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AN INEQUALITY OF REARRANGEMENTS ON THE UNIT

CIRCLE

CRISTINA DRAGHICI

Abstract. We prove that the integral of the product of two functions over a
symmetric set in S1 × S1, defined as E = {(x, y) ∈ S1 × S1 : d(σ1(x), σ2(y)) ≤
α}, where σ1, σ2 are diffeomorphisms of S1 with certain properties and d is the
geodesic distance on S1, increases when we pass to their symmetric decreasing
rearrangement. We also give a characterization of these diffeomorphisms σ1, σ2

for which the rearrangement inequality holds. As a consequence, we obtain the
result for the integral of the function Ψ(f(x), g(y)) (Ψ a supermodular function)
with a kernel given as k[d(σ1(x), σ2(y))], with k decreasing.

1. Introduction

On a measure space (X,µ), the Hardy-Littlewood inequality asserts [4]:
∫

X

f(x)g(x) dµ(x) ≤

∫ µ(X)

0

f∗(t)g∗(t) dt,

where f ∗ and g∗ are the decreasing rearrangements of f and g, respectively. In what
follows, X = S

1, or X = [−π, π], and the above inequality can be written as:

(1.1)

∫ π

−π

f(x)g(x) dx ≤

∫ π

−π

f ](x)g](x) dx,

with f ], g] the symmetric decreasing rearrangements of f and g, given by f ](x) =
f∗(2|x|) and g](x) = g∗(2|x|).

These inequalities can be proved using the layer-cake formula [10]: Every mea-
surable function f : X → R+ can be written as an integral of the characteristic
function of its level sets:

(1.2) f(x) =

∫ ∞

0

χ{f>t}(x) dt.

A more general rearrangement inequality on X = R
n is the Riesz-Sobolev inequal-

ity:

(1.3)

∫

R2n

f(x)g(y)h(x− y) dxdy ≤

∫

R2n

f ](x)g](x)h](x− y) dxdy,

where f , g, h are non-negative functions which vanish at infinity in a weak sense.
The case n = 1 is due to Riesz in 1930 (see [12]), and the case n > 1 is due to Sobolev
in 1938 (see [13]). The proof can be found in the book by Hardy, Littlewood, Pólya
[9] which sets the beginning of the systematic study of rearrangement inequalities.
A more general version of this inequality in Rn, involving n functions can be found
in [5].

1991 Mathematics Subject Classification. 26D15, 28A25, 52A10.
Key words and phrases. symmetrization, rearrangement, circle integral inequality, convolution.
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AN INEQUALITY OF REARRANGEMENTS ON THE UNIT CIRCLE 2

The equivalent of (1.3) for three non-negative functions on the unit circle was
proved by Baernstein [1]:

(1.4)

∫ π

−π

∫ π

−π

f(eiφ)g(eiθ)h(ei(φ−θ)) dθdφ ≤

∫ π

−π

∫ π

−π

f ](eiφ)g](eiθ)h](ei(φ−θ)) dθdφ.

The proof of this inequality uses a variational principle applied to the convolution of
characteristic functions of sets which does not seem to generalize in higher dimen-
sions.

The Riesz-Sobolev inequality (1.3) is equivalent to the Brunn-Minkowski inequal-
ity from convex geometry [8, 11, 7] which states that if K and L are measurable
sets in R

n, then their Minkowski (pointwise) sum K + L is related to the measure
of the sets K and L by

V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

where V denotes the n-dimensional volume. An analog of this inequality for Sn is
not known, and, since the proof of rearrangement inequalities in R

n require it, an
analog of the Riesz-Sobolev inequality (1.3) is not known in Sn, for n > 1.

However, a partial result in S
n was proved by Baernstein and Taylor in [2]. They

considered a version of the Riesz-Sobolev inequality where one of the functions is
symmetric decreasing. They showed that, if h = K is already symmetric decreasing
then

∫

Sn

∫

Sn

f(x)g(y)K(x · y) dσ(x)dσ(y) ≤

∫

Sn

∫

Sn

f ](x)g](y)K(x · y) dσ(x)dσ(y),

where dσ is the surface measure on the unit sphere S
n in R

n+1, x ·y is the usual inner
product and K(t) is an increasing function on [−1, 1]. Since x · y = cosα, where
α is the angle between the vectors x and y, we can write K(x · y) = k(d(x, y)),
with k decreasing. Here d(x, y) is the great circle (geodesic) distance between x and
y. Their proof is based on the polarization technique. They showed first that the
inequality holds for the polarizations of f and g in any hyperplane and then they
passed to the limit for the general case. They were led to this version of the Riesz-
Sobolev inequality while trying to generalize a 2-dimensional result stating that u
is subharmonic implies its star function is also subharmonic.

