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Demand Response of Thermostatic Loads by

Optimized Switching-Fraction Broadcast ?

Luminita C. Totu, Rafael Wisniewski

Department of Electronic Systems, Faculty of Engineering and Science
Aalborg University, 9000 Aalborg Denmark (e-mail: lct,raf@es.aau.dk)

Abstract: Demand response is an important Smart Grid concept that aims at facilitating the
integration of volatile energy resources into the electricity grid. This paper considers the problem
of managing large populations of thermostat-based devices with on/off operation. The objective
is to enable demand response capabilities within the intrinsic flexibility of the population. A
temperature distribution model based on Fokker-Planck partial differential equations is used to
capture the behavior of the population. To ensure probability conservation and high accuracy
of the numerical solution, Finite Volume Method is used to spatially discretize these equations.
Next, a broadcast strategy with two switching-fraction signals is proposed for actuating the
population. This is applied in an open-loop scenario for tracking a power reference by running
an optimization with a multilinear objective.

Keywords: Smart grids, thermostatic loads, stochastic hybrid systems, optimization

1. INTRODUCTION

We consider a large group of devices of the same type,
where each unit has on/off power consumption controlled
by an internal thermostat. These devices are of special
interest for Smart Grid scenarios since they have the
potential to deliver demand response services in an au-
tomated way. The focus of this work is on aggregating
a very large numbers of units. The challenge is twofold.
Firstly, communication flows must be carefully designed
to be feasible under cost, security and privacy criteria
because of the large scale and large geographic spread of
the system. Secondly, computational complexity must be
kept in check.

The study of large groups of thermostatic loads started
in the power system and in the control literature in the
’80s with the works of Ihara and Schweppe (1981) and
Malhame and Chong (1985). The interest was on modeling
the oscillatory effects in the power consumption after a
planned (direct load control) or unplanned interruption
(black-out). After three decades, the problem got a resur-
gence motivated by the advancement of demand response
concepts, which in turn are motivated by new to challenges
in power system operations, mainly the integration of
intermittent generation.

The modeling approach that we are focused on is based on
physical principles and stochastics. The thermostatic unit
is described by a stochastic hybrid lumped-state dynamical
model, while a thermostatic population can be described
by a distribution function over the hybrid state-space.

If the distribution function is taken in its continuous form
(a density), an infinite dimensional state-space description

? This work has been carried out as part of the “Smart & Cool”
project financed by the Southern Denmark Growth Forum and the
European Regional Development Fund.

is obtained where dynamics are given in the form of a
Partial Differential Equation (PDE) system and bound-
ary conditions. This form was first derived in Malhame
and Chong (1985), and has been subsequently used in
e.g. Callaway (2009), Bashash and Fathy (2013), Moura
et al. (2013). Another approach is to divide the hybrid
state-space into a finite number of partitions, and work
with a discrete distribution i.e. probability mass. Careful
considerations based on the unit model can be made to
derive transition probabilities from one partition to an-
other, and thus the dynamics can be expressed in form of
a Markov chain, e.g. in Koch et al. (2011), Zhang et al.
(2013), Soudjani and Abate (2013). These two forms are
essentially equivalent, leading to a standard, linear state-
space description.

However, in terms of numerical performance not all meth-
ods all equivalent. For example, in Bashash and Fathy
(2013) a finite-difference numerical scheme is used to ob-
tain the Markov chain representation from the PDE de-
scription. This method does not inherently conserve prob-
ability and the solution might require periodic rescaling.
In Koch et al. (2011) the transition probabilities of the
Markov chain are derived based on an uniformity approxi-
mation over each partition. In this article, we propose the
Finite Volume Method (FVM) for obtaining the Markov
chain transition matrix from the PDE system. The main
advantage is that the overall probability is guaranteed
to be conserved and the resulting dynamic matrix has
a proper rate transition form, i.e., columns that sum to
zero. Furthermore, numerical results have a high degree
of accuracy also over long horizons, since the PDE form is
exact and the only errors are related to the size of the state-
space partitions. Finally, there is an advantage in using a
well-developed framework with recognized robustness and
performance as opposed to custom solutions.



Other important aspects for population modeling are
heterogeneity and minimum on/off times. Heterogeneity
is a difficult problem because exact descriptions suffer
from the “curse of dimensionality”. We add a few remarks,
but do not address directly the modeling of heterogeneity.
Nonetheless, results show that the used control appears
to have good robustness to heterogeneity. The effects of
enforcing minimum on/off times at the unit level are
modeled using a technique essentially equivalent to Zhang
et al. (2013).

