is contrary

to the results in Fig. 10, where the update rate t can directly counteract the impact of increasing mobility

speed. However, the negative impact of location error cannot be similarly mitigated by increasing the update

rate t . What actually happens in Fig. 11 is that the update rate t is used to mitigate the mobility induced

errors so that the combined mobility error and location error allows the benefit condition to be fulfilled. When

investigating Fig. 11 closely, the horizontal distance between the two asymptotes is approximately 0.1m, so

the policy optimisation can mitigate an additional location error of that size.

Even though the localisation accuracy is in this analysis treated as a scenario parameter that is a property

of the used localisation system, it can sometimes be considered as a controllable parameter. Specifically, the

location accuracy can be improved or decreased by using more or fewer measurements and/or more or less
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advanced location estimation algorithms. If less location accuracy can be tolerated, it is possible to extend

battery life-time of the mobile devices and reduce signalling overhead. One example is given in Reference [1],

where the authors investigate the trade-off of using different types of ranging measurements and algorithms of

different complexity. A location based relay selection algorithm should therefore not necessarily be considered

as an independent system block, as it could most likely benefit from being able to increase location accuracy

on demand by using additional measurements and processing resources, when policy optimisation alone is

not sufficient to meet the desired performance goal. On the other hand, it would also be possible to use fewer

measurements and processing resources on the location estimation, in cases where a slight increase in update

rate could allow the desired performance goal to be reached.

7 Case Study 2: Measurement Based Indoor

For demonstrating the application of the proposed model in a more complex scenario, we consider a case study

that reflects an indoor scenario in Fig. 12. The AP and D nodes are static, whereas the R node moves according

to the Markov mobility model shown in Fig. 13. The nodes are assumed to use 802.11g based radios, with a

relay-enabled MAC-layer as mentioned in Reference [16]. Notice that this case study assumes 802.11g and not

802.11a as in the first case study. Furthermore, since the geographic area is relatively small compared to the

typical range of 802.11g, the transmission parameters have been scaled down to imitate a scenario in which

relaying is usable. Table 1 lists the used scenario and simulation parameters. The specific scenario is described

in the following.

7.1 Ray Tracing Simulation

A ray tracing simulator named PyLayers [2] has been used to produce a large set of realistic received signals

on a uniform grid of 51 pseudo Access Points ⇥ 363 Mobile Stations (MSs), which covers the office building

described in [26]. Each grid point is 1 m⇥1 m. In this paper, only a subset covering the first 15 of 51 pseudo

AP positions and the first 147 of the 363 MS positions is used, corresponding to the leftmost 2/5 of the building

shown in Fig. 12.

For our simulations the IEEE 802.11g channel 1 was assumed, corresponding to a center frequency of

2.412GHz and channel bandwidth of 20MHz. For a more extensive description of the ray tracing for this

scenario, see Reference [3].

7.2 Used Throughput Model

Given the extracted path loss for a narrow band corresponding to IEEE 802.11g channel 1, we estimate the

achievable throughput from the path loss using the throughput model described in Section 6.1.
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Fig. 12 The indoor Layout with furniture and the used grid of points (pseudo AP and destination nodes are in red.)
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Fig. 13 Mobility model in room layout. Red lines are possible movements between states (blue dots) and black dashed lines are
walls.

Fig. 14 AP and D positions are marked by a black square (12,4) and black cross (5,1), respectively. The colour of each grid point
shows the achievable relay throughput [Mbit/s], if the mobile relay is in that position. The green circles mark the grid points in
which the relay throughput exceeds the direct throughput.

7.3 Candidate Policies

For evaluation we define first a reference (Ideal) policy that assumes instantaneous collection and perfect

information and that the best possible choice direct/relay is always made. Besides the ideal, we consider three

location based policies, a heuristic one which relies on a coarse room-level localisation accuracy (Heuristic)

and two others that both require grid-level accuracy; one uses the locally optimal standard policy (Locally

Optimal), i.e., which mode has the highest expected throughput in the currently believed position, and another

(Optimised Policy), which furthermore uses the policy optimisation algorithm described in Section 5.1. For
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Table 2 Default scenario parameters for use case study.

