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Abstract
For coal-fired power plants information of the moisture content in the coal is
important to determine and control the dynamical behavior of the power plants.
E.g. a high moisture content in the coal can result in a decreased maximum load
gradient of the plant. In this paper a method for estimating the moisture content
of the coal is proposed based on a simple dynamic energy model of a coal mill,
which pulverizes and dries the coal before it is burned in the boiler. An optimal
unknown input observer is designed to estimate the moisture content based on
an energy balance model. The designed moisture estimator is verified on a couple
sets of measurement data, from which it is concluded that the designed estimator
estimates the real coal moisture content.

Keywords: Moisture estimation, Coal-fired Power Plants, Optimal Unknown
Input Observer

1. INTRODUCTION

During the late years production of Danish power
plants has been regulated more and more depend-
ing on the energy market, which results in variat-
ing load requirements. Simply due to the fact that
the plant production is depending more on the
prices on the market as well as the demands for
power. This again results in higher focus on better
dynamical performance of the power plants. In
this regard it is of importance to monitor the per-
formance, e.g. monitor if the required performance
is gained or can be gained. One of the variables
influencing the performance of a coal-fired power
plant is the moisture content of the raw coal.
In other words it would be useful to know the
moisture content in order to make an assessment
and prediction on the plant performance, unfur-
tunately, the moisture content is not measurable.

In order to understand this, the attention is ad-
dressed on the coal mill. Before the coal is burned
in the furnace, it is preprocessed in the coal mill.
The main purpose of the coal mill is to dry and
pulverize the coal. The primary air flow is used to
dry and carry the pulverized coal to the furnace.
It is therefore important that the primary air
has sufficient energy at all loads. During a load
increase of the power plant the coal flow is in-
creased together with the primary air flow. When
the moisture content of the coal is higher than
assumed it would take longer time to dry the coal,
resulting in changed dynamics of the coal mill,
and accumulation of coal in the coal mill. This
will evidently change the possible performance of
the power plant in general.

It is not possible to measure the coal moisture con-
tent online for use in a real time control system.



However, static estimates of the coal moisture
content is delivered by the mill control system.

The focus of research in control of coal mills
has not been addressed on moisture estimation.
Instead, dynamic modeling and nominal control
of these coal mills have been the topic of numer-
ous of publications. Some examples dealing with
modeling of coal mills are (Rees and Fan 2003),
(Zhang et al. 2002) and (Tigges et al. 1998). Con-
trollers for the coal mill are designed in (Rees and
Fan 2003) and (Hasselbacher et al. 1992). High
order dynamic models and observer design for coal
mills are the topics in (Fukayama et al. 2004).

In (Rees and Fan 2003) a non-linear dynamic
energy balance model is given. In this paper the
model is simplified and adapted to the specific
coal mill Babcock MPS 212, which is used in
Elsam’s Nordjyllandsværktet Unit 3. The model
is subsequently linearized. An optimal unknown
input observer, see (Chen and Patton 1999), is
subsequently designed in order to estimate coal
moisture content of the coal feed into the coal mill.

The outline of this paper is as follows: the coal
mill is first described and modeled, including a
state representing the moisture content. In the
subsequent section the observer is designed, it is
subsequently applied to data from a coal mill,
from which it can be concluded that the designed
observer estimates the coal moisture content.

2. THE COAL MILL

The work presented in this paper, is based on
a Babcock MPS 212 coal mill used at Elsam’s
Nordjyllandsværktet Unit 3. However, the method
proposed in the paper is so generic that it can be
applied to other types of coal mills. The coal mill
is illustrated in principles in Fig. 1. The coal is fed
to the coal mill through the central inlet pipe. The
coal is pulverized on the rotating grinding table
by the rollers. The pulverized coal is subsequently
blown up and the moisture content of the coal dust
is evaporated by the hot primary air. The primary
air is mixed by cold outside air and heated outside
air, which is heated by hot air from the furnace.
The ratio of these air flows are used to control the
temperature of the primary air flow. Coal particles
which in the pulverizing have been small enough
will pass through the classifier and out through
the outlet pipes into the boiler. On the other hand
if the coal particles are not dried enough they
cannot be lifted out of the coal mill by the primary
air flow, since these particles are too heavy.
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Figure 1. An illustration of the principals of the
coal mill. The raw coal is pulverized by the
rollers and the grinding table, the pulver-
ized coal is subsequently dried and lifted by
the primary air. If these particles are small
enough they will be lifted through and into
the power plant furnace.