For control, our focus is on broadcasting strategies since
we believe that these have an implementation advantage.
In particular, we are interested in a particular form of
toggling control (Koch et al., 2011) that involves the
broadcast of two switching fractions. This is a randomized
method of actuation, and has been introduced in Zhang
et al. (2013) and Totu et al. (2013) in a closed-loop form
where just one switching fraction is used at a time. In this
work, we set-up and analyze an open-loop configuration
based on a non-convex, predictive horizon optimization.

Section 2 presents the modeling used for the individual
Thermostatically Controlled Load (TCL) and for the pop-
ulation, Section 3 introduces the randomized broadcast ac-
tuation with the switching fractions, Section 4 sets up the
optimization formulation and presents numerical results,
and Section 5 concludes.

2. TCL MODELING

For this work, we consider cooling units, in particular
domestic refrigerators. As under realistic conditions, the
TCLs are independent of each other, do not communicate
nor share states. A main object of interest is the aggre-
gated power consumption, which is simply the sum of the
individual power consumptions.

2.1 TCL unit model

Stochastic Hybrid Unit Model The basic model for a
TCL is a hybrid dynamical system with two modes,
corresponding to the “on” or “off” state of the vapor-
compression cooling cycle. When the TCL is “on”, it is
consuming power and the temperature in the food storage
compartment is lowering. When the TCL is “off”, it is
not consuming power and the temperature in the food
storage compartment is rising due to ambient conditions.
The heating and cooling processes are modeled with a
first-order dynamic. This is similar to Ihara and Schweppe
(1981), Callaway (2009), Bashash and Fathy (2013) and
others. Although more complex, second-order dynamics
should be studied for air-conditioning or heat-pumps TCLs
(Zhang et al., 2013), this is not considered necessary
in the case of domestic refrigerators, because there is
no dominant secondary temperature mass. Additionally,
random fluctuation are introduced in the dynamics as a
white noise term.

Other possible random disturbances not pursued at this
time are jump processes that would correspond to “door-
opening” events. Furthermore, power consumption is con-
sidered to be constant when the mode is “on”. This as-
sumption might need to be revisited in future work.

Summing up, the model of a TCL unit is a stochastic
hybrid system of the following form:

dT (t) = −UA

C

(
T (t)− Ta +m(t)

ηW

UA

)
dt+ σdw

=

(
aT (t) + b+m(t)c

)
dt+ σdw

y(t) = dm(t)

(1)

where T (t) ∈ R is the continuously-valued temperature
state,m(t) ∈ {0, 1} is the discrete-valued state correspond-
ing to the “off” and “on” modes respectively, y ∈ R+ is
the power consumption viewed here as model output, and
a, b, c, d and σ are time invariant coefficients.

The dynamics of the discrete-valued state, mi, are given
by

m(t+) =


1, T (t) ≥ Tmax

m(t−), T (t) ∈ (Tmin, Tmax)

0, T (t) ≤ Tmin

, (2)

a standard thermostat mechanism with boundaries at
Tmin and Tmax. This is a deterministic state-dependent
switching.

Probabilistic unit model Because of the random influ-
ences introduced in the continuous dynamics, the hybrid
state

(
T (t),m(t)

)
∈ R × {0, 1} is a stochastic variable.

It can be characterized by a probability density function
(pdf) defined in the following way:

fy(x, t)
∆
= Pr[T (t) ∈ [x, x+ δx) ∧m(t) = y] (3)

The Fokker-Planck equation The temperature dynamics
corresponding to each of the two modes (on and off) are
continuous-time continuous-state Markov processes, and
in particular diffusions. If we look at any of the modes in
isolation and do not take the switches into consideration,
given the probability distribution of the temperature state
at time t0 we can determine the probability distribution at
any future time t ≥ t0 using the Fokker-Planck (Forward
Kolmogorov) equation, which can be seen as a transport
and conservation law for probability.

PDE system for the hybrid dynamic The result in Mal-
hame and Chong (1985) gives the pdf dynamics in the
particular case of the TCL hybrid dynamic (1),(2). It
consists of Fokker-Planck equations written for each mode
(4), and a set of boundary conditions (5).