Parameter Value
Measurement delay rate µ 105 s�1

Network loss probability ploss 0
Noise floor �85 dBm
Ricean K 6
Data frame payload BMSDU 1500 bytes
Average movement speed v̄ 0.5 m/s
Measurement update rate t 1 s�1
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Fig. 15 Average throughput for varying location error and relay speed.

comparison we consider also the two fixed policies of always transmitting directly or always using the relay.

Since the information collection has an impact on the performance when using the location-based policies, the

three latter policies will be analysed considering delayed information collection. A summary is given in the

table below:

Name Loc. accuracy Info. collection

Ideal grid level instantaneous

Optimised policy grid level delayed

Locally optimal grid level delayed

Heuristic room level delayed

Always direct - -

Always relay - -

For the heuristic scheme we have defined that the relay will only be used when within the two rooms

delimited by the rectangle between the two corners (8;1) to (11;6).

7.4 Results and Discussion

For evaluating the performance of the different schemes described in the section above, we have applied the

constrained mobility model shown in Fig. 13, the two throughput models shown in Fig. 14 and the default

parameters listed in Table 2 on the Markov chain model described in Section 3. The results obtained when

varying the location error and relay movement speed are presented in Fig. 15.

For both parameters being varied with the optimised policy and locally optimal schemes, the results show

that optimised relaying does provide a significant benefit of more than 20% compared to using a static relay

strategy (always direct or always relay). The gain compared to using the locally optimal strategy is around

10%.
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Fig. 16 Optimised relaying policy, and the change in optimised relaying policy for selected location accuracies. Blue dots in the
policy matrix show the geographic points where relaying is used – direct transmissions are used in the rest. In the change matrix,
green pluses are added relaying points and red crosses are removed relaying points.

Since the ray-tracing based data set introduces a high level of variability in the policy decision process, we

have looked beyond the ”fraction of points where relaying is preferred” to study specifically what happens to

the relay policies. An example is detailed in the plots in Fig. 16, which shows the full relay policies for three

selected location error values, as well as the change in policy between these values.

These results show that even though the fraction of points where relaying is preferred does not change

much, the policy optimisation can actually imply both additions and removals of points to the relay policy.

Consequently, the policy optimisation does not just generally reduce or increase the number of relaying points,

but adds and removes points based on the individual conditions.

8 Conclusions and Outlook

Location information can be useful for optimising networking functions such as relaying. As location data is

needed for each mobile node, such information can be collected by access points in linear effort with respect

to number of mobile nodes, while the number of links grows quadratically. However, the localisation error and

the chosen update rate of location information in conjunction with the mobility model affects the accuracy of

location information and hence all these parameters need to be taken into account in the design of optimal

policies.

This paper develops a Markov model that can capture the joint impact of localisation errors and inaccu-

racies of location information due to forwarding delays and mobility. The Markov model can be the tool for

parametric studies and hence deployment optimisations of relaying solutions. Furthermore, the Markov model

is used to develop algorithms that determine optimal location-based relay policies that take the aforementioned

factors into account. Applying the model to analyse the impact of deployment parameter choices on the perfor-

mance of location-based relaying in WLAN scenarios with free-space propagation conditions shows that both

the increase of location errors and the increasing speed of node mobility can be compensated by higher update

rates in order to maintain relaying performance. However, location errors can only be compensated by fresher
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location information up to some maximum, at which location information becomes useless for relay choice

optimisation. Similar results are shown in an measurement-based indoor office scenario with more complex

mobility model and multipath propagation.

The presented analysis framework is particularly useful for off-line deployment optimisation, where the

determined optimal relay policies can be stored in the access point and an appropriate location information

update rate can be determined for the used localisation system. Alternatively, the benefit of using a more

accurate localisation system can be analysed and based on the results, one can decide if such an upgrade is

worthwhile.

While the examples and the model setup in the paper optimises relaying policies with respect to throughput,

other target metrics can be easily included as long as those are determined by the geographic positions of

the two end-points of the transmission link. For instance, the target metric could also take distance-depen-

dent energy budgets of the transmission by the relay nodes into account, i.e. use a weighted combination

of throughput maximization and relay transmission energy minimization. Such choice of optimisation metric

can increase network lifetime. For explicit optimisation of network lifetime, further extensions of the Markov

model can be investigated to also include uplink forwarding of energy levels of nodes to the access point.
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