In this paper we are interested in the case n = 1 of this inequality with K

replaced by the characteristic function of a symmetric set which does not depend on
the distance between two points, but rather on the distance between their images
under two diffeomorphisms σ1, σ2 of S1. We will also obtain a characterization of
these diffeomorphisms for which the inequality holds. With the set E defined as

E = {(x, y) : d(σ1(x), σ2(y)) ≤ α},

we will show that

(1.5)

∫

E

f(x)g(y) dxdy ≤

∫

E

f ](x)g](y) dxdy,

for every α > 0. This result implies the main result of this paper, Theorem 3.6:
∫

S1

∫

S1

Ψ(f(x), g(y))k[d(σ1(x), σ2(y))] dxdy

≤

∫

S1

∫

S1

Ψ(f ](x), g](y))k[d(σ1(x), σ2(y))] dxdy,
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with k decreasing and Ψ the distribution function of a measure µ.
The paper is organized as follows: We will first prove (1.5) for f and g replaced by

characteristic functions χA, χB, and σ2 the identity. Then we will deduce the result
(1.5) mentioned above, and we will show that we can replace the product f(x)g(y)
by a function Ψ(f(x), g(y)) and that we can replace χE by a decreasing function of
the distance between σ1(x) and σ2(y), yielding Theorem 3.6.

2. Preliminaries

Recall that a function f : I → R, defined on an interval I ⊂ R, is called convex
if, for every 0 < λ < 1 and every a, b ∈ I, the following inequality holds:

f(λa+ (1 − λ)b) ≤ λf(a) + (1 − λ)f(b).

A convex function is differentiable almost everywhere on I and its derivative is
increasing.

We denote by S1 the unit circle in R2, i.e., S1 = {z ∈ C : |z| = 1}, and by S1
+ the

upper half unit circle,

S
1
+ = {eiθ : 0 ≤ θ ≤ π}.

Definition 2.1. A function σ : S1
+ → S1

+ is called convex if the function σ1 : [0, π] →
[0, π], defined as :

σ(eiθ) = eiσ1(θ), 0 ≤ θ ≤ π,

is convex on [0, π].

Let f : S1 → R+ be a non-negative measurable function. We define its distribution
function:

λf(t) = |{f > t}|, t ∈ [0,∞),

where {f > t} := {z ∈ S
1 : f(z) > t} denote the level sets of f , and |A| is the linear

measure on S1 of A. Functions which have the same distribution function are called
equimeasurable.

We define the symmetric decreasing rearrangement of f to be the function f ] :
S1 → R+, given by:

f ](z) = inf{t : λf (t) ≤ 2d(1, z)},

where d(1, z) is the geodesic distance on S
1 between z and 1.

It is clear that f ](z) = f ](z̄) and that f ] decreases as d(1, z) increases. Also, f
and f ] are equimeasurable.

If we write z = eiθ, −π ≤ θ < π, then d(1, z) = d(1, eiθ) = |θ|, and we can think
of f as a function of θ via the relation

f̃(θ) = f(eiθ).

For f̃ : [−π, π] → R+, one defines its symmetric decreasing rearrangement as:

f̃ ](θ) = inf{t : λf̃(t) ≤ 2|θ|},

where, as before, λf̃ (t) = |{f̃ > t}|, and thus, there is a one-to-one correspondence

between f ] and f̃ ], given by

f̃ ](θ) = f ](eiθ).

Whenever necessary, we will think of a function f defined on S
1 as a function on

[−π, π]. If f = χA is the characteristic function of a measurable set A ⊂ S1, then
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f ] = χA], where A] is the open interval on the unit circle centered at 1, having the
same linear measure as A.

Next, we introduce the Hardy-Littlewood-Pólya preorder relation ≺ for non-
negative functions defined on the interval [−π, π]. We say that (see [3, 4]):

f ≺ F iff

∫ t

−t

f ](s) ds ≤

∫ t

−t

F ](s) ds, for all 0 ≤ t ≤ π.