Before stating the result, some preliminaries need to be ad-
dressed. The temperature domain needs to be divided into
three subsets: the thermostat range [Tmin, Tmax], the left
hand side [−∞, Tmin) and the right hand-side (Tmax,∞).
This is a natural partition with respect to the opera-
tion of the TCL unit, and is necessary because boundary
conditions apply in the points Tmin and Tmax, and also
because the pdf is not x-differentiable here. It is conve-
nient to denote the three subsets with the letters b, a
and c respectively. It is also important to note that in
normal operation the pdf corresponding to the off mode,
f0(x, t), is zero-valued on the c domain, because if the
temperature becomes greater than Tmax the thermostat
mechanism ensures that the mode can not remain “off”.
The c domain accounts only for units in state “off”, whose
temperature becomes greater than Tmax due to diffusion



effects. Similarly, the pdf corresponding to the on-mode,
f1(x, t) is zero-valued on the a-domain. In numerical work,
the infinity domains limits can be cut short since it is
realistic to assume that the temperature inside a working
refrigerator cannot drop below some Tminmin value and
cannot rise above some Tmaxmax value.


∂f0j

∂t
+

∂

∂x

(
(ax+ b)f0j

)
=
σ2

2

∂2f0j

∂2x
, j ∈ {a, b}

∂f1j

∂t
+

∂

∂x

(
(ax+ b+ c)f1j

)
=
σ2

2

∂2f1j

∂2x
, j ∈ {b, c}

(4)



f1b(Tmin, t) = 0, f0b(Tmax, t) = 0

f0a(Tminmin, t) = 0, f1c(Tmaxmax, t) = 0

f0b(Tmin, t) = f0a(Tmin, t), f1b(Tmax, t) = f1c(Tmax, t)
∂

∂x
f1b(Tmin, t) =

∂

∂x
f0b(Tmin, t) +

∂

∂x
f0a(Tmin, t)

∂

∂x
f1b(Tmax, t) =

∂

∂x
f0b(Tmax, t)−

∂

∂x
f1c(Tmax, t)

(5)

Fig. 1(a) shows the temperature domains, and the station-
ary shape of the pdfs obtained after a long operation time
of the TCL unit. In this case, the pdf is almost uniform
across the thermostat temperature range. An important
quantity of interest, the probability that the TCL is on,
is given by the area under the pdf associated with the on-
mode,

Pr[m(t) = 1] =

∫ Tmaxmax

Tmin

f1(T, t)dT. (6)

Furthermore, the area under both pdfs equals to 1, as it
represents total probability.
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Fig. 1. Temperature domains and sketch of the tempera-
ture distributions at equilibrium

A PDE system could be recovered using the Fokker-
Planck framework also for extensions of the continuous
dynamics, such as multidimensionality (e.g. second order
temperature dynamics) and jump-noises (modeling user
interaction /door opening events).

Finite Volume Method To solve the PDE, or equiva-
lently propagate the pdf in time starting from an initial
condition, numerical methods are employed and special
care must be taken not to introduce unnecessary errors.
Because of the conservation form of the Fokker-Planck
equations, we choose FVM. This assures that the invariant
of the system, probability, is conserved.

The idea is to partition the temperature domain, con-
sisting of the sub-domains a, b, c, into a finite number
of cells Na, Nb, Nc. For convenience, we choose cells of
equal sizes ∆Ta, ∆Tb and respectively ∆Tc for each do-
main. The continuous pdf function is replaced by a finite

number of approximations points F = [F a0 , F
b
0 , F

b
1 , F

c
1 ]T ∈

R(Na+2Nb+Nc)×1, each representing the average density
value over a cell. This means that F0a(i) is designed to
approximate the value

∫
Celli

f0a(T )dT . Because of the lin-

ear form of the equations (the PDEs (4) are linear in the
unknown function f) and of the boundary conditions, a
linear finite-dimensional approximation dynamic can be
obtained,

Ḟ (t) = AF (t). (7)

The resulting matrix A has the form of a transition
rate matrix, i.e., has the property that the columns sum
to 0. This is consistent with the fact that the space
discretized description is a Markov chain representation
of the stochastic hybrid TCL model. Furthermore, as a
consequence of the transition rate form, matrix A has
stable eigen values except one, which is exactly zero.

Lastly, the expected power consumption output of the
TCL unit can be written as

y(t) = CF (t), (8)

with C = d · [01×Na
01×Nb

∆Tb11×Nb
∆Tc11×Nc ].