2.1 Control and measurements

References to the coal flow and the primary air
flow are given by the general power plant con-
troller, as well as speed for the classifier. The
temperature of the primary air is used to control
the temperature in the coal mill at the classifier.
The temperature controller is often required to
keep temperature constant at 100◦C in order to
evaporate the moisture in the coal. A coal mill
is a harsh environment in which it is difficult to
perform measurements, this means that all the
variables are not measurable. E.g. the actual coal
flow into the coal mill is only estimated. The
coal flow out of the coal mill is not measurable.
However, the primary air flow and temperature
are, as well as the temperature of the coal dust at
the classifier.
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Figure 2. An illustration of energy balance in the
coal mill, where T is the temperature in the
mill, Qair is the energy in the primary air
flow, Pmotor denotes the power delivered by
the roller motors, Qcoal is the energy in the
coal flow, and Qmoisture is the energy in the
coal moisture.

3. ENERGY BALANCE MODEL OF THE
COAL MILL

A simple energy balance model of the coal mill
is derived based on (Rees and Fan 2003). (Rees
and Fan 2003) includes more details, but these
are neglected in this work. In this model the coal
mill is seen as one body with the mass mm, as
illustrated in Fig. 2, in which T is the temperature
in the mill, Qair is the energy in the primary air
flow , Pmotor denotes the power delivered by the
roller motors, Qcoal is the energy in the coal flow,
and Qmoisture is the energy in the coal moisture.
It is also assumed that the input coal flow is
equal the output coal flow. Even though this
assumption is only entirely true for steady state, it
is assumed in this paper for simplifying the model.
A more detailed model which takes different coal
flows into account might result in more precise
estimation of the moisture content. The energy
balance illustrated in Fig. 2 is given by (1)

mm · Cm · Ṫ (t) =Qair(t) − Qcoal(t)

− Qmoisture(t) + Pmotor(t).
(1)

The heating and evaporation of the moisture in
the coal is modeled by a combined heating co-
efficient. The temperature is due to the control
loop is kept at 100◦C. The latent energy of the
evaporation dominates the energy required for a
few degrees heating of the moisture. The com-
bined heat coefficient, Hst, is following defined as
Hst = Cw + Lsteam/100, where Cw is the specific
heat of the water, and Lsteam is the latent heat.
This combined heat coefficient does not deal with
the fact that the specific heat of water and steam
are different, however the model error due to heat
of steam to a couple of degrees above 100◦C is
negligible in this context.

The dynamic non-linear model is subsequently
given by

mmCmṪ (t) =ṁpa(t)Cair (TPA(t) − T (t))

+ ṁc(t)Cc (Ts − T (t))

+ γ(t)ṁc(t)CwTs

− γ(t)ṁc(t)HstT (t)

+ Pmotor(t),

(2)
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Figure 3. A plot of the non-linear and linear model
response compared with measurements of a
step response on the coal mill.

where: Cm is the specific heat of the mill, T (t)
is the mill temperature, ṁpa(t) is the primary air
mass flow in and out of the mill, Cair is the specific
heat of air, TPA(t) is the temperature of the inlet
primary air, ṁc(t) is the coal mass flow, Cc is
the specific heat of the coal, Ts is the surrounding
temperature, γ(t) is the ratio of moisture in the
coal, Cw is the specific heat of the moisture, Hst

parameter combining the latent heat of the steam
and specific heat of the water, and Pmotor(t) is the
power delivered by the mill motor.