This is equivalent to
∫ π

−π

f ](s)h](s) ds ≤

∫ π

−π

F ](s)h](s) ds,

for every positive symmetric decreasing function h] defined on [−π, π]. To see this,
write h](s) =

∫ ∞

0
χ{h]>t}(s) dt (this is the layer cake formula (1.2)), and, using

Fubini’s formula and the fact that {h] > t} = (−l(t), l(t)) is a symmetric interval,
∫ π

−π

f ](s)h](s) ds =

∫ ∞

0

[
∫ l(t)

−l(t)

f ](s) ds

]

dt

≤

∫ ∞

0

[
∫ l(t)

−l(t)

F ](s) ds

]

dt =

∫ π

−π

F ](s)h](s) ds.

Yet another equivalent characterization is:

f ≺ F ⇔

∫

E

f(s) ds ≤

∫

E]

F (s) ds, for every E ⊂ [−π, π].

The next result is well-known and it follows from the proof of the equality case
in the Hardy-Littlewood inequality, presented by Lieb and Loss in [10, pp.82]. We
will include a proof here for consistency.

Lemma 2.2. Let f : [−π, π] → R+ be a measurable function such that

(2.1)

∫ t

−t

f(x) dx ≥

∫ t

−t

f ](x) dx, for every 0 ≤ t ≤ π.

Then f = f ] a.e. on [−π, π].

Proof. From (1.1) applied to χ(−t,t) and f , it follows that we must have equality in
(2.1), i.e.,

(2.2)

∫ t

−t

f(x) dx =

∫ t

−t

f ](x) dx.

We will use the layer-cake formula to write f(x) =
∫ ∞

0
χ{f>s}(x) ds, and similarly

for f ](x).
Using (1.1), we obtain:

(2.3)

∫ t

−t

χ{f>s}(x) dx ≤

∫ t

−t

χ{f]>s}(x) dx, for every s ≥ 0.

Fubini’s theorem and (2.2) imply that:
∫ t

−t

f(x) dx =

∫ ∞

0

[
∫ t

−t

χ{f>s}(x) dx

]

ds

=

∫ ∞

0

[
∫ t

−t

χ{f]>s}(x) dx

]

ds =

∫ t

−t

f ](x) dx.
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From this equality and (2.3) it follows that, for a fixed t, there exists a set of measure
zero St, such that

∫ t

−t

χ{f>s}(x) dx =

∫ t

−t

χ{f]>s}(x) dx, for every s ∈ (0,∞) \ St.

Next, we choose TN a countable dense set in [0, π] and we denote by STN
= ∪t∈TN

St.
Then:

(2.4)

∫ t

−t

χ{f>s}(x) dx =

∫ t

−t

χ{f]>s}(x) dx, for every t ∈ TN and s ∈ (0,∞) \ STN
.

Since for every fixed s, t →
∫ t

−t
χ{f>s}(x) dx is a continuous function of t, in fact

(2.4) holds for every 0 ≤ t ≤ π. Thus,
∫ t

−t

χ{f>s}(x) dx =

∫ t

−t

χ{f]>s}(x) dx, for all 0 ≤ t ≤ π and a.e. s ∈ (0,∞).

Now, let t be such that {f ] > s} = (−t, t). Then, it follows that {f > s} = (−t, t) =
{f ] > s} a.e., and thus, f = f ] by the layer cake formula. �

The following result shows that
∫ t

−t
f ](x) dx is attained as a supremum. A proof

can be found in [4, Theorem 7.5, pp.82].

Theorem 2.3. (J. V. Ryff) For every measurable function f as in Lemma 2.2,
there exists a measure preserving transformation T such that f = f ] ◦ T . This
guarantees, for every t, the existence of a set A ⊂ [−π, π] of measure 2t such that
∫

A
f(x) dx =

∫ t

−t
f ](x) dx.

3. Main results: inequalities on the circle

Notation. As before, d is the geodesic distance, also called the arclength, on the
unit circle S1. We have:

(3.1) d(u, v) = d(uv̄, 1), for all u, v ∈ S
1,

where v̄ denotes the complex conjugate of v.
We define, for α > 0, the function:

χα(u, v) =

{

1, if d(u, v) ≤ α,

0, otherwise

and we observe that χα(u, v) = χα(uv̄, 1), by (3.1).
We introduce a new function, which we call again χα : S1 → R+, given by

χα(z) := χα(z, 1), which is the characteristic function of the closed interval on
S1 of linear length 2α, centered at 1.