2.2 Population model

Homogeneous Population The state distribution model
has so far been developed for a single TCL. If we consider
a population of N identical units, the dynamic model (7)
holds, where the vector F simply changes meaning from
probabilities to fractions 1 of the population. The expected
power consumption of the population is given by

y(t) = NCF (t). (9)

Heterogeneous Population “Small” heterogeneities of the
TCL population should not cause severe modeling errors,
but “large” heterogeneities will cause a significant depar-
ture from the homogeneous case. If we consider heterogene-
ity given in the form of parameter distribution, an exact
modeling approach is to augment the TCL model and add
parameters as states with dynamic zero. This is sketched
below for a single branch of the hybrid dynamic, dT =

(
aT (t) + b+m(t)c

)
dt+ σdw

ȧ = 0, ḃ = 0, ċ = 0, σ̇ = 0.
(10)

The corresponding multidimensional Fokker-Planck equa-
tion in the pdf f(x, t) = f([T, a, c, b, σ], t) resolves to

∂f(x, t)

∂t
+

∂

∂x1

(
(x2x1 + x3)f(x, t)

)
=
x25
2

∂2f(x, t)

∂2x1
. (11)

Unfortunately the approach suffers from the curse of
dimensionality, since the space-variable x ∈ R5 and a
fine meshing of the five dimensional space is required
to accurately recover the dynamics. Another observation
is that, since the dynamics of the parameter-state are
not connected to the dynamics of the temperature state,
this formulation essentially leads to a clustering strategy,
as used in Zhang et al. (2013). The clustering strategy
corresponds to a rough partitioning of the parameter
space.
1 The state vector F ∈ RNa+2Nb+Nc is defined to represent average
density values. It can be scaled by the cell sizes to yield probability
quantities, which are equivalent to fractions in the population case.



Another approach to modeling heterogeneous dynamics
is by adding an extra term in the PDE (4) that can
be fitted to account for the empirically observed damp-
ing/dissipation effect. This approach is taken in Moura
et al. (2013) using an increase of the already present

diffusion term ∂2

∂x2 . Other operators could be consider for
obtaining a better fit, perhaps taking inspiration from
mechanical modeling.

2.3 Numerical verification

For a population composed of identical TCLs with known
parameters, the only sources of inaccuracies are the fact
that number of units in the population is finite (this error is
small for large populations) and the spatial discretization
of the PDE (this error is also small in the FVM case). A
more concerning source of errors is that a real population
would not be composed of identical units.

The graphs in Fig. 2 compare the power output of the
model (7), (9) with Monte Carlo simulations of populations
composed of N = 10000 units and different levels of
heterogeneity. The scenario is that of a free response to
synchronized initial condition where all units start from
the same state (Tmax, 0). This type of synchronization
generates a well known oscillatory behavior.
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Fig. 2. Free response of the power consumption. The model
is shown in black, and Monte Carlo simulations in blue
(identical units), green (10% heterogeneity), yellow
(20% heterogeneity) and red (30% heterogeneity).

The heterogeneous populations are composed of units
where the key Equivalent Thermal Parameters of the TCL
model (C, UA, W ) and σ are each distributed according to
a Gaussian profile with standard deviations 10%, 20% and
30% respectively, and truncated at ±3σ. It can be seen
that the model matches well the power consumption of
the population with identical units, but starts to degrade
in performance with the increase of heterogeneity.

The parameters used for the TCL unit model are given in
Table 1, resulting in a duty cycle with an on-time of about
18 minutes and off-time of 160 minutes.

Table 1. TCL unit parameters

C (J/K) UA (W/K) Ta (◦C ) W (W)
93920 1.432 24 100

η σ (◦C/s) Tmin(◦C) Tmax(◦C)
2.8 0.0065 2 5

3. SWITCHING-FRACTION MODELING

In order to externally influence the power consumption
of the TCL population, a switching-fraction signal is
introduced. This is composed of two rational numbers
that have the meaning of percentages, ε = {ε0, ε1} ∈ Q2,
and is broadcast every Tc seconds. The signal triggers a
percentage ε0 of the units “on”, which are also in the “on-
safe” temperature range (to be defined next), to “switch-
off”, and a percentage ε1 of the units“off”, which are also in
the “off-safe” temperature range, to “switch-on”. The “on-
safe” range is [Tmin, Tmax −∆T0], and the “off-safe” range
is [Tmin + ∆T1, Tmax].