All parameters in this model are found in data
books except mm · Cm which is identified based
on measurements of a step response on the coal
mill. The model response is compared with mea-
surements as well as a response of a linearized
model in Fig. 3. From this figure it can be seen
that the responses of both models are quit similar
to the large dynamical changes as the measure-
ments show. However, it is difficult to validate
the details in the response due to the way the
signals are sampled. A dead band on one per cent
is applied to these measurements meaning that
the signals shall have changes of a given size before
this change is sampled. The non-linear model (2)
is subsequently linearized and transformed into
a state space representation, see (3), the motor
power is also neglected from this state space model
since it is much smaller than the other powers in
the equation.

˙̄T (t) = AT̄ (t) + B ·









¯̇mPA(t)
T̄PA(t)
¯̇mc(t)
γ̄(t)









+ q(t), (3)

T̄m(t) = CT̄ (t) + r(t), (4)

where a given signal ◦ is linearized by ◦̄ = ◦ −

◦o, ◦o is the operation point of ◦, q(t) is the
normal distributed process disturbances, r(t) is
the normal distributed measurement noises, Tm(t)
is the measured temperature and



A =

[

−ṁPA,o · Cair − ṁc,o · (Cc + γo · Hst)

mm · Cm

]

,

(5)

B =























Cair · (TPA,o − To)

mm · Cm
Cair · ṁPA,o

mm · Cm
Cc · (Ts − To) + γo · (Cw · Ts − Hst · To)

mm · Cm
ṁc,o · (Cw · Ts − Hst · To)

mm · Cm























T

,

(6)

C = I. (7)

3.1 Model with moisture

This linear model is subsequently modified for
the estimation of the coal moisture content. An
additional state is introduced for representing
the coal moisture content, γ[n], instead of the
input. This state is driven by the unknown input,
denoted γn[n]. In addition the static estimate of
the moisture content is considered as a very noisy
measurement, γ̄m[n], (8-13).

˙[

T̄ (t)
γ̄(t)

]

m = Aq

[

T̄ (t)
γ̄(t)

]

+ Bq





¯̇mPA(t)
T̄PA(t)
¯̇mc(t)





+ Eqγn(t) + q(t),

(8)

[

T̄m(t)
γ̄m(t)

]

= Cq

[

T̄ (t)
γ̄(t)

]

+ r(t), (9)

where γn(t) is the generic unknown input which
is low-pass filtered in order to represent the coal
moisture content, and

Aq =





A
B4

p
0 −p



 , (10)

Bq =

[

B(1···3)

0

]

, (11)

Cq = I ∈ R2 × 2, (12)

Eq =

[

1
1

]

, (13)

where p is the pole of internal fault model.
The model is discretizied before any further
use, I.e. (Aq, Bq, Cq, Eq) are transformed to
(Ad, Bd, Cd, Ed).

3.2 Optimal unknown input observer

The optimal unknown input observer is described
in (Chen and Patton 1999). For discrete time
systems with unknown inputs and disturbances
which can be represented by

x[n + 1] = Anx[n] + Bnu[n]

+ End[n] + q[n],
(14)

y[n] = Cnx[n] + r[n], (15)

an optimal unknown input observer of the follow-
ing form can be derived.

z[n + 1] = Fn+1z[n] + Tn+1Bnu[n]

+ Kn+1y[n]
(16)

x̂[n + 1] = z[n + 1] + Hn+1y[n + 1]. (17)

The basic idea in this observer is to eliminate
the dependency of the unknown input from the
estimation error by matrix transforms, and subse-
quently design a Kalman estimator for the trans-
formed system. A positive side effect of this, is
that the estimator gain is recomputed at each
sample, meaning the model can be changed such
that the point of operation can updated. The
schemes for computing the matrices in the optimal
unknown input observer can be seen in Appendix
A.

The variance of the disturbance and measurement
noises Q[n] and R[n], as well as the internal fault
model parameter p are all found by trial and
error, based on experimental data, in the way
that the observer estimates the moisture content
in the coal. The results can be seen in Section 4.
From Fig. 4-7 in Section 4 it can be seen that the
observer estimates the fault signal due to the coal
moisture content well, and it is hereby concluded
that the observer and model are well tuned.