We will make use, in what follows, of the relation:

(3.2) χα(uv̄) = χα(u, v), for all u, v ∈ S
1.

Given two positive measurable functions f, g : S1 → R+, their convolution, f ∗ g,
is defined to be the function:

(f ∗ g)(z0) =

∫

S1

f(z0z̄)g(z) dz

=

∫ π

−π

f(ei(θ0−θ))g(eiθ) dθ,



AN INEQUALITY OF REARRANGEMENTS ON THE UNIT CIRCLE 6

with z0 = eiθ0 and dz represents the arclength element on S1, usually denoted by
|dz|.

Given three positive functions f, g, h defined on S1, we can write

(3.3)

∫ π

−π

∫ π

−π

f(ei(θ−t))g(eit)h(eiθ) dt dθ = (f ∗ g ∗ h−)(1),

where h−(z) = h(z̄), i.e., h−(eiθ) = h(e−iθ).

Theorem 3.1. Let σ : S
1 → S

1 be a C1 diffeomorphism such that σ(1) = 1 and
σ(−1) = −1. Additionally, we assume that σ(S1

+) ⊆ S1
+ and σ(S1

−) ⊆ S1
− . Let d be

the geodesic distance on the unit circle, α be a positive real number, and we define
the set E = {(x, y) ∈ S1 × S1 : d(σ(x), y) ≤ α}. For A,B ⊂ S1 measurable sets, let

Iα(A,B) =

∫

S1×S1

χA(x)χB(y)χE(x, y)dx dy.

Then, for any A, B measurable subsets of S
1, and α > 0,

(3.4) Iα(A,B) ≤ Iα(A], B]),

if and only if, σ is symmetric (i.e. σ(z) = σ(z̄), for every z ∈ S1) and convex on
S1

+.

Proof. Sufficiency. We define σ1 : [−π, π) → [−π, π) by eσ1(θ) := σ(eiθ) and we
assume that σ1 is convex on (0, π). Using change of variables, (σ(x), y) = (u, v), the
integral Iα becomes:

Iα(A,B) =

∫

S1×S1

χσ(A)(u)χB(v)χα(u, v)(σ−1)′(u)dudv.

With χα(u, v) = χα(uv̄), as in (3.2), the above expression becomes:

(3.5) Iα(A,B) =

∫

S1×S1

χσ(A)(u)χB(v)χα(uv̄)ψ(u)dudv,

where ψ(eiθ) = τ
,
1(θ) and τ1 is defined by σ−1(eiθ) = eiτ1(θ), and is the inverse of σ1.

Thus, we can write using convolution and (3.3):

Iα(A,B) = [(χσ(A) · ψ) ∗ χα ∗ χ−B](1),

where we used the fact that χα is a symmetric function.
It was proved in [1] (see also (1.4)) by Baernstein that, for any three positive

measurable functions f, g, h on S1, the following inequality holds:

(3.6) (f ∗ g ∗ h−)(1) ≤ (f ] ∗ g] ∗ h])(1).

One can replace h− in the inequality above by h since they are equimeasurable
functions. Thus, based on (3.6) and the fact that χα is symmetric decreasing, we
conclude that:

(3.7) Iα(A,B) ≤ [(χσ(A) · ψ)] ∗ χα ∗ χB]](1).

Fact : If F is a positive symmetric decreasing function and if f ≺ F in the sense of

Hardy-Littlewood-Pólya (i.e. sup
|G|=2θ

∫

G
f ≤

∫ θ

−θ
F ), then f ] in inequality (3.6) can be

replaced by F. Indeed, f ≺ F is equivalent to
∫

S1 f
](z)g](z) dz ≤

∫

S1 F (z)g](z) dz,
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for all positive symmetric decreasing functions g]. Now, since g] ∗ h] is symmetric
decreasing and since the convolution (f ] ∗ g] ∗ h])(1) can be written as the integral
of the product f ](z)(g] ∗ h])(z), we conclude that:

(f ] ∗ g] ∗ h])(1) ≤ (F ∗ g] ∗ h])(1).

Therefore, using (3.7) and the Fact, we can prove (3.4) if we show that χσ(A)ψ ≺
χσ(A])ψ, i.e.

(3.8)

∫

E

χσ(A)ψ ≤

∫

E]

χσ(A])ψ.