3.1 Actuation at the unit-level

While the switching-fractions are given at the population
level, the actual switch is decided at the unit level. The
TCLs have to meet the requested fractions without com-
municating with each other. To do so, an individual TCL
that is in the target group switches based on the result of
a binomial trial with success rate equal to the broadcast
fraction value. If the target group is large enough, by the
law of large numbers, the response of the population will
be close to the requested one.

Referring to the stochastic hybrid model from Sec. 2.1,
this represents a change in the discrete dynamic (2). The
thermostat mechanism that generates deterministic state-
dependent switches remains in place, and in addition, a
stochastic component is introduced. This can generate
spontaneous switches in response to the external signal.
The temperature safe-zones are specially defined to ensure
that switches do not occur close to a relevant boundary,
since they would quickly be reversed by the thermostat.
Furthermore, minimum on/off guards can be introduced
to block the generation of an external switch, again to
avoid the undesirable fast switching behavior.

3.2 Actuation in the population model

The switching-fractions broadcast actuation has been in-
troduced as a discrete-time strategy. We will therefore
introduce it into a discrete-time state space form of (7),
specifically

F (k + 1) = AdF (k), Ad = eA·Tc . (12)

Fig.1(b) shows the temperature ranges of the switching-
fraction signal. A switch-off fraction ε0 will instanta-
neously transport probability from the temperature zone
[Tmin, Tmax − ∆T0] of f1b to f0b. Similarly, a switch-on
fraction ε1 will transport probability from the temperature
zone [Tmin−∆T1, Tmax] of f0b to f1b. Notations b1, b2 and
b3 have been introduced in Fig.1(b) to define the safe-range
partitions of the thermostat domain.

At the time step k+, right after the broadcast, the pdfs
over the [Tmin, Tmax] domain change in the following way,

F0b1(k+) = F0b1(k) + ∆F1b1(k)

F1b1(k+) = F1b1(k)−∆F1b1(k)

F0b2(k+) = F0b2(k)−∆F0b2(k) + ∆F1b2(k)

F1b2(k+) = F1b2(k) + ∆F0b2(k)−∆F1b2(k)

F0b3(k+) = F0b3(k)−∆F0b3(k)

F1b3(k+) = F1b3(k) + ∆F0b3(k).

(13)



If the minimum on-off time effects are not considered, then{
∆F1b1 = ε0F1b1 ; ∆F1b2 = ε0F1b2

∆F0b2 = ε1F0b2 ; ∆F0b3 = ε1F0b3 ,
(14)

leading to the following bilinear form:

F (k + 1) = E(k + 1)AdF (k) (15)

where E(k) is a matrix depending on ε0(k) and ε1(k).

To include the minimum on-off effects, it is required to
account for the units that are “locked”, meaning that
they have switched recently and cannot do so again. This
reduces the amount of TCL units that are responsive to
the broadcast signal. The population modeling needs to
be extended to include tracking of the locked units. The
following is similar to Zhang et al. (2013).

Let us assume that the on-lock duration (minimum on
time) is 300[s], the same for all units, and equivalent to l1 =
5 control steps for Tc = 60[s]. Similarly, off-lock duration
(minimum off time) is associated with l0. Initially, after a
period with no control, all units are available for external
switching. The first broadcast actuation causes a change
in the distribution state F as described in (15). After the
broadcast, the units that have switched become locked.
We have direct information about the distribution of the
locked states, this is [∆F0b2(k),∆F0b3(k)] (just switched
on), and [∆F1b1(k),∆F1b2(k)] (just switched off). These
proportions of the distribution are locked for a number
l1 and l0 respectively of time steps, and we have to also
take into account that these distribution will evolve in the
temperature space during this time.

The following additional states are added to the model,
representing the distribution of on-locked units and off-
locked units respectively, at different locking stages.

F l1L = [F l1Lb1 , F
l
1Lb2 , F

l
1Lb3 , F

l
1Lc]

T , l ∈ {0, · · · , l1 − 1}
(16)

F l0L = [F l0La, F
l
0Lb1 , F

l
0Lb2 , F

l
0Lb3 ]T , l ∈ {0, · · · , l0 − 1}

(17)

These states propagate in the following way,

F l+1
1L (k + 1) = Ad1F

l
1L(k) (18)

F l+1
0L (k + 1) = Ad0F

l
0L(k) (19)

where matrices Ad1 and Ad0 represent temperature dy-
namics without switches.