4. RESULTS

The designed moisture estimator is applied to
measured data from the coal mill described in Sec-
tion 2. Since the moisture content is not measured
it is impossible to compare the estimated moisture
content with the real moisture content. However it
can be compared with a static estimate, as well as
a low pass filtered version of the static estimate.
This comparison has been done for four different
sets of measurements and can be seen in Fig. 4-7.

The first example shown in Fig. 4 contains two
changes of the plant load at sample 66 and 450,
these load changes are influencing the static mea-
sured but not the one estimated by the use the
proposed scheme. Except from the the plant load
changes both methods are following the increases
and decreases of the moisture content.

The second example shown in Fig. 5 contains one
load change approximately at sample 900. Again
the static measurement/estimate reacts on the
load changes whereas the proposed scheme does
not. Both estimates follow the increased moisture
content well.

The third example shown in Fig. 6 contains a
load change approximately at sample 1230. The
observer estimated coal moisture content shows
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Figure 4. Example 1, comparison of observer es-
timated and static measured/estimated coal
moisture content. Notice the static measure-
ment is influenced by a plant load change at
sample 66 and 450.
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Figure 5. Example 2, comparison of observer es-
timated and static measured/estimated coal
moisture content. The observer estimate does
not react on the load change at sample 900,
which the static estimate does.

the increase in coal moisture content without
reacting on the load change at sample 1230, which
the static estimated moisture content, on the
other hand, does.

The fourth example which is illustration by Fig.
7, has a variating moisture content and plant
load change approximately at sample 146. The
conclusion which can be made of this example is
similar to the three others. The observer based
estimation gives the moisture content without
reacting on the plant load changes, which the
static estimate, on the other hand, does.

From these four examples illustrated by Figs. 4-
7 it can be seen that the observer estimates the
moisture content of the coal well in all four cases,
on the other hand this estimate does not react on
load changes as the static estimate does. It can
hereby be concluded that the observer and model
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Figure 6. Example 3, comparison of observer esti-
mated, static measured/estimated coal mois-
ture content. The static estimate reacts on
the load change at sample 1230, which the
observer estimate does not.
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Figure 7. Example 4, comparison of observer es-
timated, static measured/estimated moisture
content.

are well tuned, and the estimator can be used to
estimate the moisture content dynamically.

5. CONCLUSION

This paper introduces a method for estimating
coal moisture content in the coal in coal mills used
in power plants. The estimation is performed by
using a simple linearized dynamic energy balance
model, and an optimal unknown input observer.
The designed observer is tested on four sets of
experimental data from a coal mill, and it is
concluded that the observer estimates the coal
moisture content very well in all these cases, with
different moisture content.
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Appendix A. OPTIMAL UNKNOWN INPUT
OBSERVER

A necessary and sufficient condition for the exis-
tence of a solution to the given observer problem
is in (Chen and Patton 1999) given as: An optimal
unknown input observer solution exists if and only
if: rank (Cn+1En) = rank (En).

The computation of the matrices in the observer
is also given in (Chen and Patton 1999) as:

(1) Set initial values: P0 = P (0), z0 = x0 −

C0E0 (C0E0)
+

y0, H0 = 0.
(2) Compute Hn+1 = En (Cn+1En)

+
.

(3) Compute

K1
n+1 = A1

n+1PnCT

n

(

CnPnCT

n
+ Rn

)

−1
,

and P
′

n+1 = Pn − K1
n+1CnPn

(

A1
n+1

)T

(4) Compute Tn+1 = I − Hn+1Cn+1,
Fn+1 = An − Hn+1Cn+1An − K1

n+1Cn,
K2

n+1 = Fn+1Hn, and Kn+1 = K1
n+1 +

K2
n+1.

(5) Now compute
z[n + 1] = Fn+1z[n] + Tn+1Bnu[n] +
Kn+1y[n]
and x̂[n + 1] = z[n + 1] + Hn+1y[n + 1].

(6) Compute P
′

n+1 = Pn−K1
n+1CnPn

(

A1
n+1

)T

,
and following

Pn+1 = A1
n+1P

′

n+1

(

A1
n+1

)T

+Tn+1QnTT

n+1+
Hn+1Rn+1H

T

n+1.
(7) Set n = n + 1 and jump to step 2.