Let E ′ = σ−1(E), and E ′′ = σ−1(E]). With these notations, inequality (3.8) be-
comes:

∫

A∩E′

dx ≤

∫

A]∩E′′

dx,

or equivalently, |A ∩ E ′| ≤ |A] ∩ E ′′|, which is true if |E ′| ≤ |E ′′|, since E ′′ is
symmetric. Since ψ is symmetric decreasing, we have that

∫

E
ψ(u)du ≤

∫

E] ψ(u)du,
which is equivalent to

∫

σ−1(E)
dx ≤

∫

σ−1(E])
dx, using change of variables. The latter

inequality simply states that |E ′| ≤ |E ′′|, and the proof of the sufficiency is now
complete.

Necessity. Dividing (3.5) by 2α, and letting α tend to zero, we obtain:

I0(A,B) =

∫

S1

χσ(A)(u)χB(u)ψ(u)du,

and inequality (3.4) implies that:

(3.9) I0(A,B) ≤ I0(A
], B]).

With the notation τ = σ−1, ψ the Jacobian of τ , and x = τ(u), I0 becomes:

(3.10) I0(A,B) =

∫

S1

χA(x)χτ(B)(x)dx = |A ∩ τ(B)|.

First, we will show that the symmetry condition is necessary. Suppose τ is not
symmetric. Then, there exists a point x = eiθ in S1

+ such that τ(x) 6= τ(x̄). If we
consider A = τ({eit : |t| < θ}) and B = {eit : |t| < θ}, then we have: |A ∩ τ(B)| =
|τ(B)| > |A] ∩ τ(B])|, since τ(B]) is not symmetric and |A| = |τ(B)|. But this
contradicts (3.9) and therefore (3.4).

Suppose now that τ1 is symmetric, but not concave (or, equivalently, σ1 is symmet-
ric , but σ1 is not convex on (0, π)). Then, there exist eib, eic ∈ S

1
+ with b, c ∈ (0, π)

such that:

(3.11)
τ1(b) + τ1(c)

2
> τ1(

b+ c

2
).

Without loss of generality we can assume that b > c and let us denote by a = b+c
2

.

Letting B = {eit : −c < t < b}, it follows that B] = {eit : −a < t < a}. We
calculate |τ(B)| = τ1(b) − τ1(−c) = τ1(b) + τ1(c) and |τ(B])| = 2τ1(a).

From (3.11) we obtain that |τ(B)| > |τ(B])| which shows that I0(S
1, B) >

I0(S
1, B]) and contradicts (3.4). Therefore, τ must also be concave. �
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Theorem 3.2. Suppose we have two functions σ1, σ2 satisfying the conditions of σ
in Theorem 3.1 and define E = {(x, y) ∈ S1×S1 : d(σ1(x), σ2(y)) ≤ α}, for α ∈ R+.
Let

Iα(A,B) =

∫

S1×S1

χA(x)χB(y)χE(x, y)dxdy.

Then, for any A,B subsets of S
1 and α > 0,

(3.12) Iα(A,B) ≤ Iα(A], B]),

if and only if σ1 , σ2 are symmetric and convex on S1
+.

Proof. Sufficiency. Very similar to Theorem 3.1. Using change of variables, (σ1(x), σ2(y)) =
(u, v), the integral becomes:

Iα(A,B) =

∫

S1×S1

χσ1(A)(u)χσ2(B)(v)χα(uv̄)ψ1(u)ψ2(v)dudv,

where ψ1, ψ2 are defined similarly to ψ in Theorem 3.1 (see (3.5)). Using convolution,
this integral can be written as:

Iα(A,B) = [(χσ1(A) · ψ1) ∗ χα ∗ (χσ2(B) · ψ2)
−](1).

We have already proven that χσ1(A)ψ1 ≺ χσ1(A])ψ1 and χσ2(B)ψ2 ≺ χσ2(B])ψ2, from

which it follows that Iα(A,B) ≤ Iα(A], B]).
Necessity. Using change of variable v = σ2(y), Iα becomes:

Iα(A,B) =

∫

S1×S1

χA(x)χ{(x,v)∈S1×S1:d(σ1(x),v)≤α}χσ2(B)(v)ψ2(v)dxdv.

Dividing by α and letting α → 0, we obtain:

I0(A,B) =

∫

S1

χA(x)χσ2(B)(σ1(x))ψ2(σ1(x))dx.