In the end, the population model with switching-fraction
actuation and minimum on/off times can be written as an
augmented form of (15),

F̄ (k + 1) = Ē(k + 1)ĀdF (k). (20)

The bilinear form of the actuation in (15) and (20) can
be seen as intrinsic to the TCL problem. It also appears
in the case of a thermostat set-point actuation (Bashash
and Fathy, 2013). This is because when using a physically
based modeling approach, the actuation does not represent
an external input to the system, but rather an internal
transformation/change. Although the work in (Koch et al.,
2011) proposes a linear formulation of the control, by
letting the decision variables be the ∆F (k) quantities
from (13), this has some disadvantages. In this case, there
are as many independent control channels as bins in the
relevant b1, b2 and b3 temperature zones. The control is
therefore dependent on a particular spatial discretization,

and multiple switching fractions need to be broadcast at
every time step.

4. OPEN-LOOP CONTROL

The objective of this section is to use models (15) and
(20) for controling the aggregate power consumption of the
TCL population. We define an optimization to generate an
actuation sequence consisting of switching fractions ε0(k)
and ε1(k). This actuation sequence is applied in open loop
to drive the population to consume power in a manner that
closely matches a given external reference.

4.1 Optimization problem

Given a power reference over a time horizon with T
steps, and the initial state of the TCL population as the
distribution F0, an optimization for minimizing the power
consumption tracking error can be written as

minimize
ε1(k),ε0(k)

f(ε) =

T∑
k=1

(
CF (k)− r(k)

)2

subject to
0 ≤ ε0(k) ≤ 1
0 ≤ ε1(k) ≤ 1

(21)

where, using model (15),

F (k) = E(k)AdE(k − 1)Ad · · ·E(1)AdF0. (22)

Gradient of the objective function The first order opti-
mality conditions on (21) lead to,

∂f(ε)

∂εx(l)
= 2

( T∑
k=l

[CF (k)− r(k)]C∗l,k

)
Ex(l)AdF (l − 1)

= 0 (23)

with C∗l,k = C ·
i=k↓∏
l+1

E(i)Ad,∀k ≥ l, (24)

matrix Ex(l) = ∂E(l)/∂εx(l), and the subscript ()x stand-
ing in for either 0 or 1. Since the optimization problem is
not convex (the objective expression is multilinear in the
decision variables), it is important to specify this gradient
information to the numerical solver to improve computa-
tional time and performance. Furthermore, the line-vector
C∗l,k can be computed recursively

C∗l,k = C∗l+1,kE(l)Ad, (25)

and the sparse structure of the matrices involved, espe-
cially E and Ad, can be used to reduce computation time.

The optimization has the same form when considering
the minimum on/off effects, requiring only to replace
F,C,Ad, E with the augmented versions, F̄ , C̄, Ād, Ē.

4.2 Numerical examples

This section presents numerical results for tracking two
references composed of step segments over a time horizon
of two hours. The control time-step is Tc = 60[s] and the
initial state of the population is close to the equilibrium
distribution shown in Fig. 1. The optimization is imple-
mented numerically in MATLAB with a generic interior
point algorithm. Figure 3 shows the results, and it can be



seen that model without the locking mechanism can be
driven to consume closely to the desired reference. The
power flexibility of the model with the locking mechanism
is somewhat reduced. Although this is a good solution,
because of the non-convex formulation we cannot conclude
that these results represent the optimum.
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(b) Ref. A with locking
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(d) Ref. B with locking

Fig. 3. Power reference (blue) and the optimized con-
sumption (black) of the model with (20) and without
locking (15).

Figure 4 shows the results of actuating Monte Carlo popu-
lations (N = 10000) using the optimized switching fraction
signals. The performance is good for both the homoge-
neous and the heterogeneous populations suggesting that
the switching fractions broadcast is robust to heterogene-
ity 2 . On the other hand, as can be seen from Fig. 4(a) and
4(c), the locking effect is significant and cannot be avoided
in the modeling.

5. CONCLUSION

Demand response of TCL populations can provide a great
support to the electrical grid by reducing the capacity
need for fast reserves. The switching fraction broadcast
is a reliable way of engaging and controlling the power
output of such populations within their natural flexibility.
This intrinsic flexibility is most accurately represented by a
physically based modeling technique. We have introduced
a switching-fraction actuation entering the system in a
bilinear form. While this is not an ideal form for control,
we have shown that an open-loop model predictive strat-
egy can still be computationally tractable and robust to
heterogeneity. Future work will make use of these results
to complete a control architecture with feedback and state-
estimation.
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