Inequality (3.12) of the theorem implies the following inequality:

(3.13) I0(A,B) ≤ I0(A
], B]),

for all subsets A and B of S1.
Now let B = S1 in the above identity. Then:

I0(A,S
1) =

∫

S1

χA(x)ψ2(σ1(x))dx ≤

∫

S1

χA](x)ψ2(σ1(x))dx,

or equivalently,
∫

A

ψ2(σ1(x)) dx ≤

∫

A]

ψ2(σ1(x)) dx,

for every measurable set A ⊂ S1. Since the inequality is true for every measurable
set A, we conclude by Lemma 2.2 and Theorem 2.3 that ψ2 ◦ σ1 is symmetric (i.e.,
ψ2(σ1(z)) = ψ2(σ1(z̄))) and decreasing, which implies that ψ2 is decreasing on S1

+.
Likewise, ψ1 ◦ σ2 is symmetric and decreasing on S

1
+, implying that ψ1 is decreasing

on S
1
+. Thus, σ−1

1 and σ−1
2 are concave on S

1
+ and therefore, σ1 and σ2 are convex

on S1
+.
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Next, we denote by τ = σ−1
1 ◦ σ2. With this notation, I0 becomes:

I0(A,B) =

∫

S1

χA(x)χσ2(B)(σ1(x))[ψ2 ◦ σ1](x)dx

=

∫

S1

χA(x)χτ(B)(x)[ψ2 ◦ σ1](x)dx =

∫

A∩τ(B)

[ψ2 ◦ σ1](x)dx.

We will show that τ is symmetric, i.e., τ(x̄) = τ(x), for every x ∈ S
1. Suppose this

is not the case. Then there exists x = eiθ, with θ ∈ (0, π), such that τ(x) 6= τ(x̄).
Let B = {eit : |t| < θ} = B] and A = τ(B) 6= A]. Then, we have that A] ∩ τ(B]) ⊂
A ∩ τ(B) = A and |A ∩ τ(B)| > |A] ∩ τ(B])|. Since ψ2 ◦ σ1 is positive, it follows
that I0(A,B) > I0(A

], B]), which contradicts (3.13). Thus, σ−1
1 ◦ σ2 is symmetric.

We have shown before that ψ1 ◦ σ2 is also symmetric.
Claim: σ−1

1 ◦ σ2 and ψ1 ◦ σ2 symmetric imply σ2 is symmetric.
Proof of claim: We define f2 on the interval [−π, π] as follows:

σ2(e
iθ) = eif2(θ).

Since ψ1 ◦ σ2 is symmetric and [ψ1 ◦ σ2](e
iθ) = ψ1(e

if2(θ)) = τ ′1(f2(θ)), as in (3.5), it
follows that τ ′1 ◦ f2 is even.

Since [σ−1
1 ◦ σ2](e

iθ) = eiτ1(f2(θ)) is symmetric, it follows that τ1 ◦ f2 is odd.
Now, (τ1 ◦f2)

′ = (τ ′1 ◦f2) ·f
′
2 is even and τ ′1 ◦f2 is also even (as we have previously

shown) and nonzero, so that f ′2 is even and thus f2 is odd. Therefore σ2 is symmetric
and the proof of the claim is now complete.

Following exactly the same steps, we can show that σ1 is symmetric. We have
shown that σ1, σ2 are symmetric and convex on S1

+. �

Corollary 3.3. With σ, α and E = {(x, y) ∈ S
1 : d(σ(x), y) ≤ α}, as in Theorem

3.1, we have the following result: For every f, g : S1 → R+ positive measurable
functions, and every α > 0,

(3.14)

∫

E

f(x)g(y) dx dy ≤

∫

E

f ](x)g](y) dx dy,

if and only if, σ is symmetric, and convex on S1
+.

To sketch the proof, we write f and g as the integrals of their level sets, using the
layer-cake representation formula (1.2):

f(x) =

∫ ∞

0

χ{f>t}(x) dt and

g(y) =

∫ ∞

0

χ{g>t}(y) dt,

and we notice that {f > t}] = {f ] > t} and {g > t}] = {g] > t} so that inequality
(3.14) reduces to the case where f and g are characteristic functions, and thus,
Theorem 3.1 applies.

Corollary 3.4. Let σ1, σ2 and E = {(x, y) ∈ S
1 × S

1 : d(σ1(x), σ2(y)) ≤ α} be as
in Theorem 3.2. For every f, g : S1 → R+ positive measurable functions, and every
α > 0,

(3.15)

∫

E

f(x)g(y) dx dy ≤

∫

E

f ](x)g](y) dx dy,

if and only if, σ1 and σ2 are symmetric, and convex on S1
+.
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The proof of Corollary 3.4 is indeed very similar to the proof of Corollary 3.3,
in which one represents f and g as integrals of the characteristic functions of their
level sets.

The next theorem is a generalization of the previous results, where one replaces
the product by a function Ψ defined as follows:
Ψ : R

2
+ → R vanishes on the boundary of R

2
+, i.e., Ψ|{x1=0} = Ψ|{x2=0} = 0, and

Ψ(x1, x2) + Ψ(y1, y2) ≤ Ψ(x1 ∧ x2, y1 ∧ y2) + Ψ(x1 ∨ x2, y1 ∨ y2).

If Ψ is twice continuously differentiable, then the above inequality is equivalent to
∂12Ψ ≥ 0.

Crowe, Zweibel and Rosenbloom [6] noticed that a continuous such Ψ is the dis-
tribution function of a Borel measure µ on R

2
+, i.e.,

(3.16) Ψ(s, t) = µ([0, s) × [0, t)),

and using Fubini’s theorem:

(3.17)

∫

Ψ(f(x), g(y)) dx dy =

∫

R2
+

[
∫

χ{f>s}(x)χ{g>t}(y) dx dy

]

dµ(s, t).

We are now ready to state our next result.

Theorem 3.5. With σ1, σ2 and E = {(x, y) ∈ S1 × S1 : d(σ1(x), σ2(y)) ≤ α} as
in Theorem 3.2, and Ψ the distribution function of a Borel measure µ on R

2
+ as in

(3.16), the following inequality holds for every α > 0:
∫

E

Ψ(f(x), g(y)) dx dy ≤

∫

E

Ψ(f ](x), g](y)) dx dy,

if and only if, σ1 and σ2 are symmetric on S
1, and convex on S

1
+.

Again, we can reduce Ψ(f(x), g(y)) to a product of characteristic functions, using
(3.17), and the result follows from Theorem 3.2.

The next theorem shows that we can replace the characteristic function of the
set E by a decreasing function of the distance between σ1(x) and σ2(y), call it
k[d(σ1(x), σ2(y))].

Theorem 3.6. Let σ1, σ2 be as in Theorem 3.2 and let k : [0,∞) → [0,∞) be a
decreasing function, and Ψ the distribution function of a Borel measure µ on R

2
+ as

in (3.16). Then, the following inequality holds for every decreasing function k,
∫

S1

∫

S1

Ψ(f(x), g(y))k[d(σ1(x), σ2(y))] dxdy

≤

∫

S1

∫

S1

Ψ(f ](x), g](y))k[d(σ1(x), σ2(y))] dxdy,

if and only if, σ1 and σ2 are symmetric on S1, and convex on S1
+.

Proof. Using (1.2), we can write:

k(τ) =

∫ ∞

0

χ{k>t}(τ) dt =

∫ ∞

0

χ[0,l(t)](τ) dt,

and substituting d(σ1(x), σ2(y)) for τ in the above formula, we have

(3.18) k[d(σ1(x), σ2(y))] =

∫ ∞

0

χ[0,l(t)][d(σ1(x), σ2(y))] dt.



AN INEQUALITY OF REARRANGEMENTS ON THE UNIT CIRCLE 11

We define the set El(t) as follows:

El(t) = {(x, y) : d(σ1(x), σ2(y)) ≤ l(t)}.

Then
χ[0,l(t)][d(σ1(x), σ2(y)] = 1 ⇔ (x, y) ∈ El(t).

Using this fact, (3.18), Fubini’s theorem and Theorem 3.5 we obtain the conclusion
of Theorem 3.6 by:

∫

S1

∫

S1

Ψ(f(x), g(y))k[d(σ1(x), σ2(y))] dxdy

=

∫ ∞

0

∫

S1

∫

S1

Ψ(f(x), g(y))χEl(t)
(x, y) dxdy dt

≤

∫ ∞

0

∫

S1

∫

S1

Ψ(f ](x), g](y))χEl(t)
(x, y) dxdy dt

=

∫

S1

∫

S1

Ψ(f ](x), g](y))k[d(σ1(x), σ2(y))] dxdy.

�
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